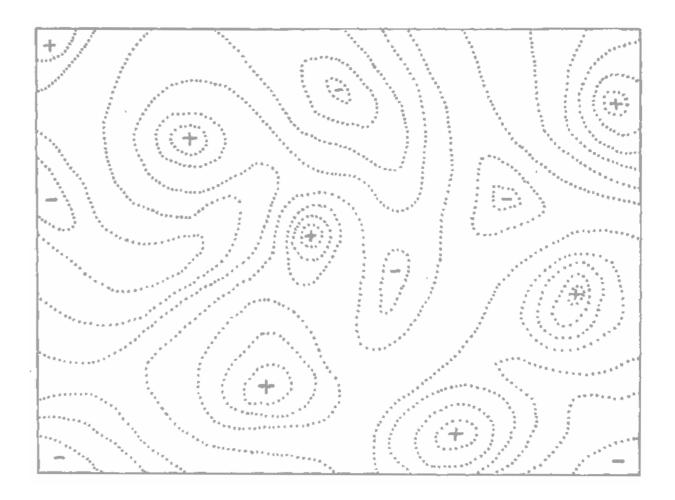


## OPTIMIZATION LANDSCAPES

#### CHRISTIAN L. MÜLLER

CENTER FOR COMPUTATIONAL MATHEMATICS, FLATIRON INSTITUTE, NEW YORK INSTITUTE FOR STATISTICS, LUDWIG-MAXIMILIANS-UNIVERSITÄT & INSTITUTE OF COMPUTATIONAL BIOLOGY, HELMHOLTZ ZENTRUM, MUNICH

FWAM Flatiron Conference 10/30/2019





## CONGRATULATIONS





### CONGRATULATIONS





#### 5 YEARS OF SIMONS CENTER FOR DATA ANALYSIS (SCDA)/ FLATIRON INSTITUTE



### CONGRATULATIONS





#### 5 YEARS OF SIMONS CENTER FOR DATA ANALYSIS (SCDA)/ FLATIRON INSTITUTE







#### op·ti·mi·za·tion

/ˌäptəməˈzāSHən,ˌäptəˌmīˈzāSHən/noun

noun: optimization; plural noun: optimizations; noun: optimisation; plural noun: optimisations

1. the action of making the best or most effective use of a situation or resource.

google dictionary



#### op·ti·mi·za·tion

/ˌäptəməˈzāSHən,ˌäptəˌmīˈzāSHən/noun

noun: optimization; plural noun: optimizations; noun: optimisation; plural noun: optimisations

1. the action of making the best or most effective use of a situation or resource.

google dictionary

#### Mathematical optimization

Discipline

#### **Description**

Mathematical optimization or mathematical programming is the selection of a best element from some set of available alternatives. Wikipedia

wikipedia



**Mathematical optimization** (alternatively spelled *optimisation*) or **mathematical programming** is the selection of a best element (with regard to some criterion) from some set of available alternatives.<sup>[1]</sup>

Optimization problems of sorts arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.<sup>[2]</sup>

wikipedia

<sup>1. &</sup>quot;The Nature of Mathematical Programming Archived 2014-03-05 at the Wayback Machine," *Mathematical Programming Glossary*, INFORMS Computing Society.

<sup>2. ^</sup> Du, D. Z.; Pardalos, P. M.; Wu, W. (2008). "History of Optimization". In Floudas, C.; Pardalos, P. (eds.). *Encyclopedia of Optimization*. Boston: Springer. pp. 1538–1542.

### OPTIMIZING A BLACK-BOX



#### Black-box system



#### OPTIMIZING A BLACK-BOX



#### Black-box system

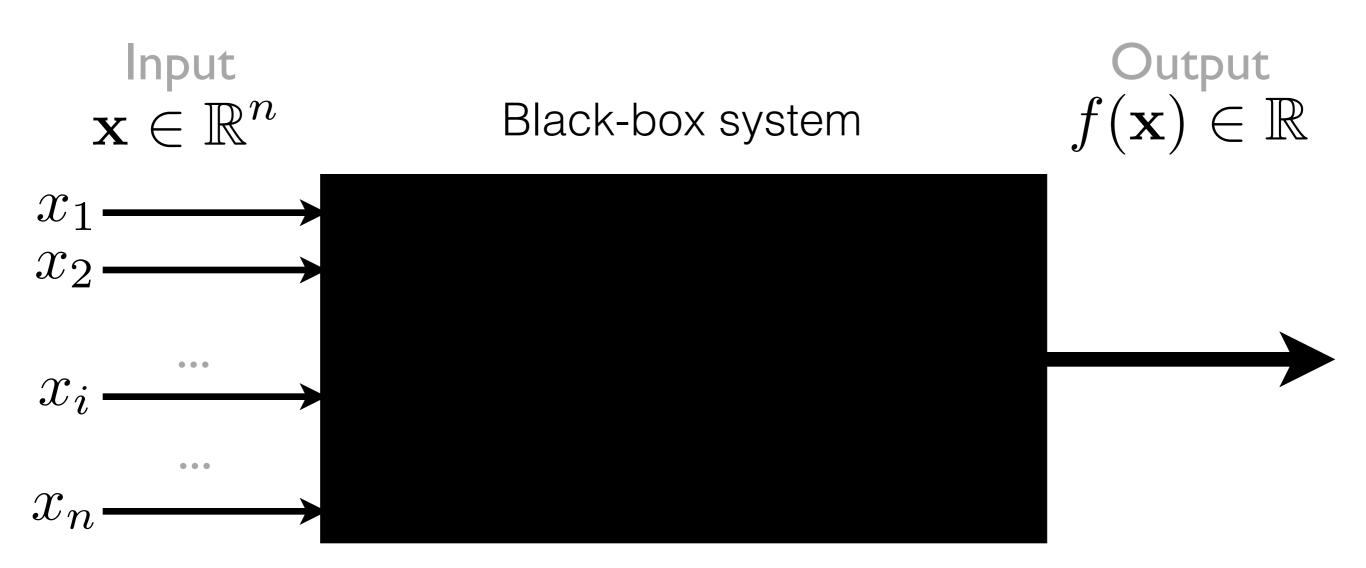
Input

Mathematical model
Computer simulation

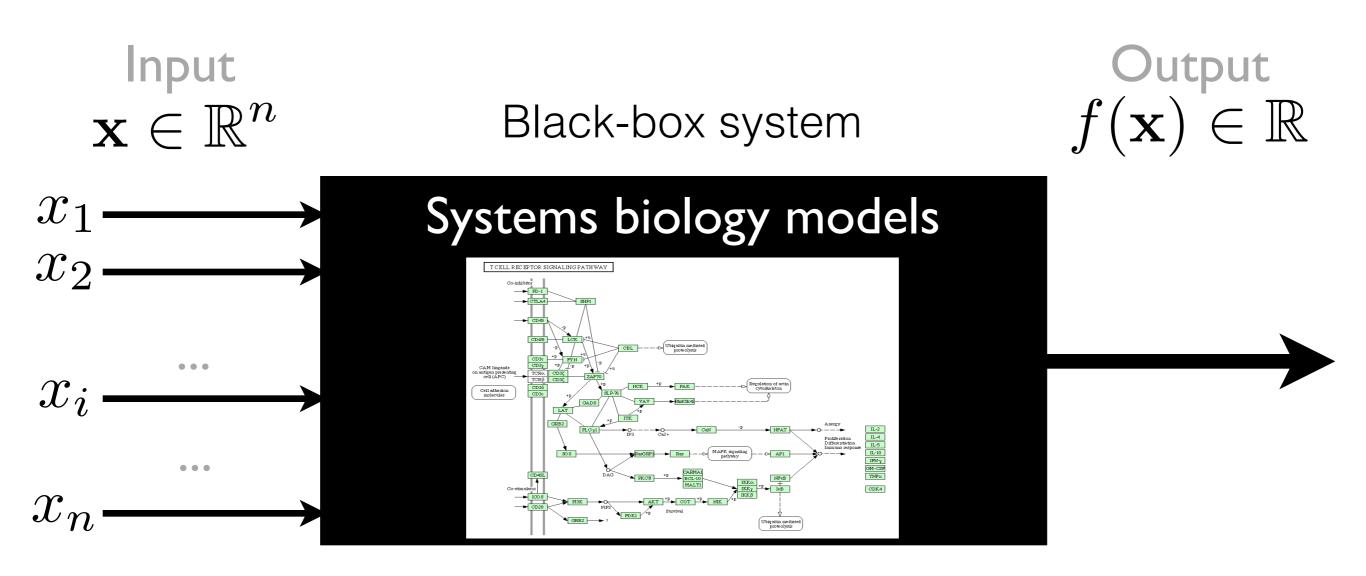
Real-world experiment

Output

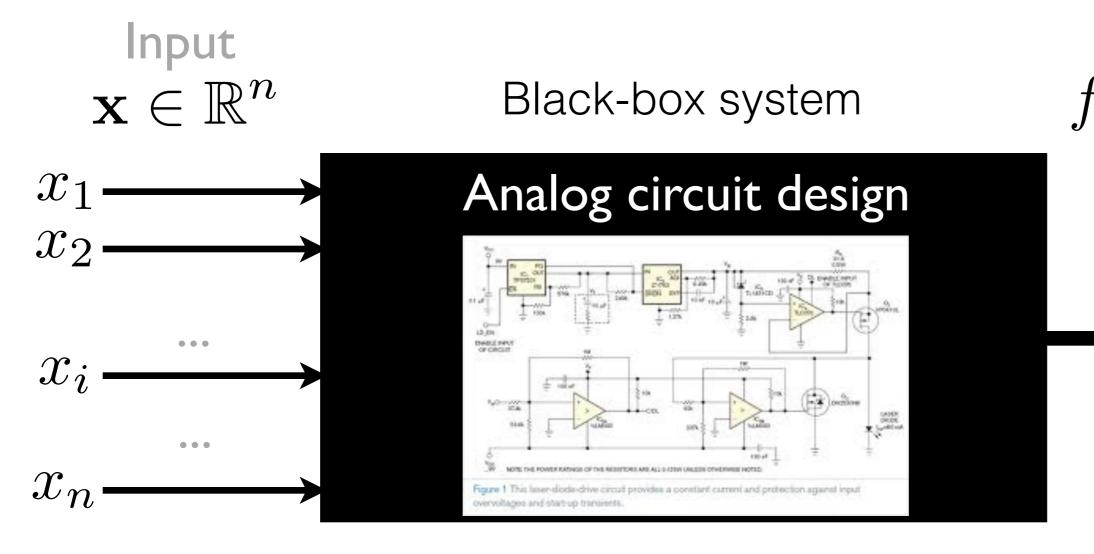




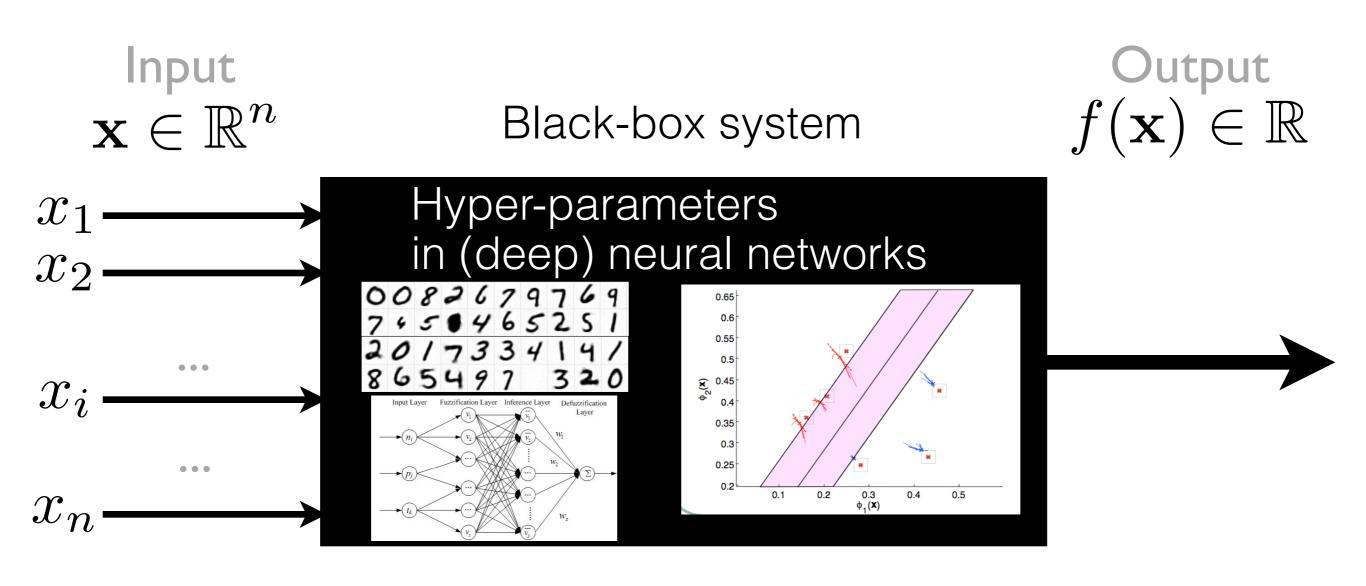




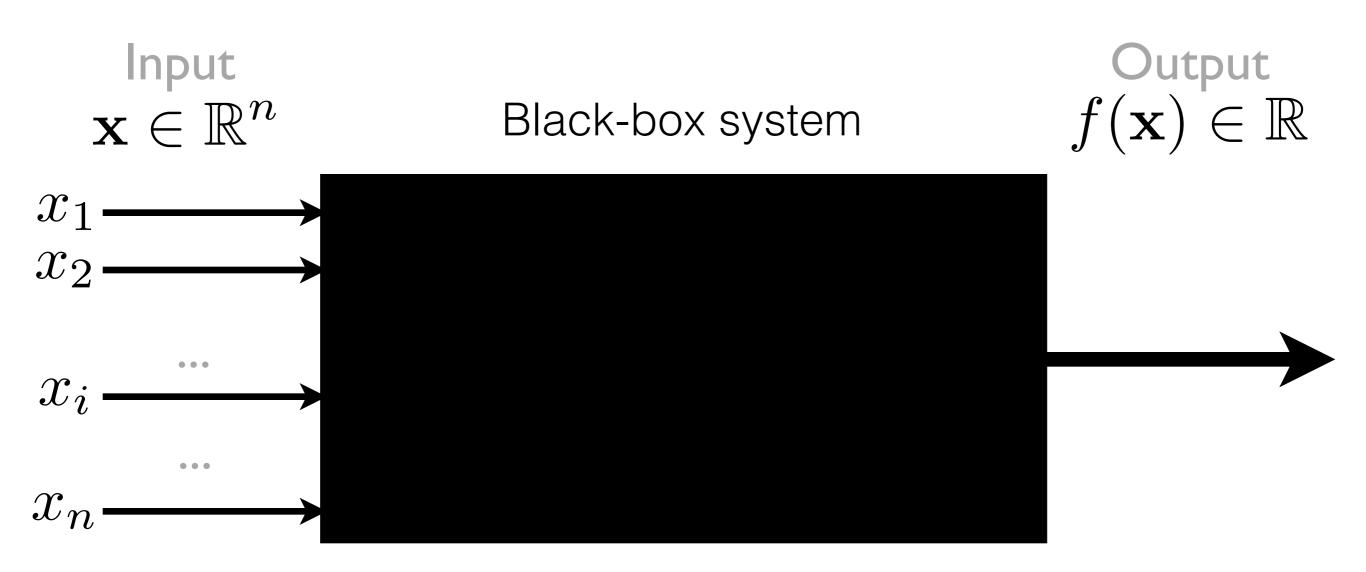




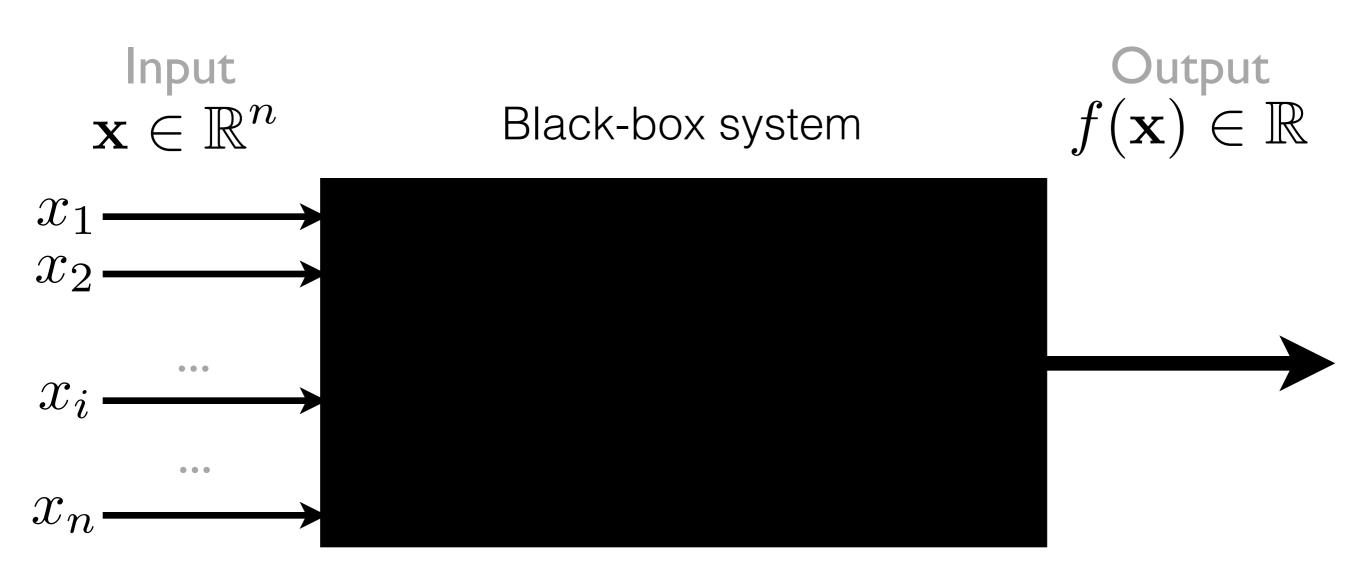






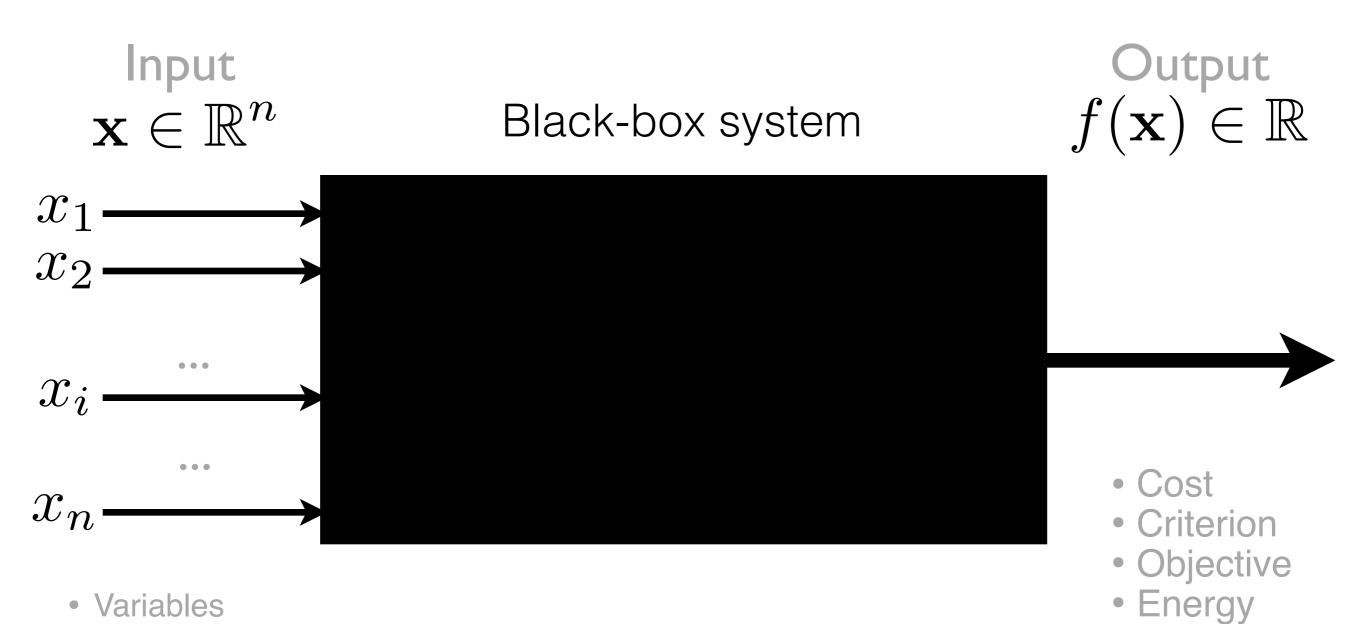






- Variables
- Parameters
- Configuration
- Factors



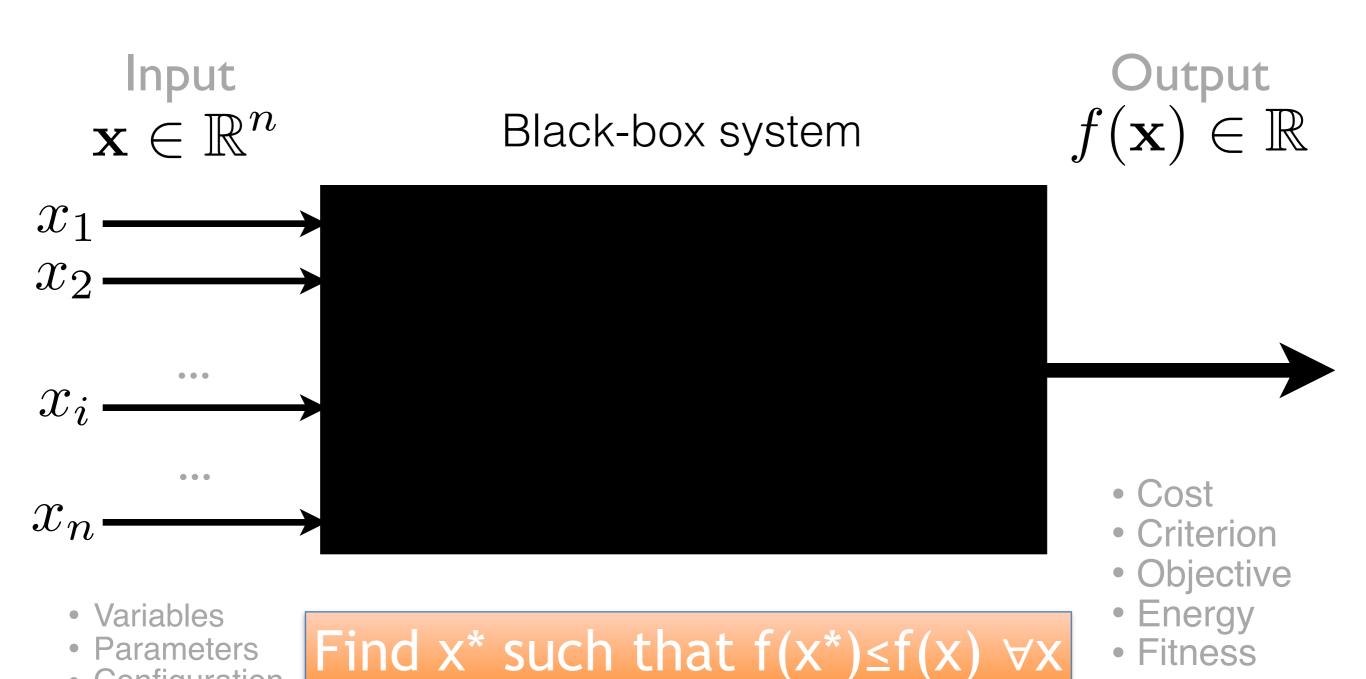


- Variables
- Parameters
- Configuration
- Factors

Configuration

Factors





7

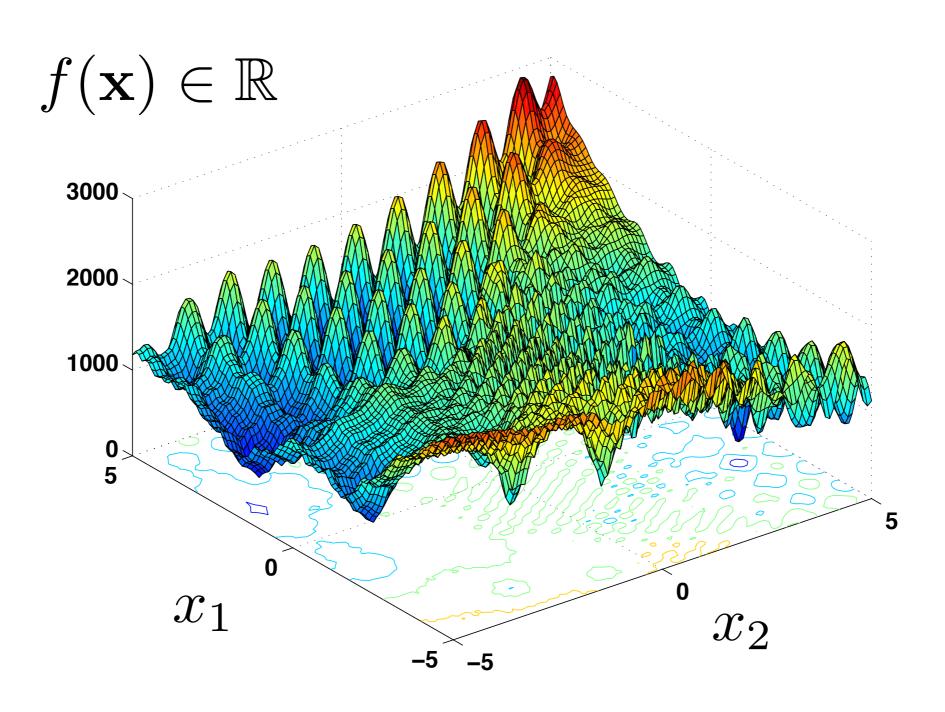
## OPTIMIZATION LANDSCAPES



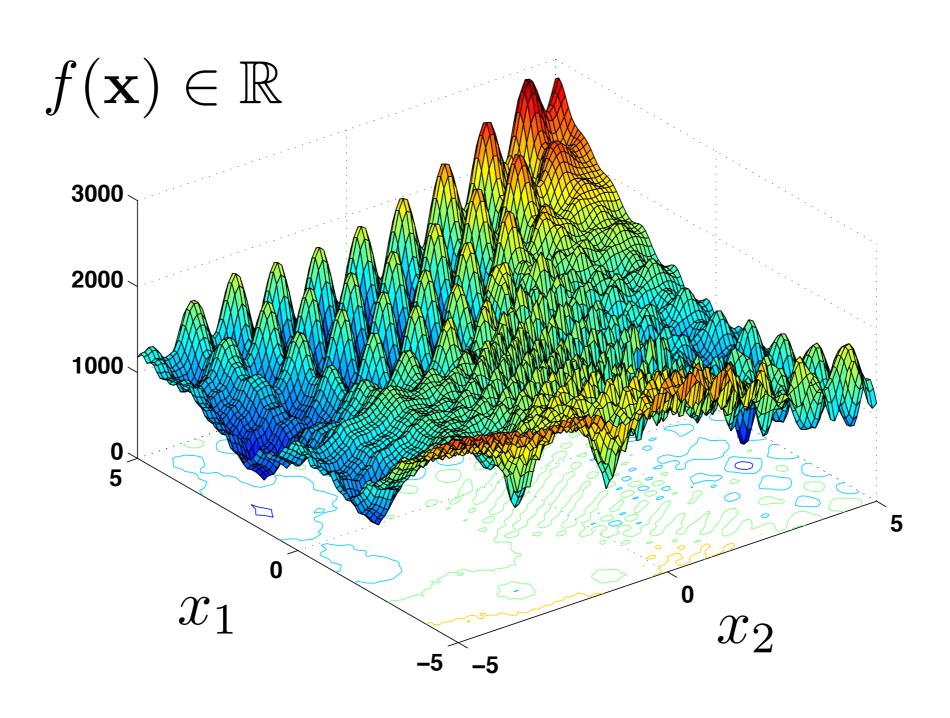


## OPTIMIZATION LANDSCAPES

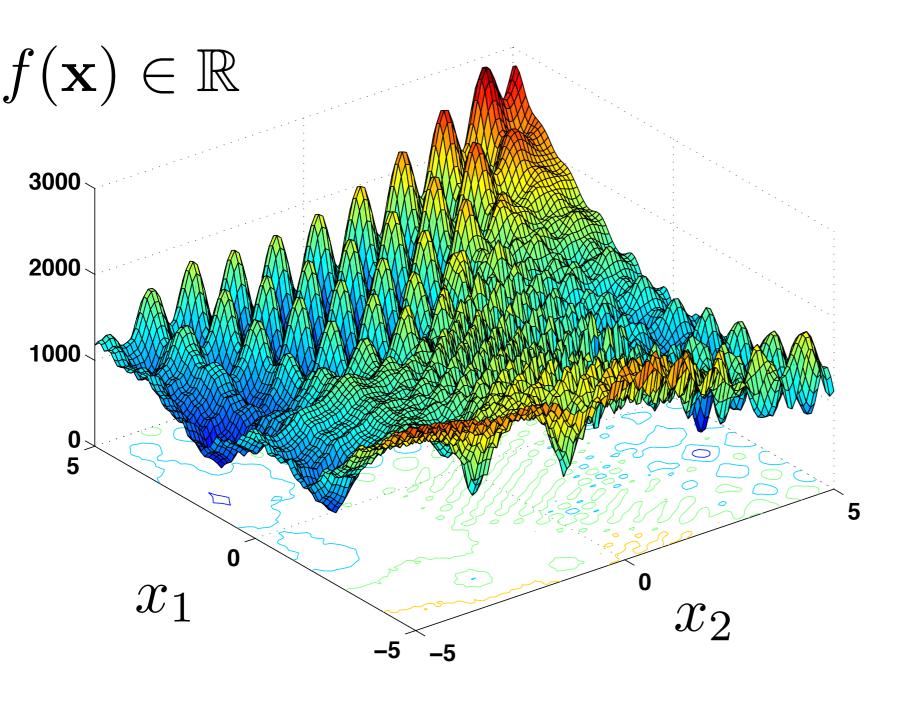




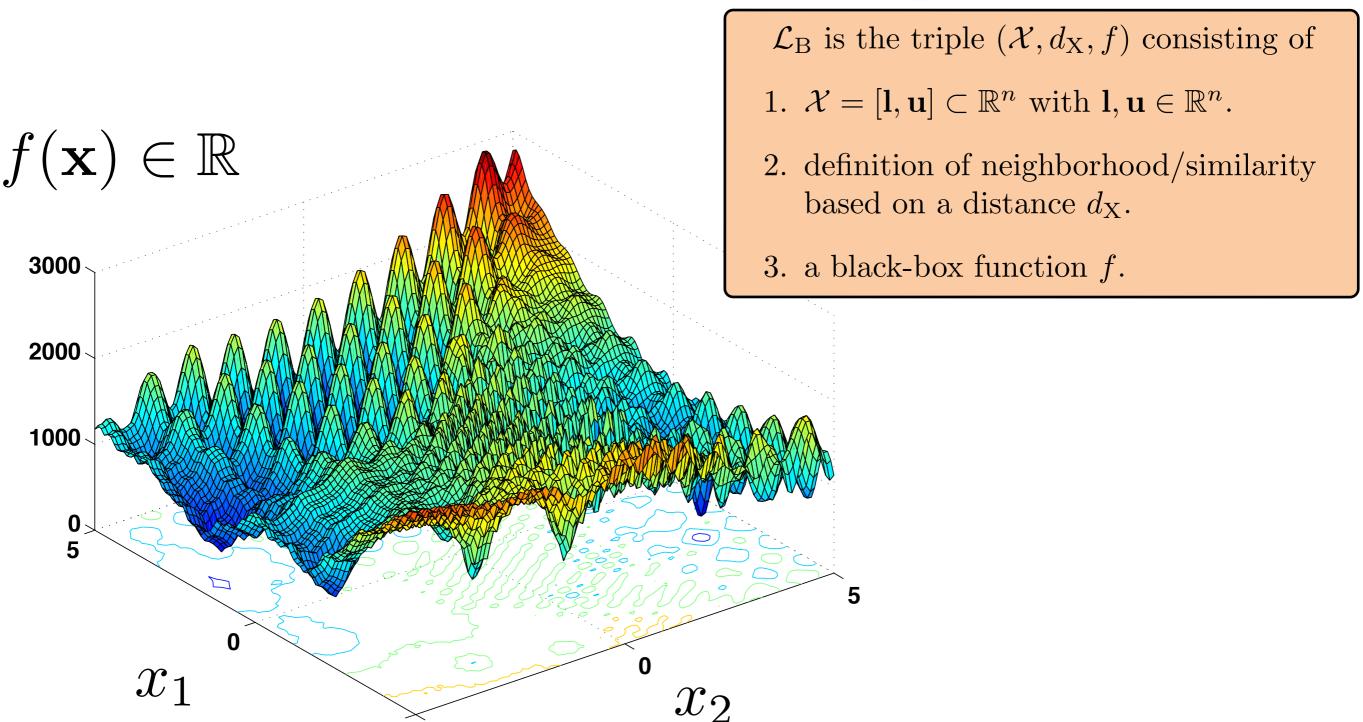






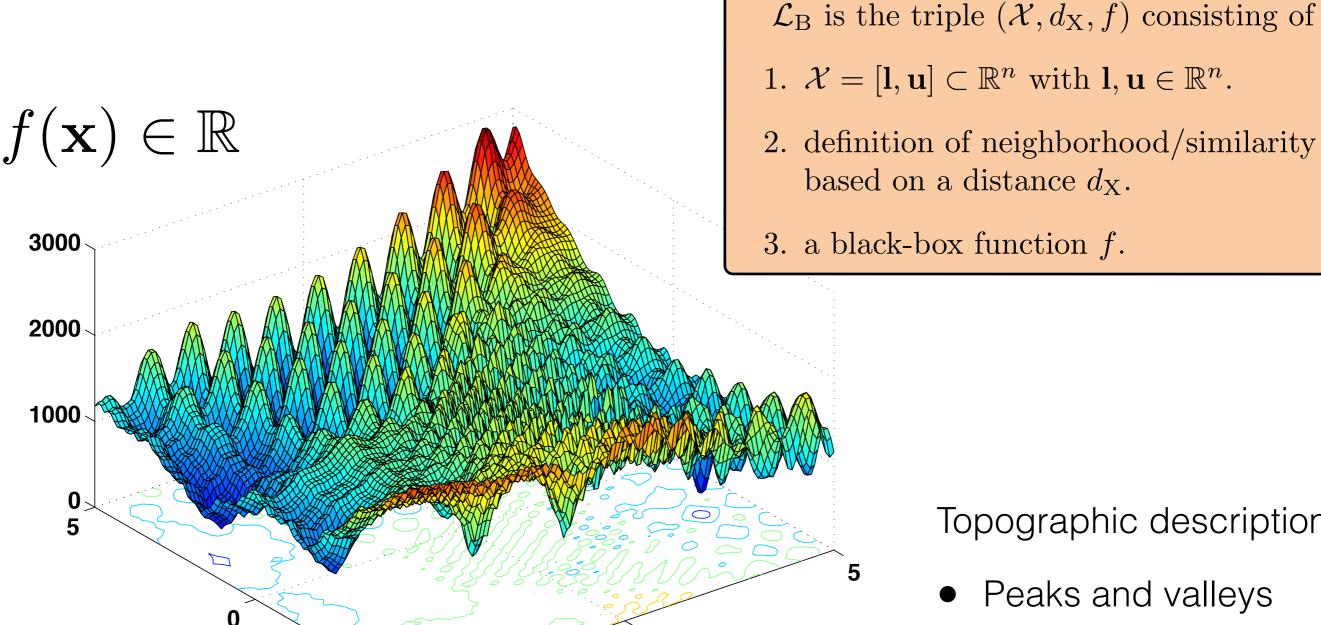






 $x_1$ 





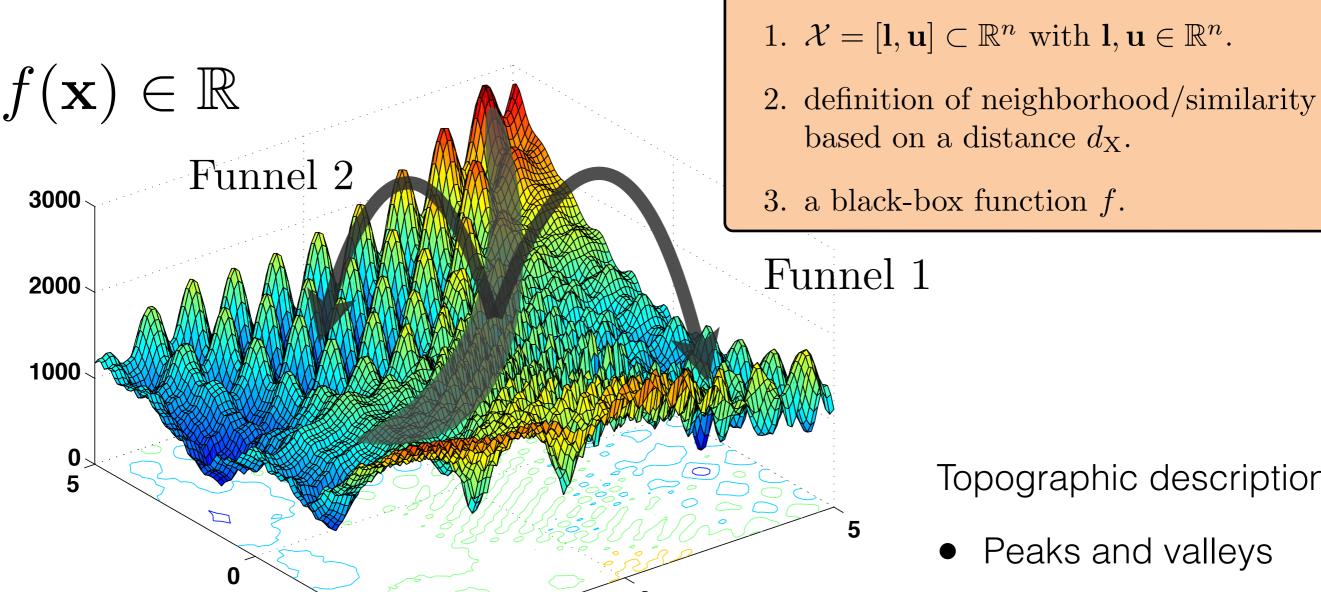
 $x_2$ 

Topographic description:

- Peaks and valleys
- Plateaus and basins
- Ridges and funnels

 $x_1$ 





 $x_2$ 

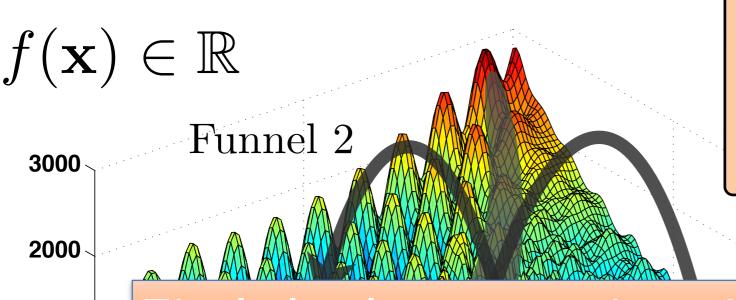
Topographic description:

Peaks and valleys

 $\mathcal{L}_{\mathrm{B}}$  is the triple  $(\mathcal{X}, d_{\mathrm{X}}, f)$  consisting of

- Plateaus and basins
- Ridges and funnels





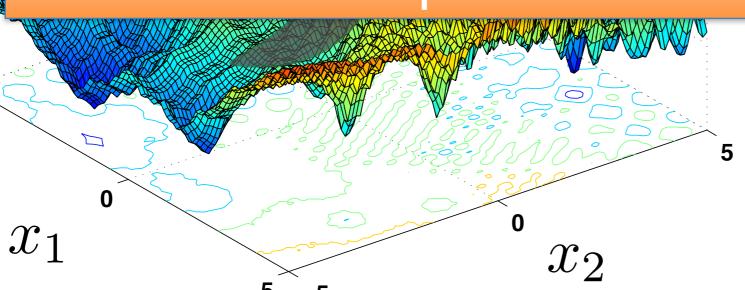
1000

 $\mathcal{L}_{\mathrm{B}}$  is the triple  $(\mathcal{X}, d_{\mathrm{X}}, f)$  consisting of

- 1.  $\mathcal{X} = [\mathbf{l}, \mathbf{u}] \subset \mathbb{R}^n$  with  $\mathbf{l}, \mathbf{u} \in \mathbb{R}^n$ .
- 2. definition of neighborhood/similarity based on a distance  $d_{\rm X}$ .
- 3. a black-box function f.

Funnel 1

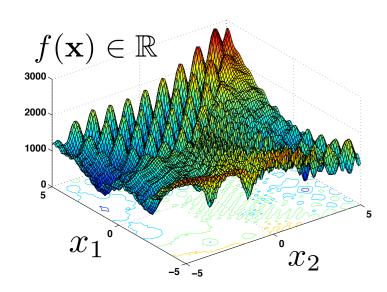
# Find the lowest point x\* in the landscape!



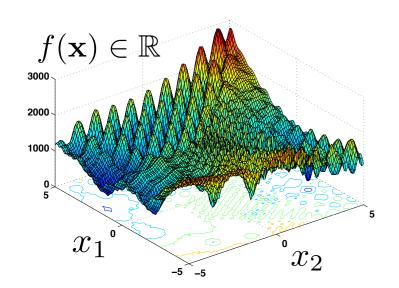
Topographic description:

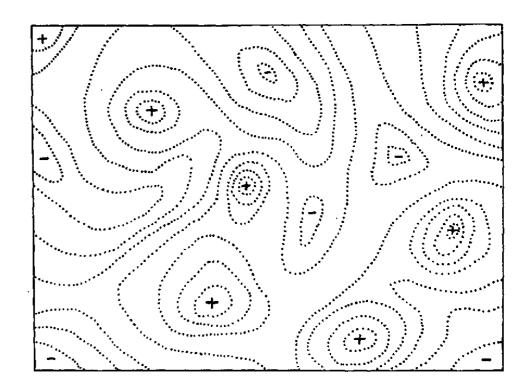
- Peaks and valleys
- Plateaus and basins
- Ridges and funnels





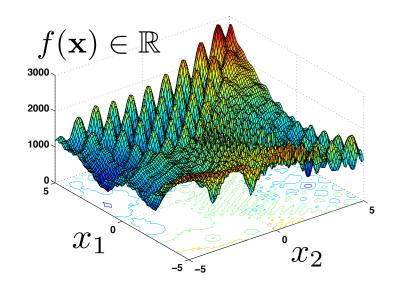


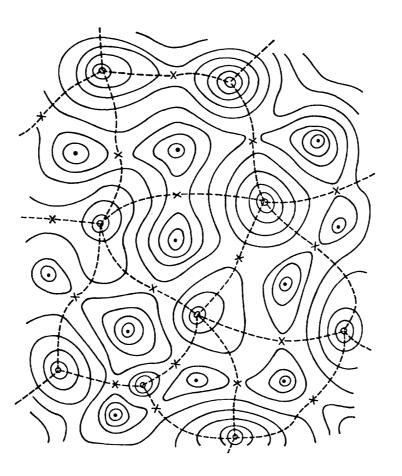




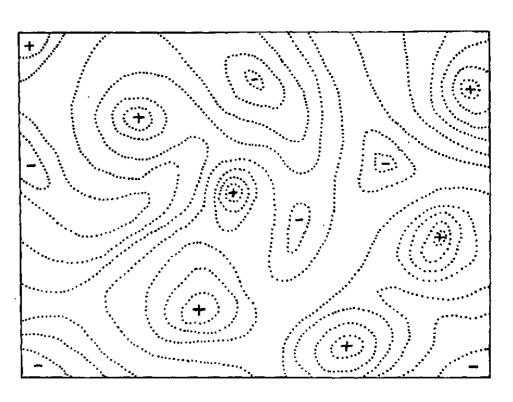
Fitness landscape





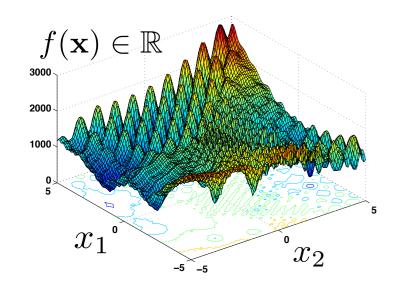


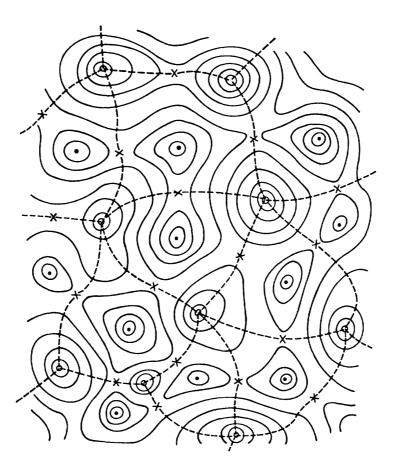
Potential energy landscape



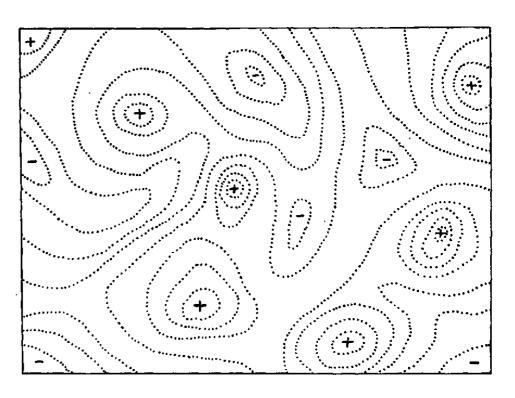
Fitness landscape



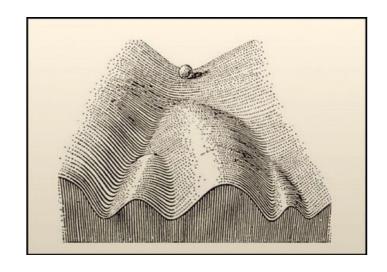




Potential energy landscape

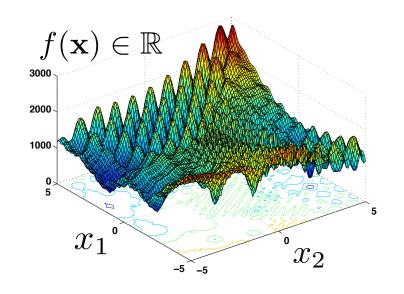


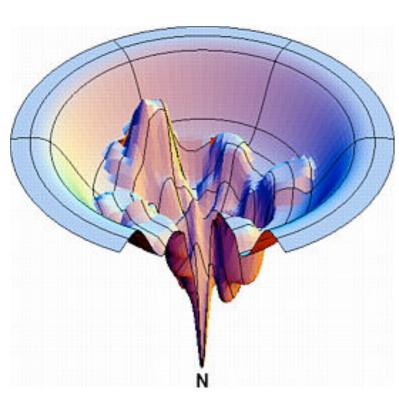
Fitness landscape



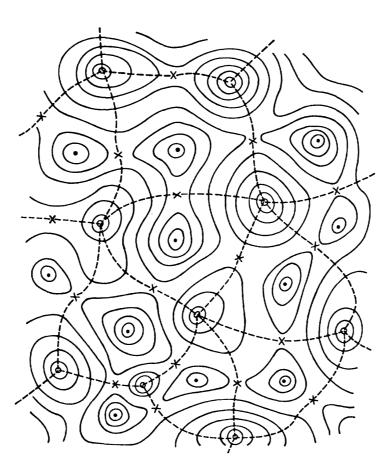
Epigenetic landscape



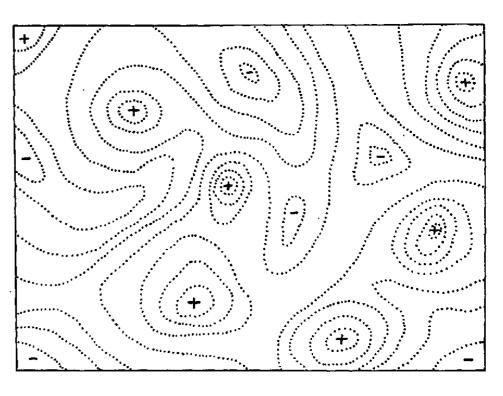




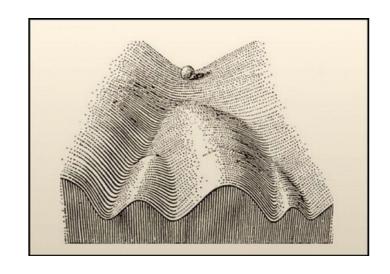
Folding funnel



Potential energy landscape



Fitness landscape



Epigenetic landscape

## LANDSCAPES ARE METAPHORS



"The price of metaphor is eternal vigilance."

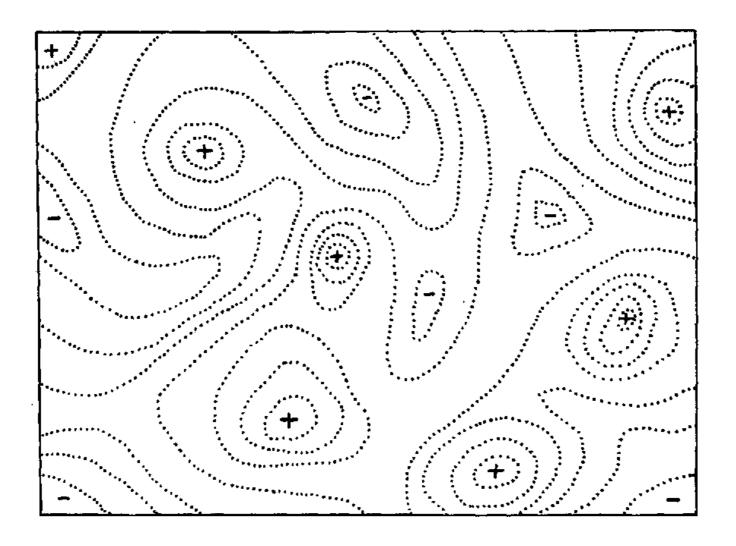
Norbert Wiener



La condition humaine, René Magritte



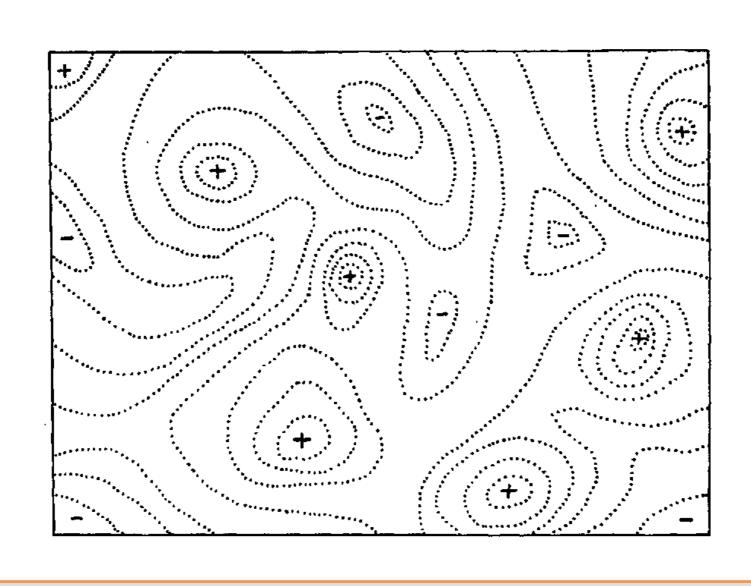
Wright, S., "The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evolution," Proceedings of the Sixth International Congress on Genetics, 1932.





Wright, S., "The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evolution," Proceedings of the Sixth International Congress on Genetics, 1932.

gene 1/ trait 1/...

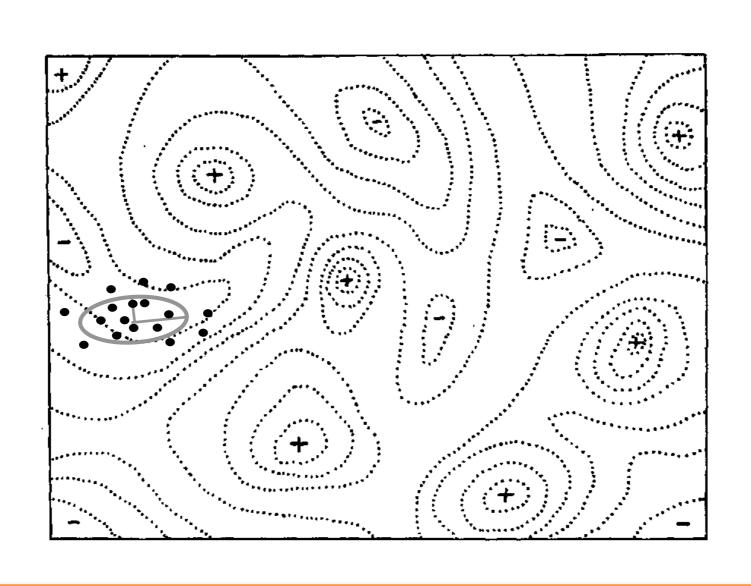


gene 2/trait 2/...



Wright, S., "The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evolution," Proceedings of the Sixth International Congress on Genetics, 1932.

gene 1/ trait 1/...

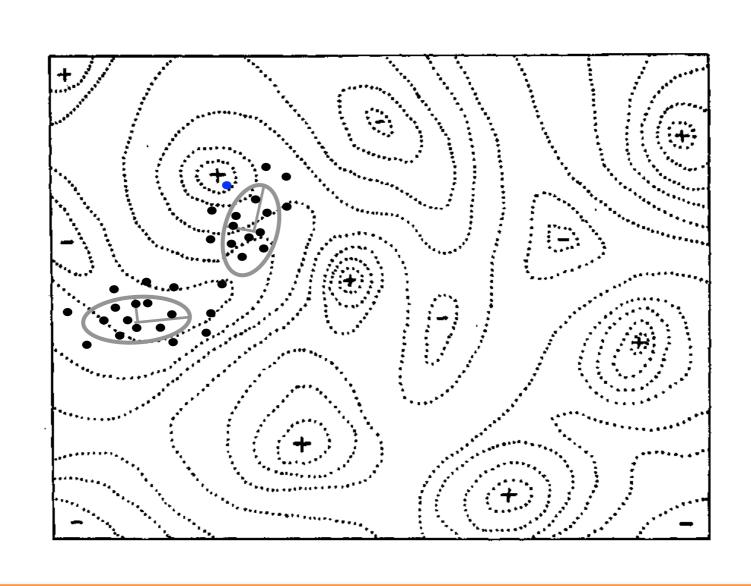


gene 2/trait 2/...



Wright, S., "The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evolution," Proceedings of the Sixth International Congress on Genetics, 1932.

gene 1/ trait 1/...



gene 2/trait 2/...



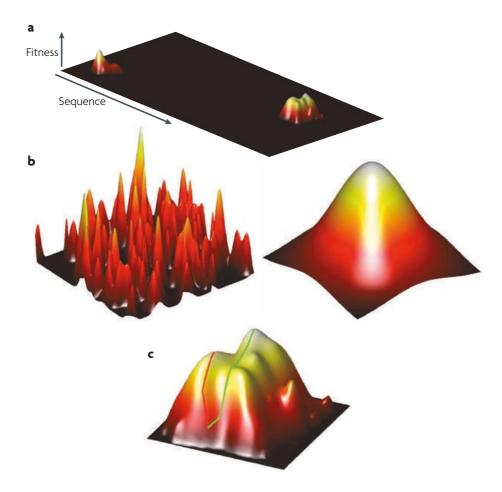
### Exploring protein fitness landscapes by directed evolution

Philip A. Romero and Frances H. Arnold



Abstract | Directed evolution circumvents our profound ignorance of how a protein's sequence encodes its function by using iterative rounds of random mutation and artificial selection to discover new and useful proteins. Proteins can

<u>Darwin200</u> be tuned to adapt to new functions or environments by simple adaptive walks involving small numbers of mutations. Directed evolution studies have shown how rapidly some proteins can evolve under strong selection pressures and, because the entire 'fossil record' of evolutionary intermediates is available for detailed study, they have provided new insight into the relationship between sequence and function. Directed evolution has also shown how mutations that are functionally neutral can set the stage for further adaptation.







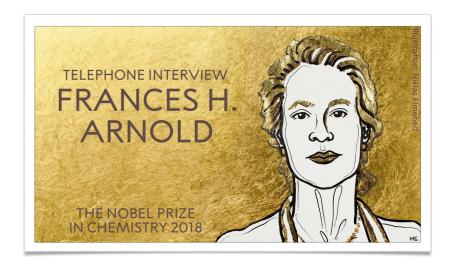
#### Exploring protein fitness landscapes by directed evolution

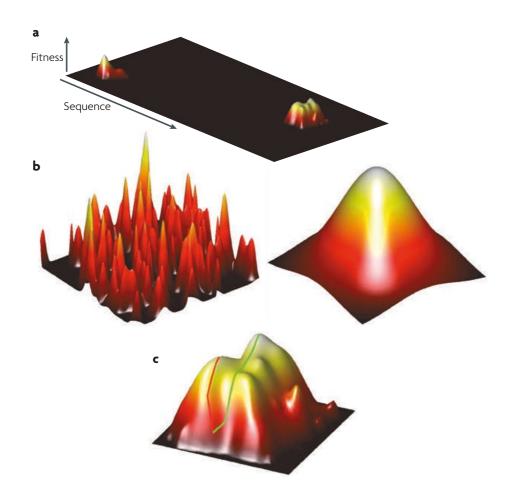
Philip A. Romero and Frances H. Arnold

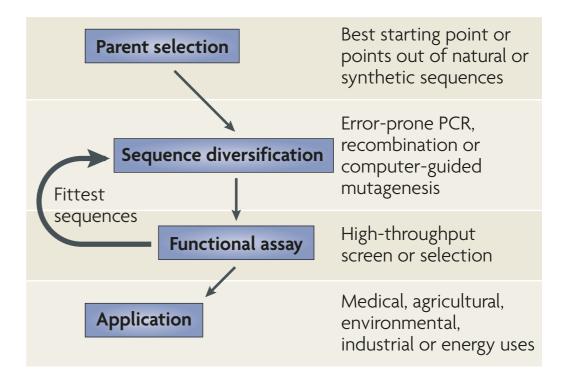


Abstract | Directed evolution circumvents our profound ignorance of how a protein's sequence encodes its function by using iterative rounds of random mutation and artificial selection to discover new and useful proteins. Proteins can

<u>Darwin200</u> be tuned to adapt to new functions or environments by simple adaptive walks involving small numbers of mutations. Directed evolution studies have shown how rapidly some proteins can evolve under strong selection pressures and, because the entire 'fossil record' of evolutionary intermediates is available for detailed study, they have provided new insight into the relationship between sequence and function. Directed evolution has also shown how mutations that are functionally neutral can set the stage for further adaptation.









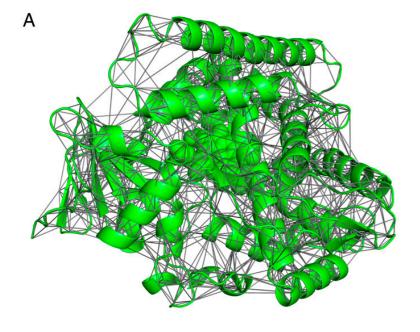
### Navigating the protein fitness landscape with Gaussian processes

Philip A. Romero<sup>a</sup>, Andreas Krause<sup>b</sup>, and Frances H. Arnold<sup>a,1</sup>

<sup>a</sup>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and <sup>b</sup>Department of Computer Science, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved November 28, 2012 (received for review September 9, 2012)

## Enzyme to be optimized





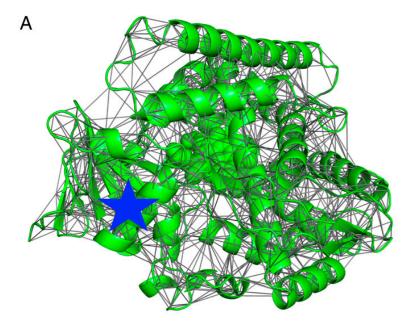
## Navigating the protein fitness landscape with Gaussian processes

Philip A. Romero<sup>a</sup>, Andreas Krause<sup>b</sup>, and Frances H. Arnold<sup>a,1</sup>

<sup>a</sup>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and <sup>b</sup>Department of Computer Science, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved November 28, 2012 (received for review September 9, 2012)

## Enzyme to be optimized





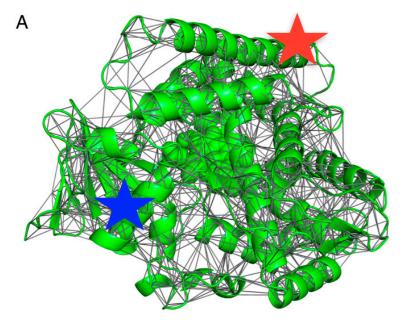
## Navigating the protein fitness landscape with Gaussian processes

Philip A. Romero<sup>a</sup>, Andreas Krause<sup>b</sup>, and Frances H. Arnold<sup>a,1</sup>

<sup>a</sup>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and <sup>b</sup>Department of Computer Science, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved November 28, 2012 (received for review September 9, 2012)

## Enzyme to be optimized





## Navigating the protein fitness landscape with Gaussian processes

Philip A. Romero<sup>a</sup>, Andreas Krause<sup>b</sup>, and Frances H. Arnold<sup>a,1</sup>

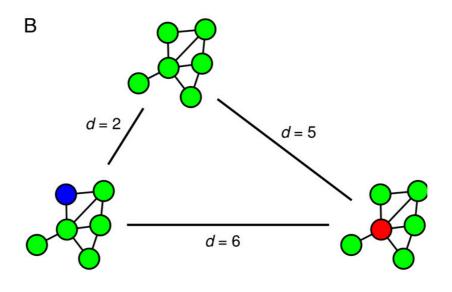
<sup>a</sup>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and <sup>b</sup>Department of Computer Science, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved November 28, 2012 (received for review September 9, 2012)

## Enzyme to be optimized

# A

## Network representation and distance definition





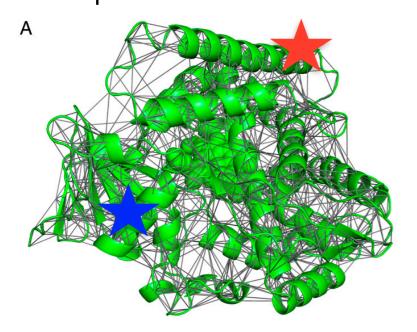
## Navigating the protein fitness landscape with Gaussian processes

Philip A. Romero<sup>a</sup>, Andreas Krause<sup>b</sup>, and Frances H. Arnold<sup>a,1</sup>

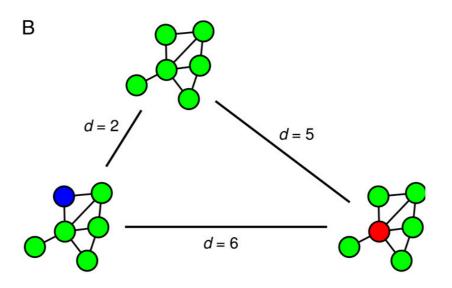
<sup>a</sup>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and <sup>b</sup>Department of Computer Science, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved November 28, 2012 (received for review September 9, 2012)

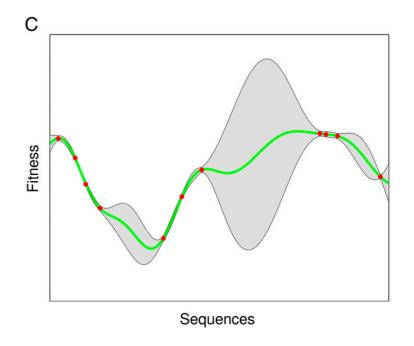
## Enzyme to be optimized



## Network representation and distance definition



## Modeling of measured fitness as GP





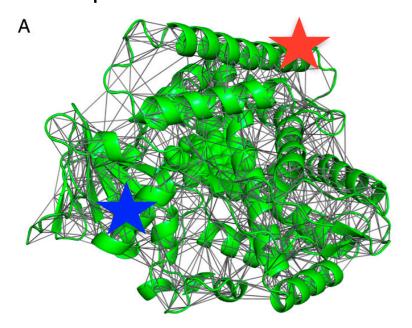
## Navigating the protein fitness landscape with Gaussian processes

Philip A. Romero<sup>a</sup>, Andreas Krause<sup>b</sup>, and Frances H. Arnold<sup>a,1</sup>

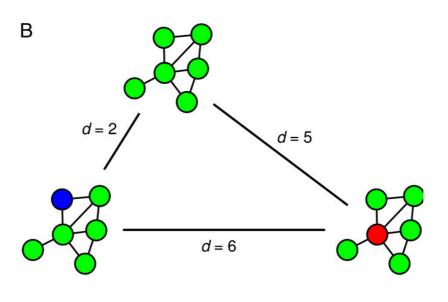
<sup>a</sup>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and <sup>b</sup>Department of Computer Science, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved November 28, 2012 (received for review September 9, 2012)

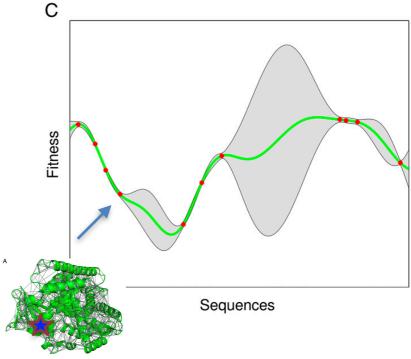
## Enzyme to be optimized



## Network representation and distance definition



## Modeling of measured fitness as GP





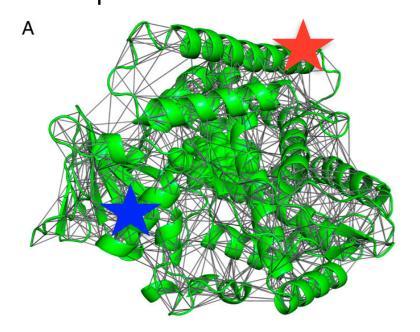
## Navigating the protein fitness landscape with Gaussian processes

Philip A. Romero<sup>a</sup>, Andreas Krause<sup>b</sup>, and Frances H. Arnold<sup>a,1</sup>

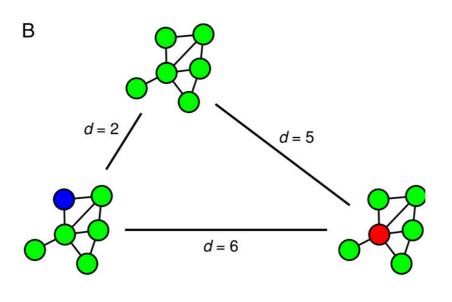
<sup>a</sup>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and <sup>b</sup>Department of Computer Science, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved November 28, 2012 (received for review September 9, 2012)

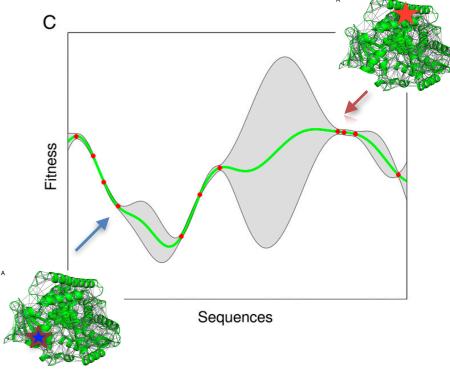
## Enzyme to be optimized



## Network representation and distance definition



### Modeling of measured fitness as GP



## FITNESS LANDSCAPES AND OPTIMIZATION



- Evolution can be seen as optimization process over a fitness landscapes.
- The optimization process is based on a population of individuals.
- Key operations are mutation and selection.

## FITNESS LANDSCAPES AND OPTIMIZATION



- Evolution can be seen as optimization process over a fitness landscapes.
- The optimization process is based on a population of individuals.
- Key operations are mutation and selection.

The entire field of *evolutionary computation*, a subfield of continuous optimization, is based on this idea (>100k publications).

Keywords: Genetic algorithms, genetic programs, Evolution Strategies



#### LONDON-EYRING-POLANYI POTENTIAL ENERGY SURFACE

Eyring, H, Polanyi, M., "Über einfache Gasreaktionen,"
Zeitschrift für Physikalische Chemie B, Band 12, S. 279–311,1931



#### LONDON-EYRING-POLANYI POTENTIAL ENERGY SURFACE

Eyring, H, Polanyi, M., "Über einfache Gasreaktionen," Zeitschrift für Physikalische Chemie B, Band 12, S. 279–311,1931

H + H<sub>2</sub> ⇔ H<sub>2</sub> + H reaction for a collinear collision geometry



#### LONDON-EYRING-POLANYI POTENTIAL ENERGY SURFACE

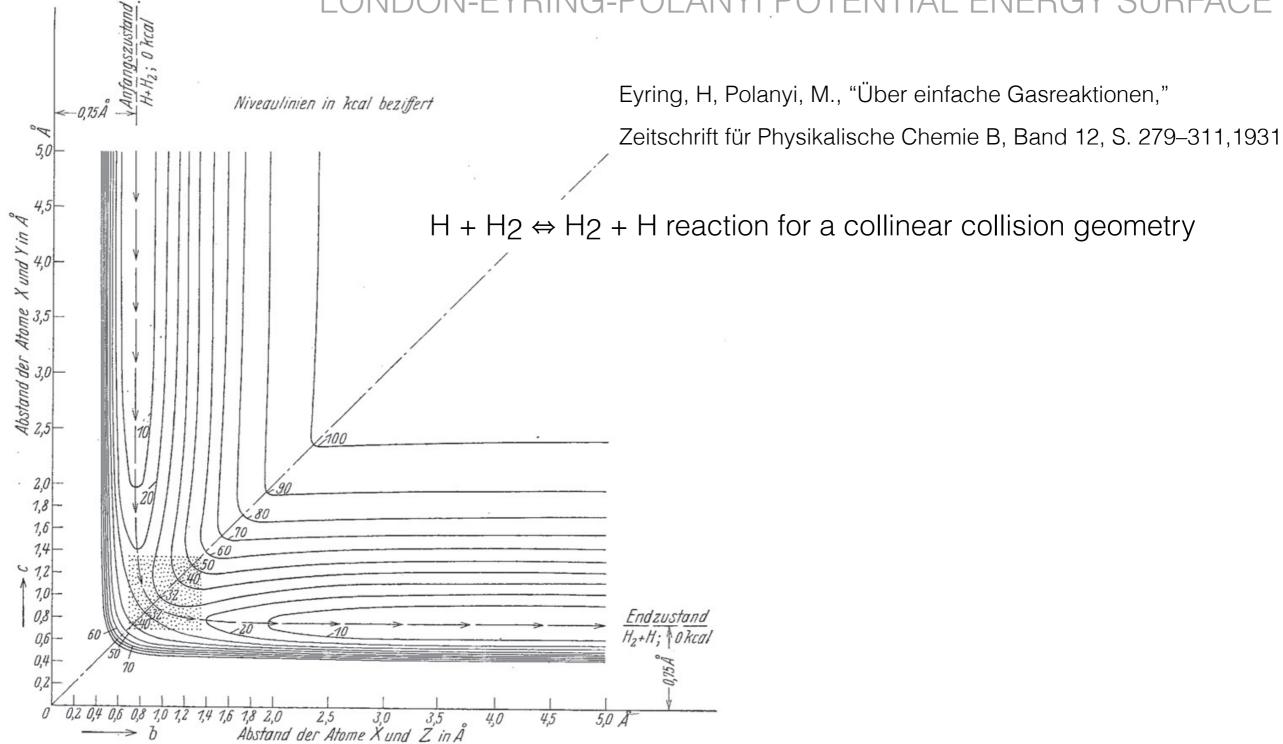


Fig. 5. Resonanzenergie von 3 geradlinig angeordneten H-Atomen als Funktion der Abstände ("Resonanzgebirge").



#### LONDON-EYRING-POLANYI POTENTIAL ENERGY SURFACE

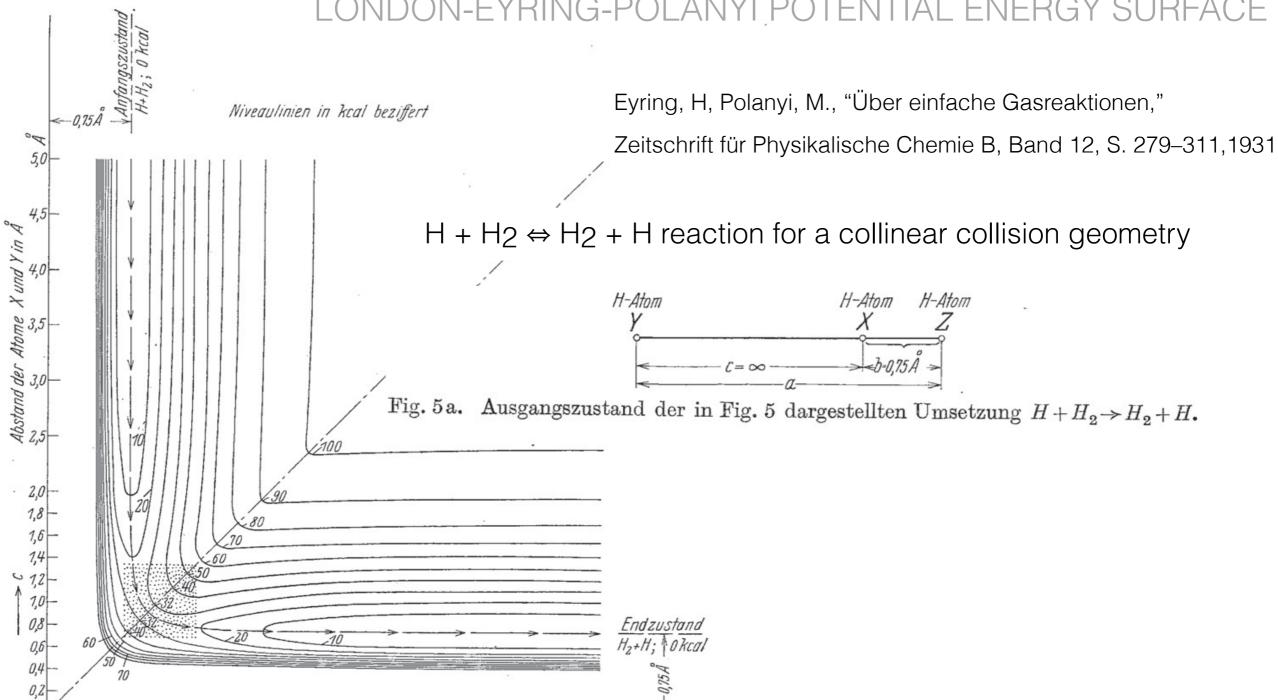


Fig. 5. Resonanzenergie von 3 geradlinig angeordneten H-Atomen als Funktion der Abstände ("Resonanzgebirge").

1,8 2,0 2,5 3,0 3,5 Abstand der Atome X und Z in Å



#### LONDON-EYRING-POLANYI POTENTIAL ENERGY SURFACE

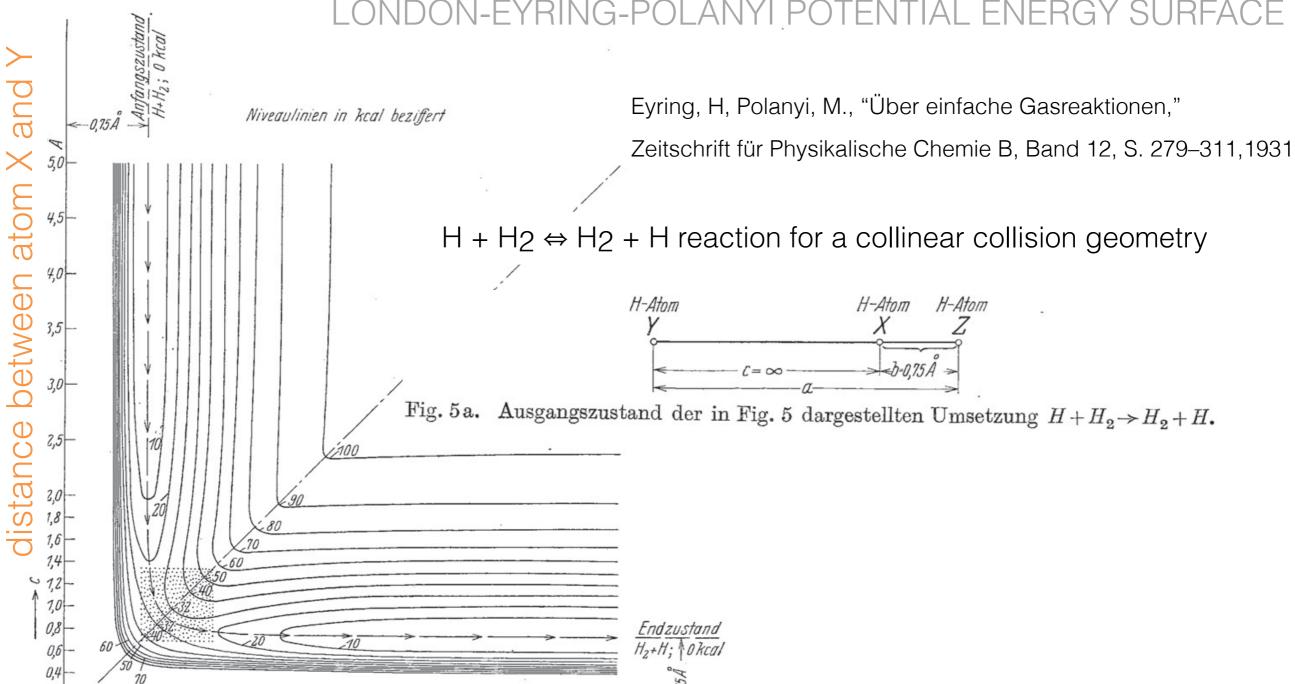


Fig. 5. Resonanzenergie von 3 geradung angeordneten H-Atomen als Funktion der Abstände ("Resonanzgebirge").

distance between atom X and Z



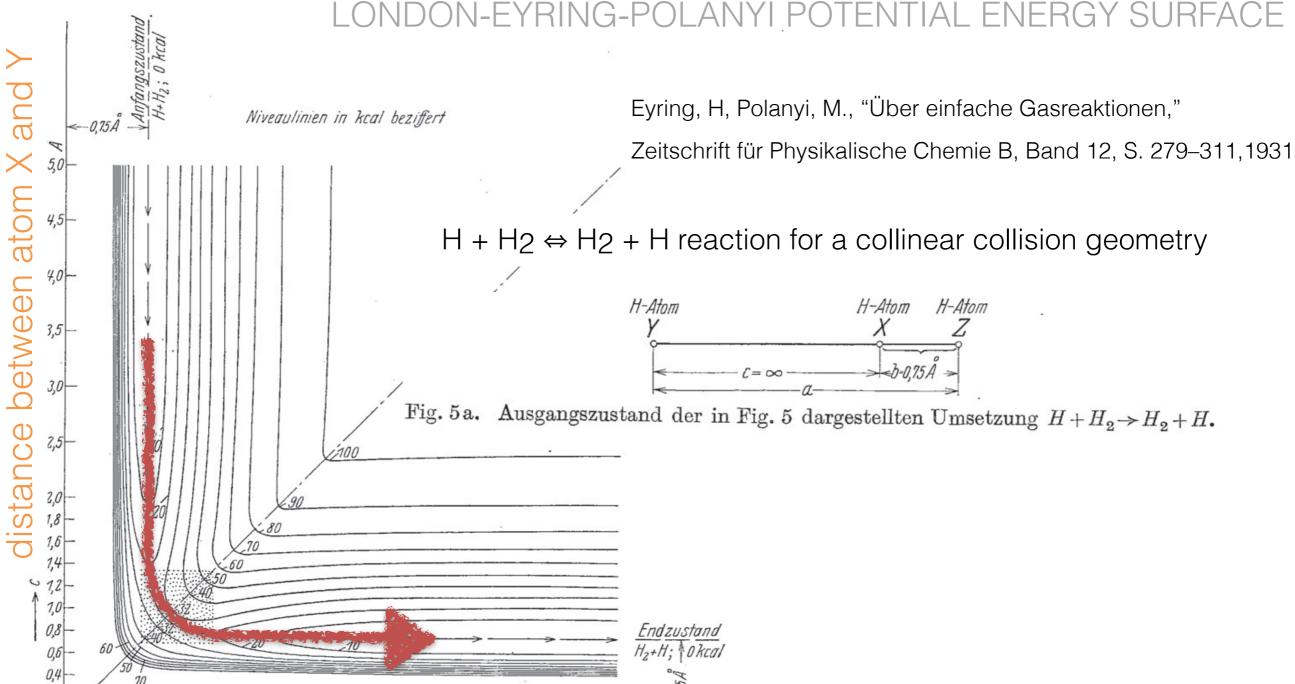
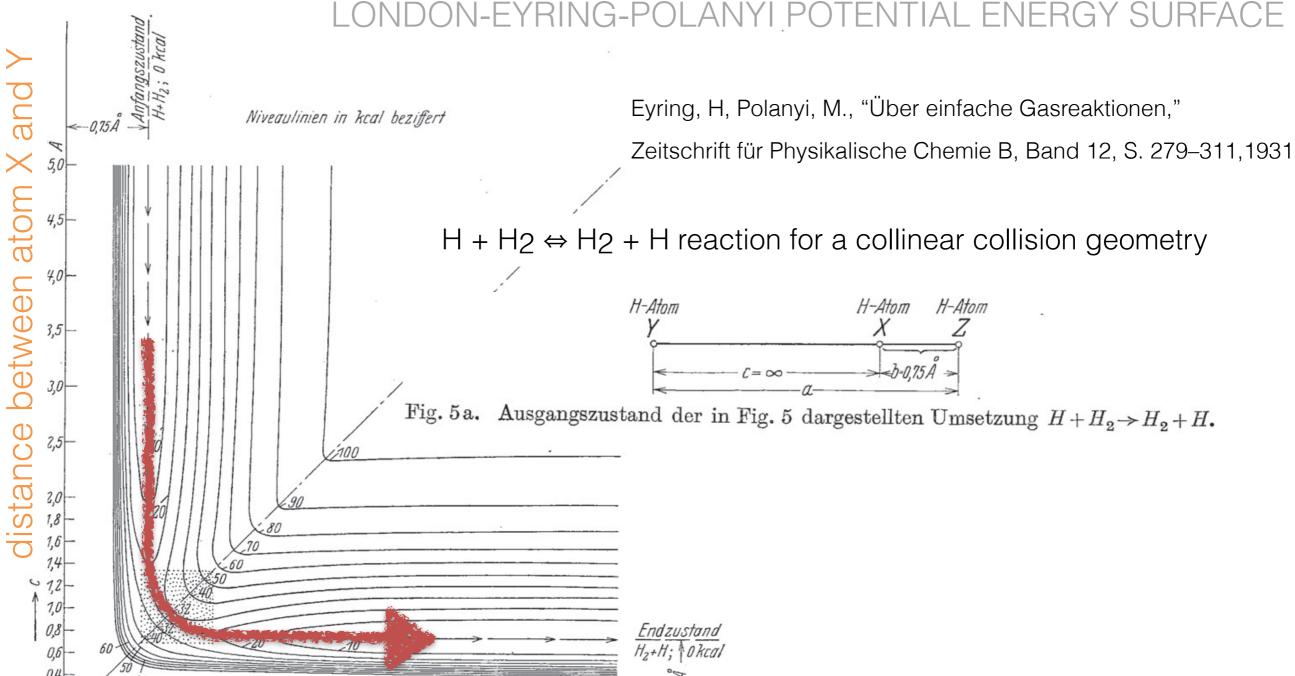


Fig. 5. Resonanzenergie von 3 geradung angeordneten H-Atomen als Funktion der Abstände ("Resonanzgebirge").

distance between atom X and Z



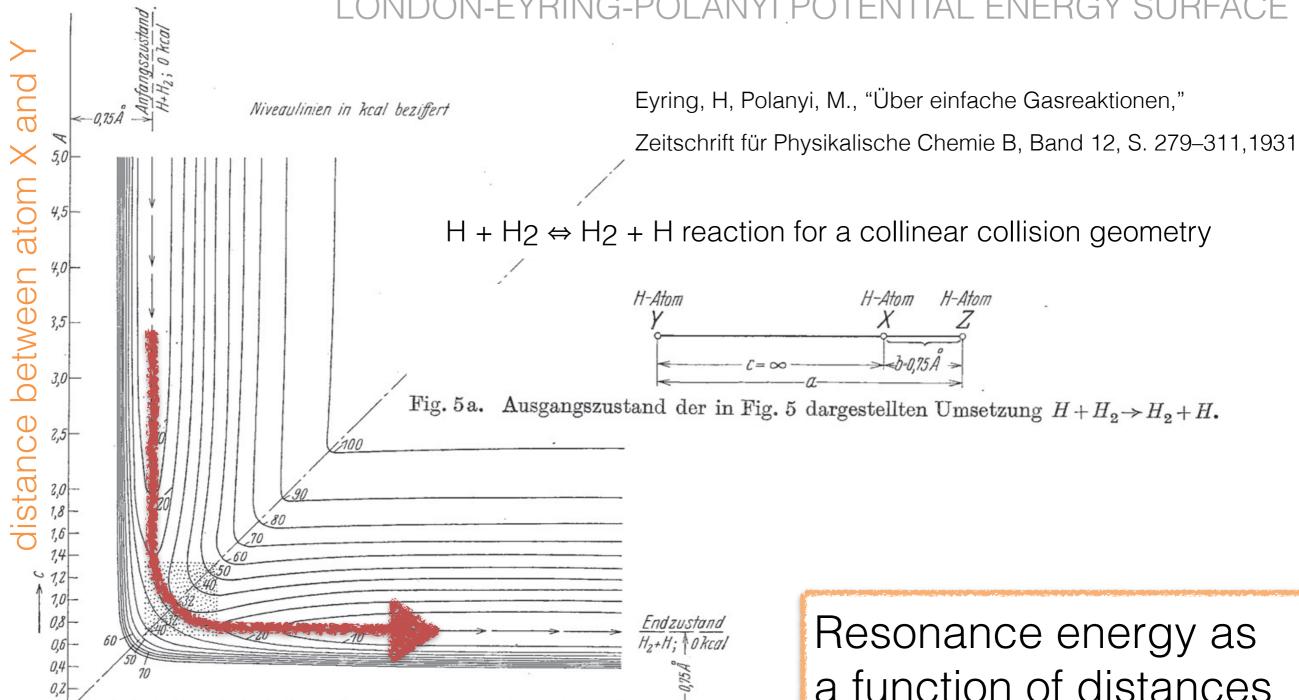


distance between atom X and Z Fig. 5. Resonanzenergie von 3 geractung angeordneten A-Atomen als Funktion der Abstände ,,Resonanzgebirge"). aus der optischen Energiekurve von H2 (Fig. 4) unter Vernachlässigung des

Coulombschen Anteils berechnet.







distance between atom X and Z Fig. 5. Resonanzenergie von 3 geracung angeordneten de-Atomen als Funktion der Abstände ,,Resonanzgebirge").

aus der optischen Energiekurve von H2 (Fig. 4) unter Vernachlässigung des Coulombschen Anteils berechnet.

Resonance energy as a function of distances ("resonance mountain")



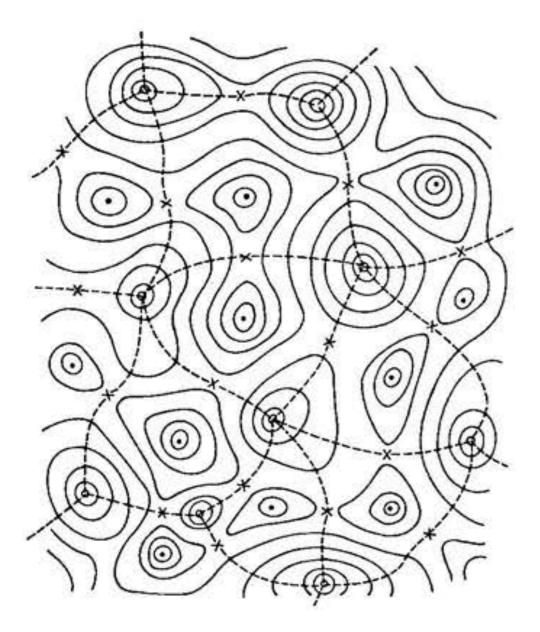


Fig. 1. Schematic representation of the potential energy surface for an N-atom system. Minima are shown as filled circles and saddle points as crosses. Potential energy is constant along the continuous curves. Regions belonging to different minima are indicated by dashed curves.

7 September 1984, Volume 225, Number 4666

#### SCIENCE

### Packing Structures and Transitions in Liquids and Solids

Frank H. Stillinger and Thomas A. Weber



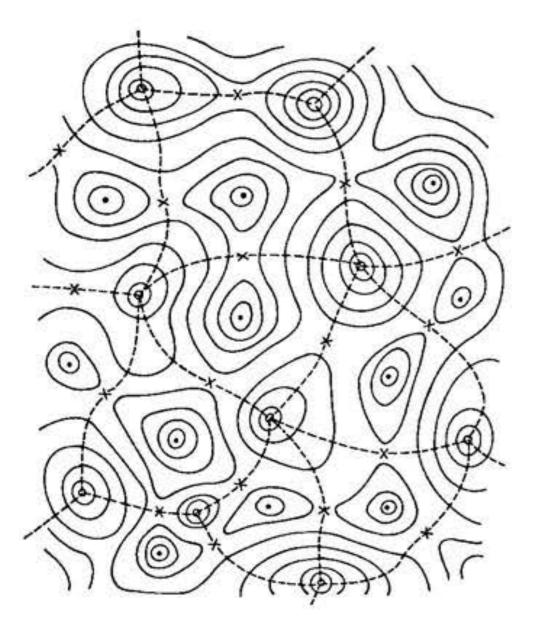


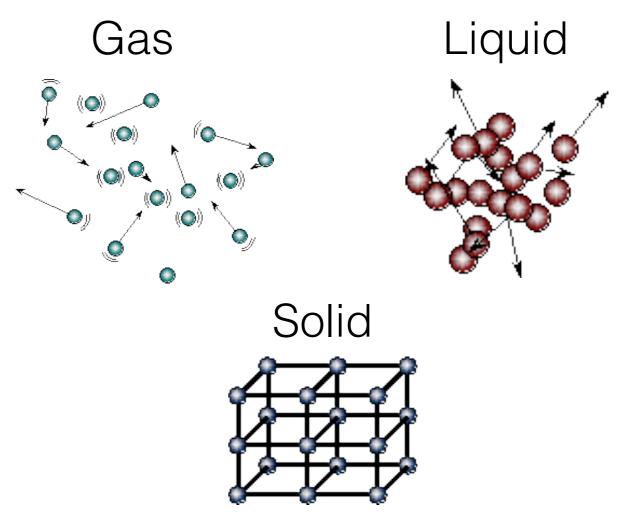
Fig. 1. Schematic representation of the potential energy surface for an N-atom system. Minima are shown as filled circles and saddle points as crosses. Potential energy is constant along the continuous curves. Regions belonging to different minima are indicated by dashed curves.

7 September 1984, Volume 225, Number 4666

#### SCIENCE

### Packing Structures and Transitions in Liquids and Solids

Frank H. Stillinger and Thomas A. Weber



https://www.learnthermo.com/T1-tutorial/ch03/lesson-A/pg01.php

## ENERGY LANDSCAPES AND OPTIMIZATION



13 May 1983, Volume 220, Number 4598

#### SCIENCE

The transition process from gas to liquid to solid can be seen as optimization process

## Optimization by Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

## ENERGY LANDSCAPES AND OPTIMIZATION



13 May 1983, Volume 220, Number 4598

#### SCIENCE

## Optimization by Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

The transition process from gas to liquid to solid can be seen as optimization process

#### Ingredients:

- A procedure to explore local configurations
- An temperature-dependent acceptance criterion for new configurations
- An temperature annealing schedule

## ENERGY LANDSCAPES AND OPTIMIZATION



13 May 1983, Volume 220, Number 4598

#### SCIENCE

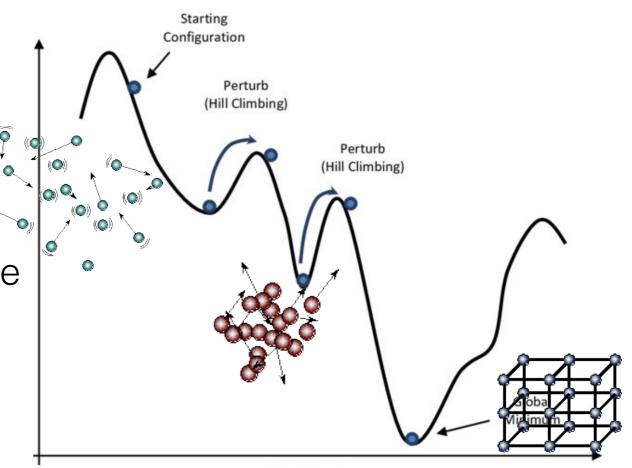
## Optimization by Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

## The transition process from gas to liquid to solid can be seen as optimization process

#### Ingredients:

- A procedure to explore local configurations
- An temperature-dependent acceptance criterion for new configurations
- An temperature annealing schedule

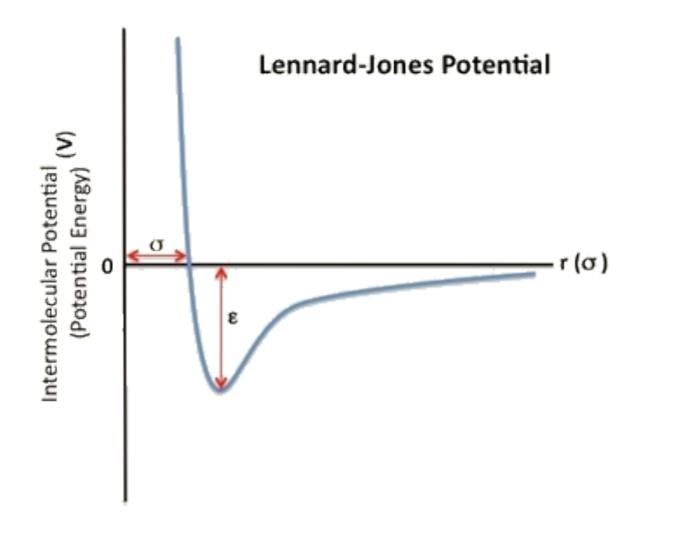


#### ENERGY LANDSCAPES - LENNARD-JO





- Lennard-Jones potential as pair potential between noble gas atoms
- What is the best (lowest potential energy) configuration at temperature T = 0?
- How does the energy landscape look like for N number of atoms?



$$\stackrel{r_{ij}}{\longleftarrow} \stackrel{j}{\longleftarrow}$$

$$E = 4\epsilon \sum_{i < j} \left[ \left( \frac{\sigma}{r_{ij}} \right)^{12} - \left( \frac{\sigma}{r_{ij}} \right)^{6} \right]$$

## ENERGY LANDSCAPES - BASIN HOPPING



J. Phys. Chem. A 1997, 101, 5111-5116

5111

Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms

David J. Wales\*

University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, U.K.

Jonathan P. K. Doye

FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands Received: March 19, 1997; In Final Form: April 29, 1997<sup>®</sup>

## ENERGY LANDSCAPES - BASIN HOPPING



Ingredients:

 A procedure to explore local configurations as best as possible (e.g., a gradient descent)

Simulated annealing

J. Phys. Chem. A 1997, 101, 5111-5116

5111

Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms

David J. Wales\*

University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, U.K.

Jonathan P. K. Doye

FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands Received: March 19, 1997; In Final Form: April 29, 1997<sup>®</sup>

### ENERGY LANDSCAPES - BASIN

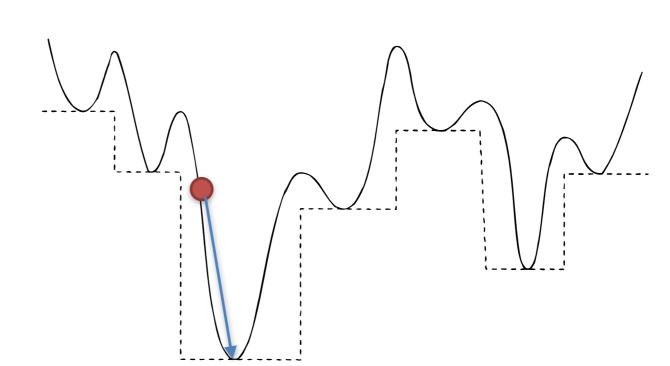


Ingredients:

 A procedure to explore local configurations as best as possible (e.g., a gradient descent)

Energy

Simulated annealing



**Figure 2.** A schematic diagram illustrating the effects of our energy transformation for a one-dimensional example. The solid line is the energy of the original surface and the dashed line is the transformed energy  $\tilde{E}$ .

J. Phys. Chem. A 1997, 101, 5111-5116

5111

Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms

David J. Wales\*

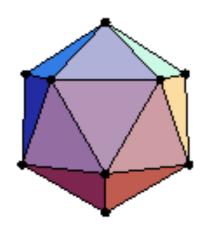
University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, U.K.

Jonathan P. K. Doye

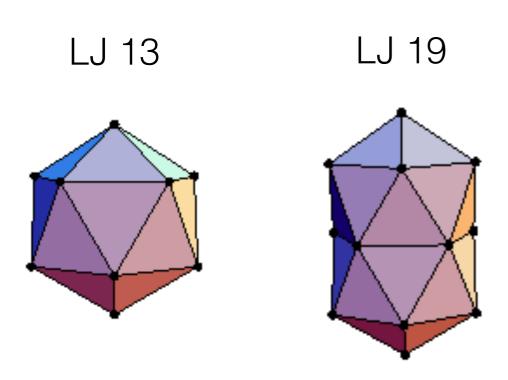
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands Received: March 19, 1997; In Final Form: April 29, 1997<sup>®</sup>



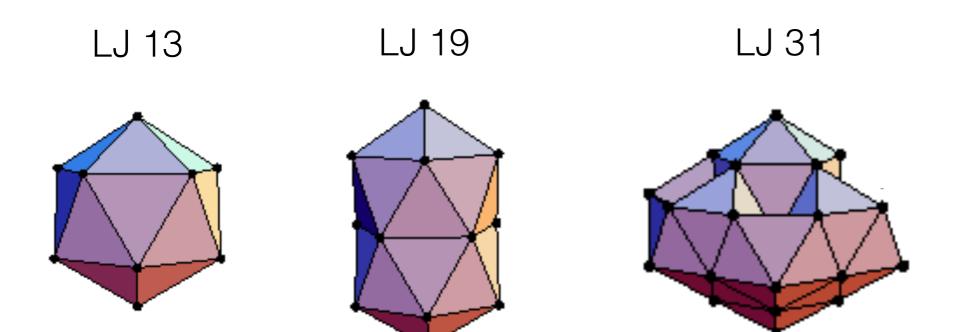
LJ 13







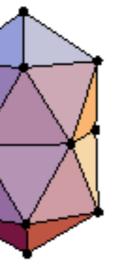




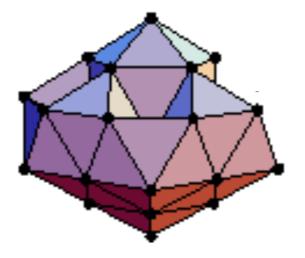


LJ 13

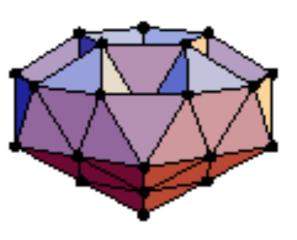
LJ 19



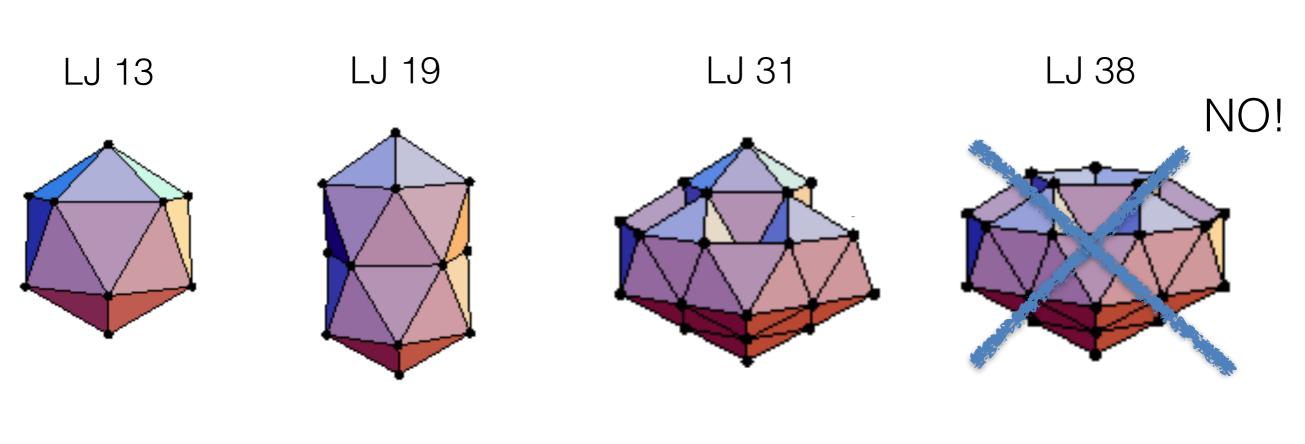
LJ 31



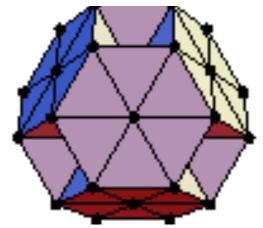
LJ 38





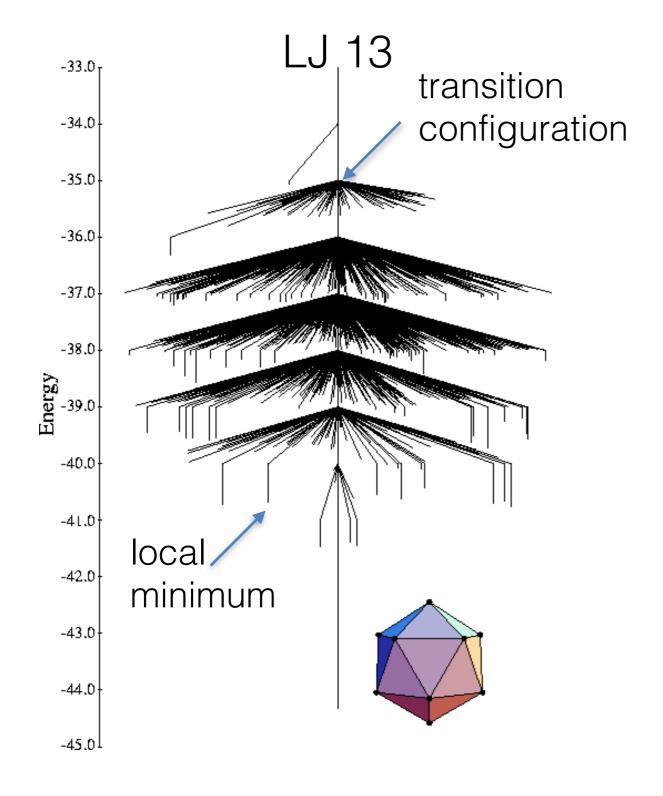


This face-centered cubic octahedron (fcc) structure is the global minimum.



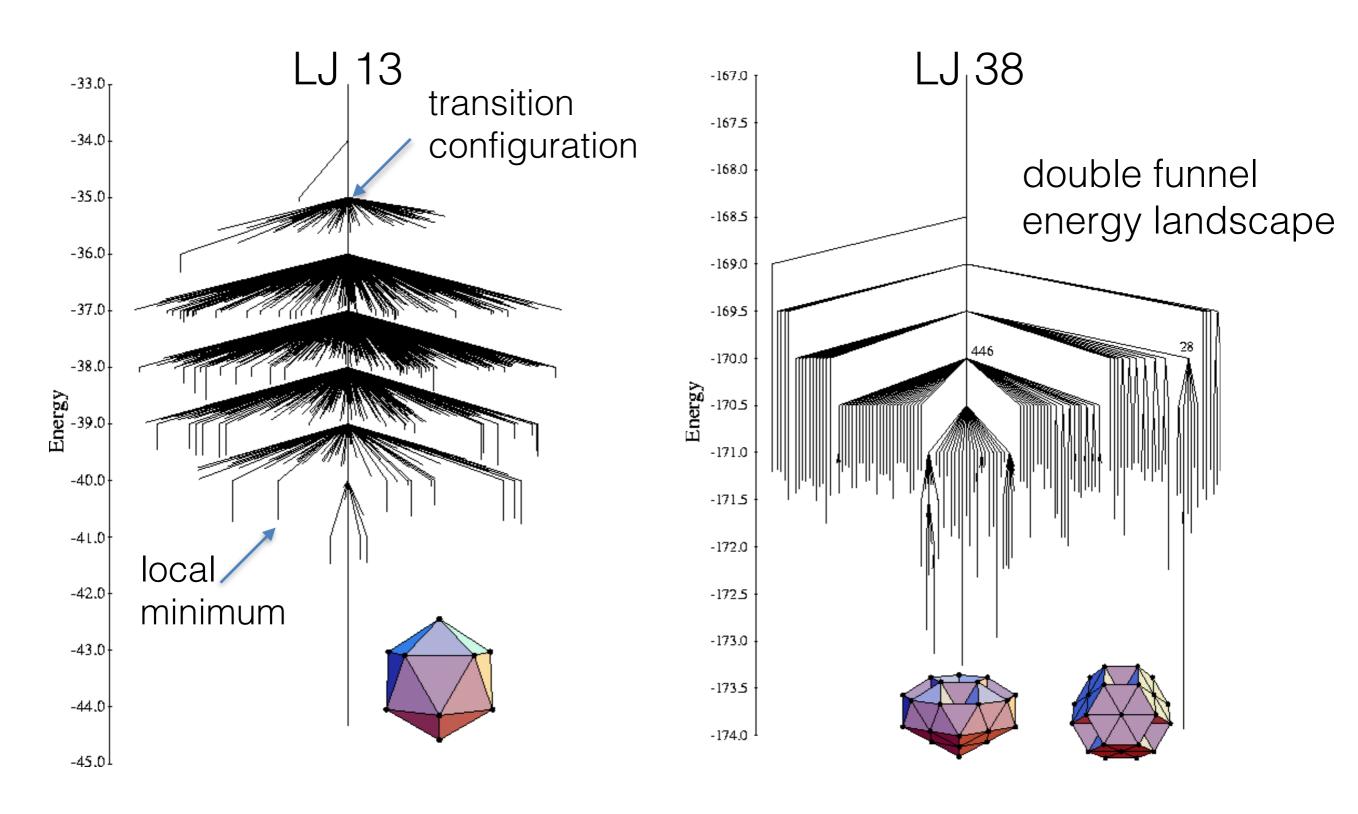
## ENERGY LANDSCAPES AND DISCONNECTIVITY GRAPHS





## ENERGY LANDSCAPES AND DISCONNECTIVITY GRAPHS





#### ENERGY LANDSCAPES AND THE SIMONS FOUNDATION



#### SIMONS COLLABORATION ON CRACKING THE GLASS PROBLEM

Our Team

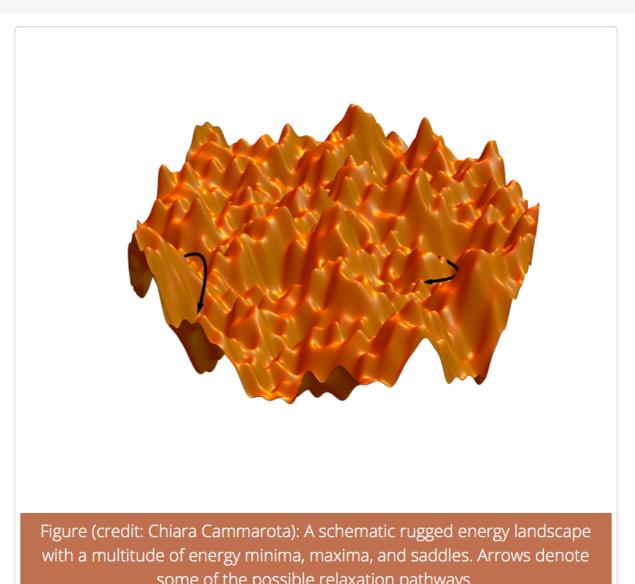
Affiliates

Collaborators

Alumni

Tutorials

News



some of the possible relaxation pathways.

# ENERGY LANDSCAPES AND PROTEIN FOLDING

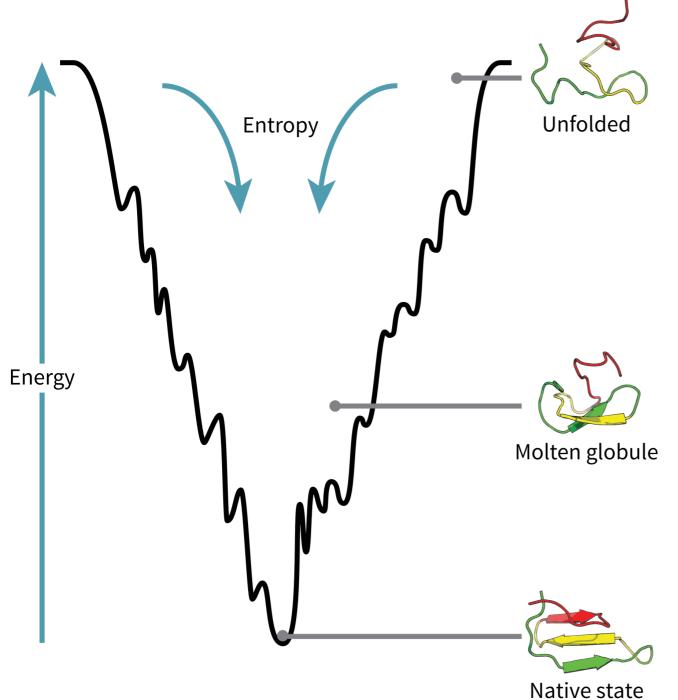


Science 13 Dec 1991: Vol. 254, Issue 5038, pp. 1598-1603 DOI: 10.1126/science.1749933

#### Articles

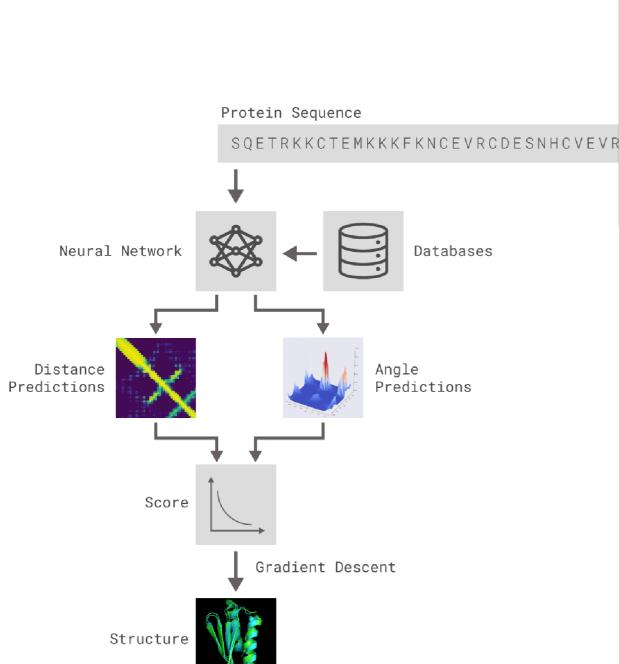
### The Energy Landscapes and Motions of Proteins

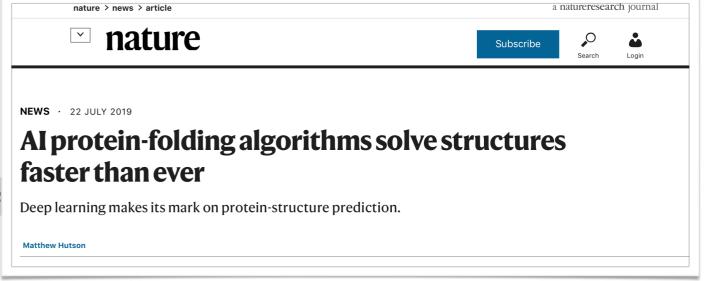
Hans Frauenfelder, Stephen G. Sligar, Peter G. Wolynes



# ENERGY LANDSCAPES AND DEEP MIND'S ALPHA-FOLD





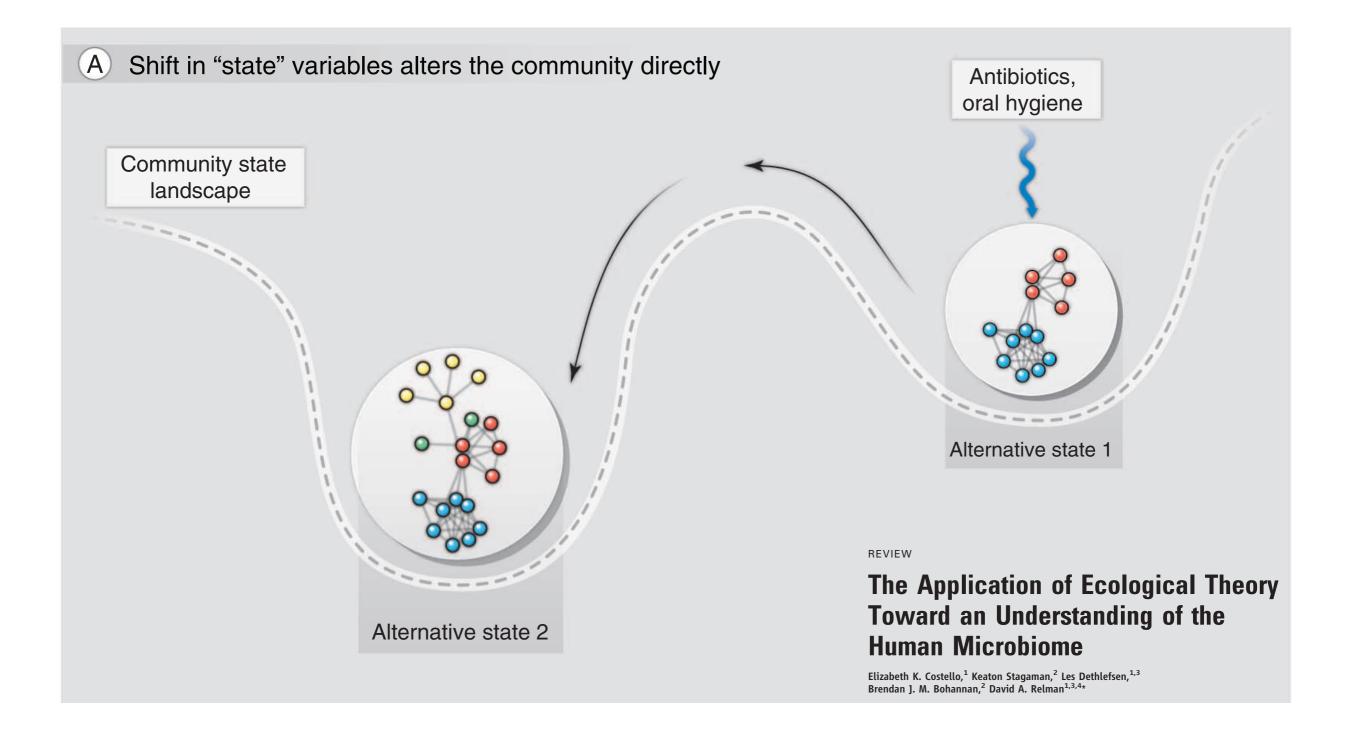


Build a single-funnel energy landscape approximation

Gradient descent on landscape

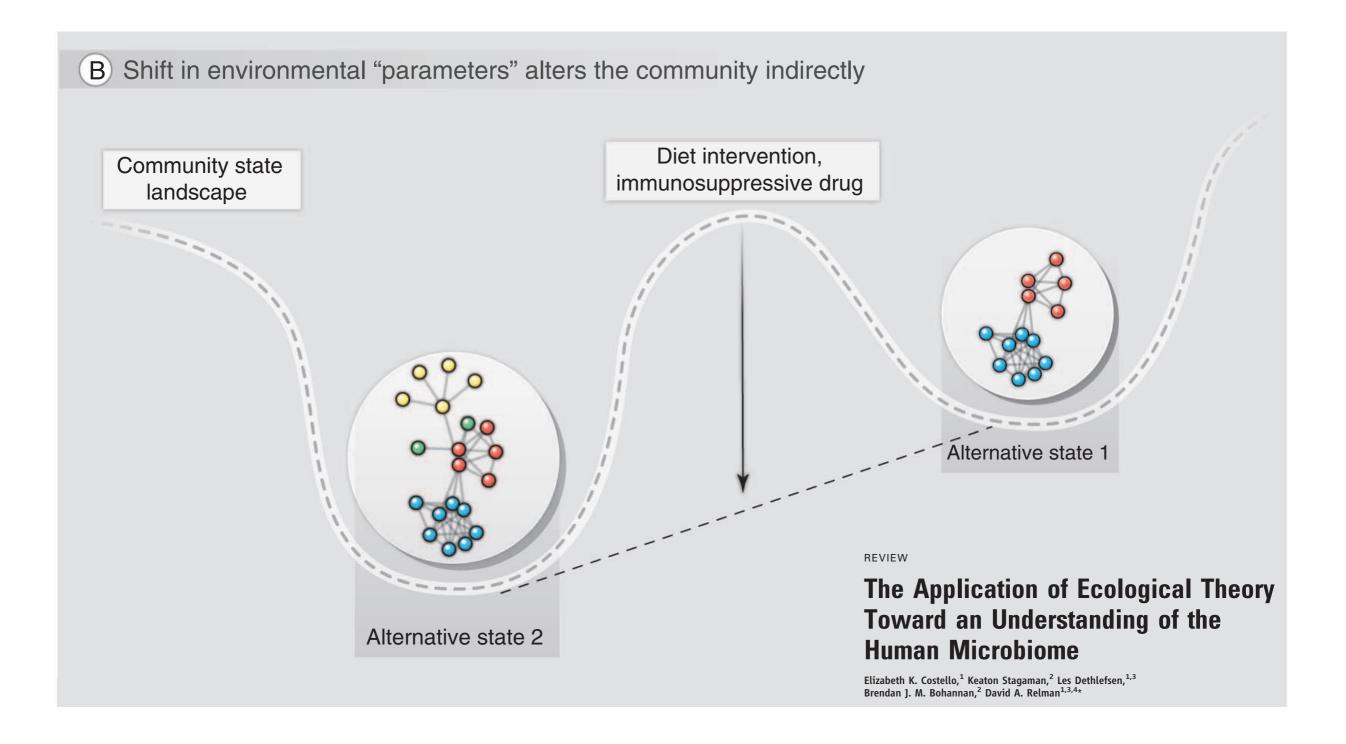
# COMMUNITY STATE LANDSCAPES AND ECOSYSTEMS





# COMMUNITY STATE LANDSCAPES AND ECOSYSTEMS

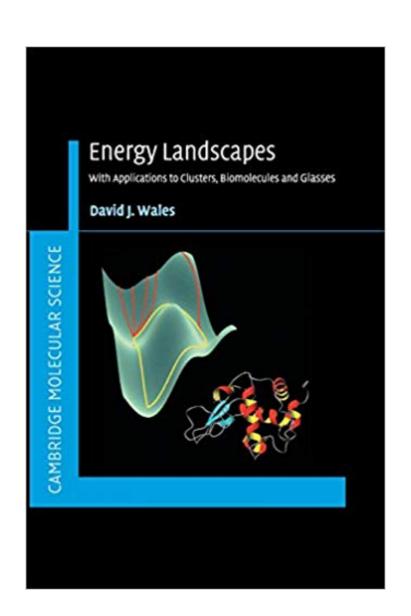




### WANT TO KNOW MORE?



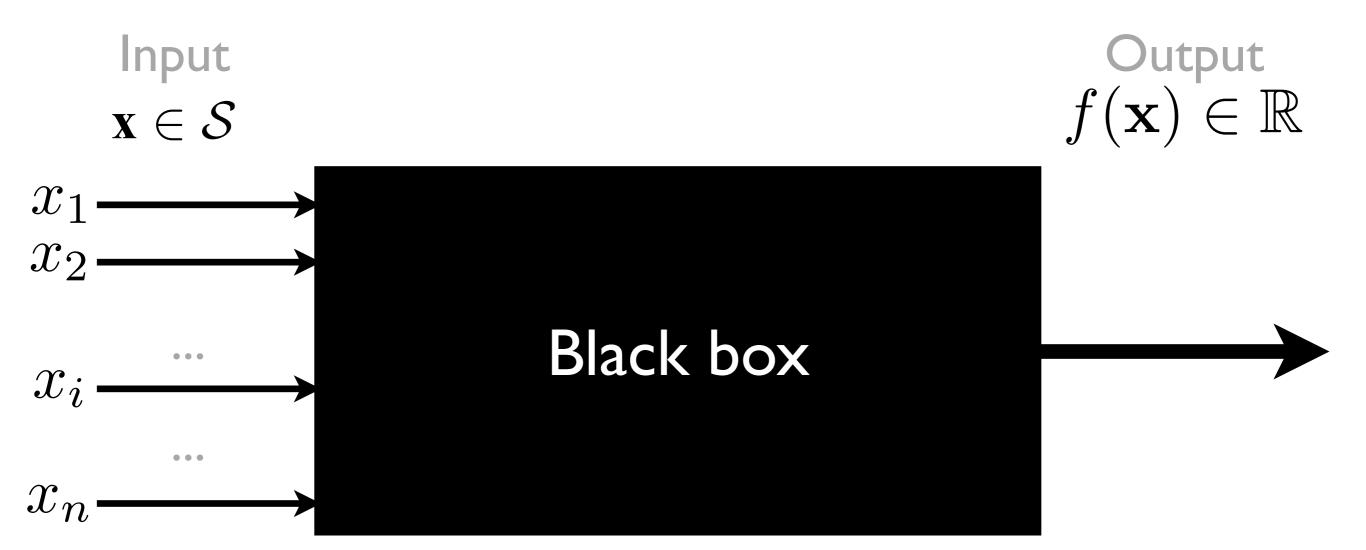
"A superb prose stylist, perhaps the best popularizer of science." -New York Review of Books **RICHARD DAWKINS** CLIMBING MOUNT **IMPROBABLE** 





## FROM LANDSCAPES TO MATHEMATICAL OPTIMIZATION



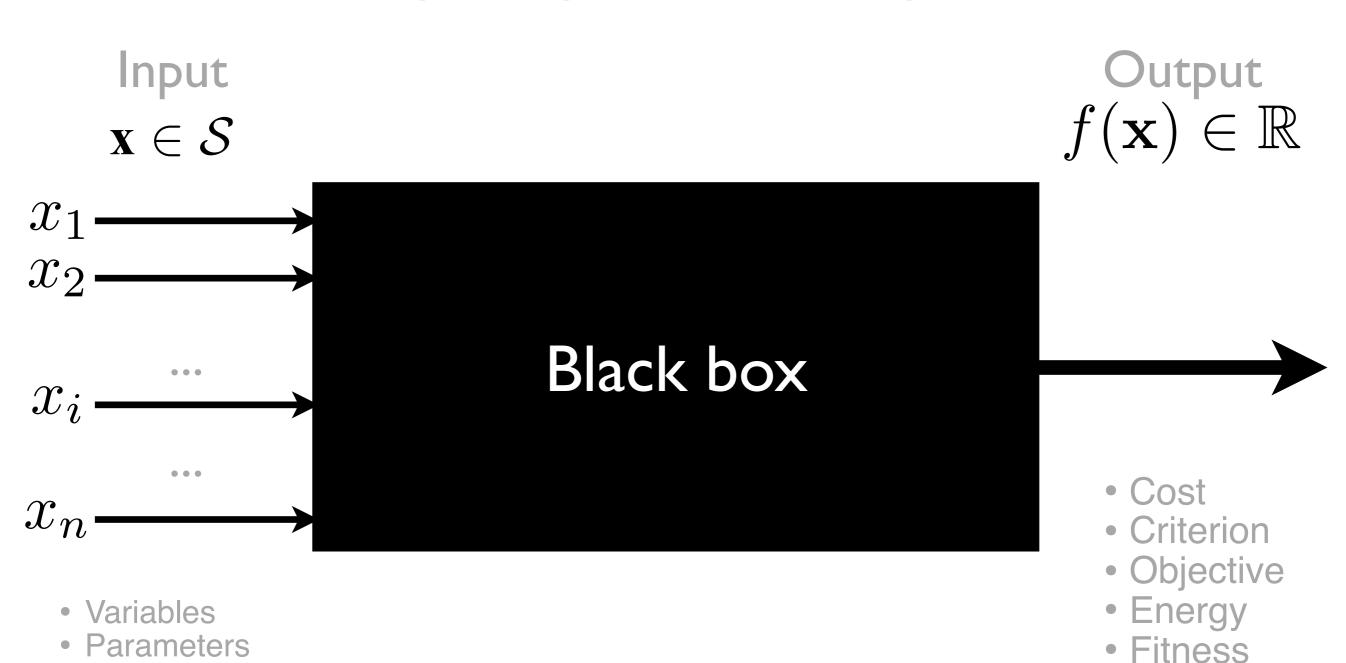


## FROM LANDSCAPES TO MATHEMATICAL OPTIMIZATION

Configuration

Factors





# OPENING UP THE BLACK-BOX: CONTINUOUS OPTIMIZATION PROBLE!



The *standard form* of a continuous optimization problem is<sup>[1]</sup>

$$egin{array}{ll} ext{minimize} & f(x) \ ext{subject to} & g_i(x) \leq 0, \quad i=1,\ldots,m \ & h_j(x) = 0, \quad j=1,\ldots,p \end{array}$$



#### where

- $f: \mathbb{R}^n \to \mathbb{R}$  is the **objective function** to be minimized over the *n*-variable vector x,
- $g_i(x) \le 0$  are called **inequality constraints**
- $h_i(x) = 0$  are called **equality constraints**, and
- $m \ge 0$  and  $p \ge 0$ .

If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a **minimization problem**. A **maximization problem** can be treated by negating the objective function.

wikipedia

### OPENING UP THE BLACK BOX



• What do you know about  $\mathbf{x} \in \mathcal{S}$  ?

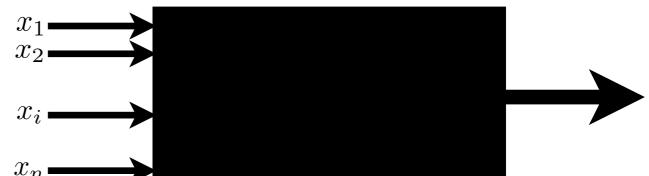


- What is the dimensionality of the problem?  $x_n$
- Does the function  $f(\mathbf{x})$  have special properties? What are good properties?
- Can you evaluate gradients or higher-order information of the function?

### OPENING UP THE BLACK BOX



• What do you know about  $\mathbf{x} \in \mathcal{S}$  ?



- What is the dimensionality of the problem?
- Does the function  $f(\mathbf{x})$  have special properties? What are good properties?
- Can you evaluate gradients or higher-order information of the function?
- How much does it cost (in computation time/experimental time) to evaluate the function? How often can you evaluate it?
- Is the function value deterministic? Is it stochastic?
- How accurate does the solution need to be?

•

### PURE RANDOM SEARCH



Rastrigin, L.A. (1963). "The convergence of the random search method in the extremal control of a many parameter system". *Automation and Remote Control.* **24** (10): 1337–1342.

#### PURE RANDOM SEARCH



Rastrigin, L.A. (1963). "The convergence of the random search method in the extremal control of a many parameter system". *Automation and Remote Control.* **24** (10): 1337–1342.

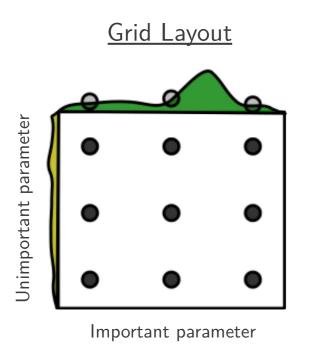
- Use it when you know very little about the function and the function is costly
- Useful when your input domain is simple, e.g., a hyper-cube
- Only requires function evaluations, no other information needed
- Better coverage than grid search

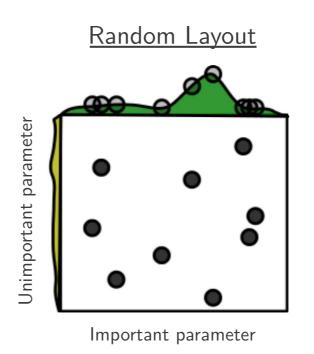
### PURE RANDOM SEARCH



Rastrigin, L.A. (1963). "The convergence of the random search method in the extremal control of a many parameter system". *Automation and Remote Control.* **24** (10): 1337–1342.

- Use it when you know very little about the function and the function is costly
- Useful when your input domain is simple, e.g., a hyper-cube
- Only requires function evaluations, no other information needed
- Better coverage than grid search







cited 3k times since 2012



Sobol,I.M. (1967), "Distribution of points in a cube and approximate evaluation of integrals". *Zh. Vych. Mat. Mat. Fiz.* **7**: 784–802 (in Russian); *U.S.S.R Comput. Maths. Math. Phys.* **7**: 86–112 (in English).



Sobol,I.M. (1967), "Distribution of points in a cube and approximate evaluation of integrals". *Zh. Vych. Mat. Mat. Fiz.* **7**: 784–802 (in Russian); *U.S.S.R Comput. Maths. Math. Phys.* **7**: 86–112 (in English).

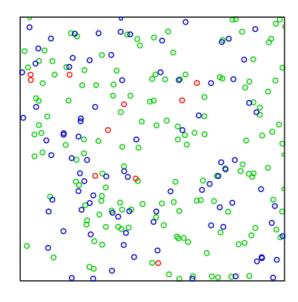
- Use quasi-random points rather than random ones to cover the space
- Better space-filling properties
- Works well for up to n=50 dimensions
- (Scrambled) Sobol sequences are good



Sobol,I.M. (1967), "Distribution of points in a cube and approximate evaluation of integrals". *Zh. Vych. Mat. Mat. Fiz.* **7**: 784–802 (in Russian); *U.S.S.R Comput. Maths. Math. Phys.* **7**: 86–112 (in English).

- Use quasi-random points rather than random ones to cover the space
- Better space-filling properties
- Works well for up to n=50 dimensions
- (Scrambled) Sobol sequences are good

#### Pseudo-random points

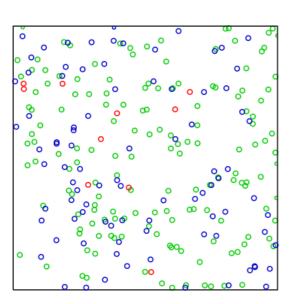




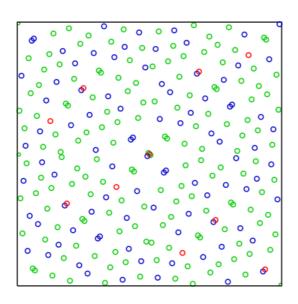
Sobol,I.M. (1967), "Distribution of points in a cube and approximate evaluation of integrals". *Zh. Vych. Mat. Mat. Fiz.* **7**: 784–802 (in Russian); *U.S.S.R Comput. Maths. Math. Phys.* **7**: 86–112 (in English).

- Use quasi-random points rather than random ones to cover the space
- Better space-filling properties
- Works well for up to n=50 dimensions
- (Scrambled) Sobol sequences are good

#### Pseudo-random points



#### Quasi-random points





Sobol, I.M. (1967), "Distribution of points in a cube and approximate evaluation of integrals". Zh. Vych. Mat. Mat. Fiz. 7: 784-802 (in Russian); U.S.S.R Comput. Maths. Math. Phys. 7: 86-112 (in English).

- Use quasi-random points rather than random ones to cover the space
- Better space-filling properties
- Works well for up to n=50 dimensions
- (Scrambled) Sobol sequences are good

Pseudo-random points Quasi-random points points 1 to 128 points 129 to 512 points 513 to 1024 points 1 to 1024

## DERIVATIVE-FREE OPTIMIZATION AND EVOLUTION STRATEGIES



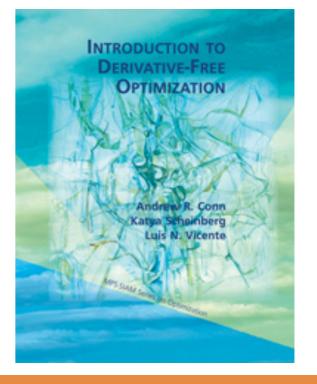
- Use it when you know very little about the function and the function is not costly, i.e., you can evaluate O(n²) points
- Input domain is simple, e.g. a hyper-cube, not too high-dimensional
- Typically used in simulation-based optimization where only function evaluations are available

• Popular method: Nelder-Mead Simplex method (not recommended),

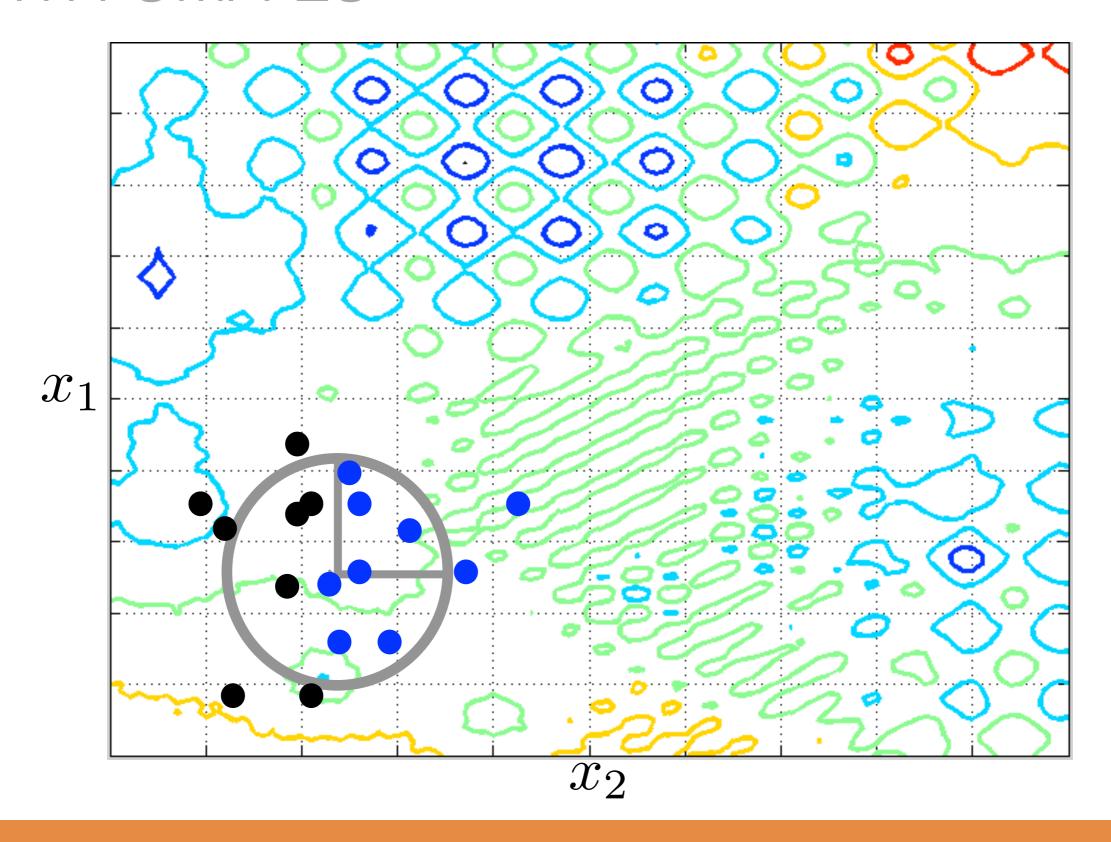
Pattern search, Covariance Matrix Adaptation ES

#### CMA-ES resources

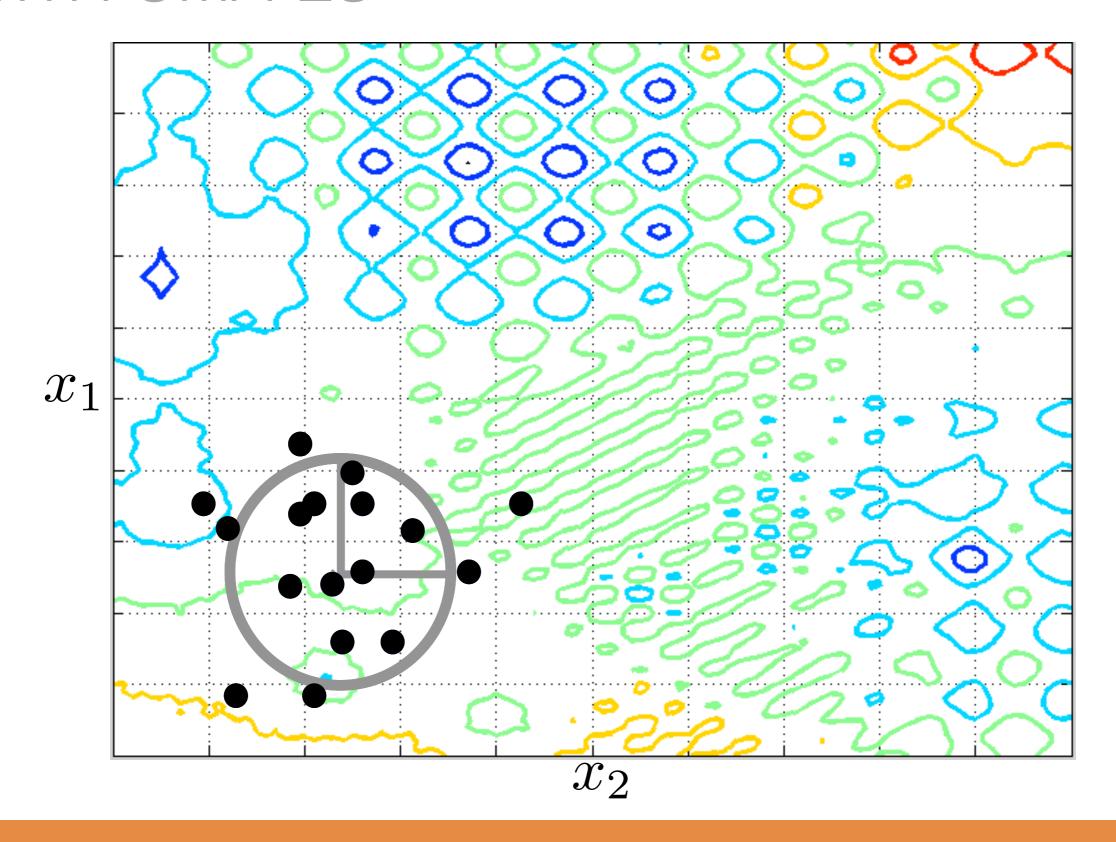
http://www.cmap.polytechnique.fr/~nikolaus.hansen/



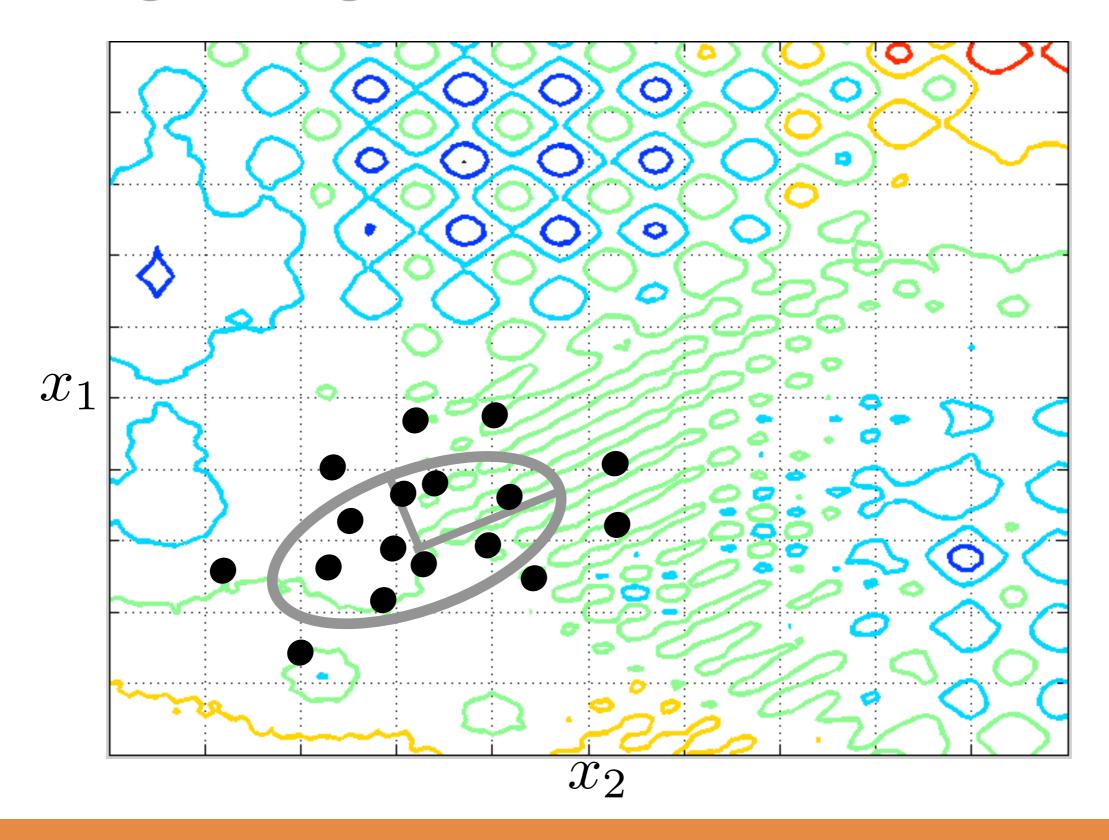




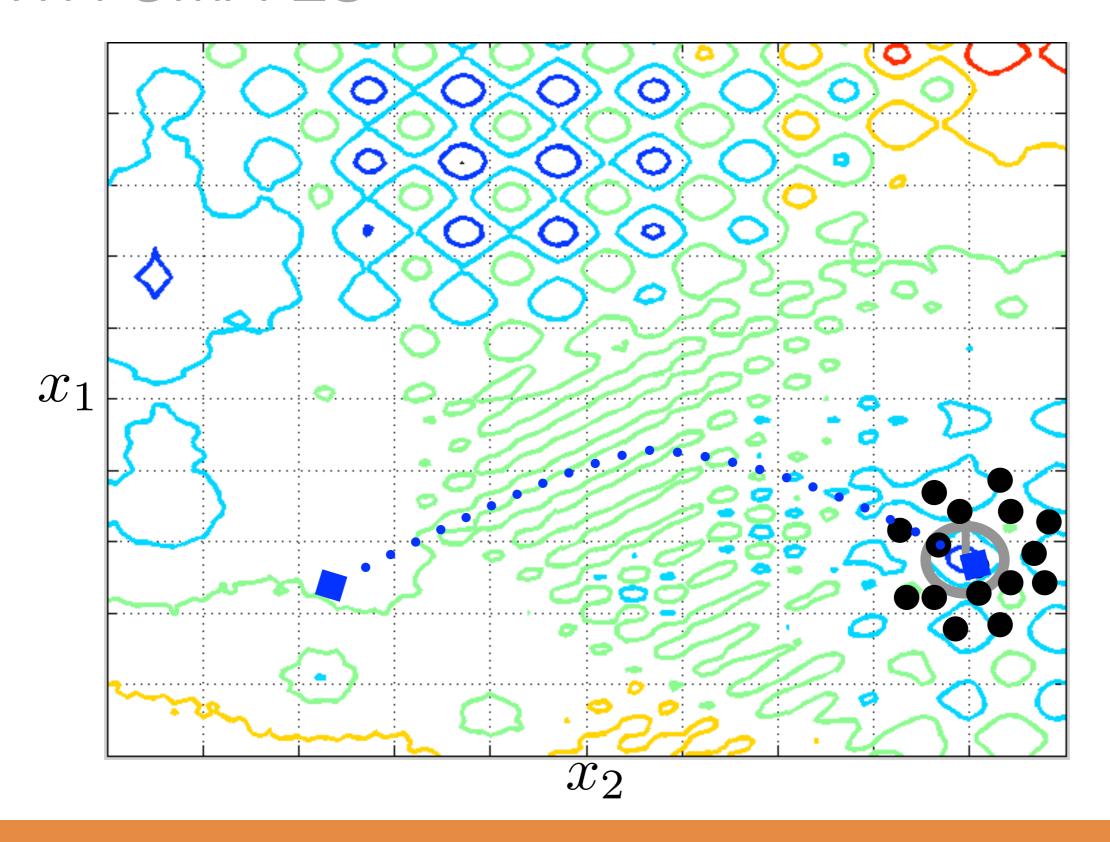














The  $(\mu/\mu_w, \lambda)$ -CMA-ES in mathematical terms

Sampling

$$\mathbf{x}_k^{(g+1)} \sim \mathbf{m}^{(g)} + \sigma^{(g)} \mathcal{N} \left( \mathbf{0}, \mathbf{C}^{(g)} \right)$$
 for  $k = 1, \dots, \lambda$ .



The  $(\mu/\mu_w, \lambda)$ -CMA-ES in mathematical terms

Sampling

$$\mathbf{x}_k^{(g+1)} \sim \mathbf{m}^{(g)} + \sigma^{(g)} \mathcal{N}(\mathbf{0}, \mathbf{C}^{(g)})$$
 for  $k = 1, \dots, \lambda$ .

**Evaluation** 

Calculate fitness of all  $\lambda$  individuals and sort them



#### The $(\mu/\mu_w,\lambda)$ -CMA-ES in mathematical terms

Sampling

$$\mathbf{x}_k^{(g+1)} \sim \mathbf{m}^{(g)} + \sigma^{(g)} \mathcal{N} \left( \mathbf{0}, \mathbf{C}^{(g)} \right)$$
 for  $k = 1, \dots, \lambda$ .

**Evaluation** 

Calculate fitness of all  $\lambda$  individuals and sort them

Selection

$$\mathbf{m}^{(g+1)} = \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda}^{(g+1)}$$
  $\sum_{i=1}^{\mu} w_i = 1, \quad w_1 \ge w_2 \ge \ldots \ge w_{\mu} > 0$ 



#### The $(\mu/\mu_w,\lambda)$ -CMA-ES in mathematical terms

Sampling

$$\mathbf{x}_k^{(g+1)} \sim \mathbf{m}^{(g)} + \sigma^{(g)} \mathcal{N} \left( \mathbf{0}, \mathbf{C}^{(g)} \right)$$
 for  $k = 1, \dots, \lambda$ .

**Evaluation** 

Calculate fitness of all  $\lambda$  individuals and sort them

Selection

$$\mathbf{m}^{(g+1)} = \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda}^{(g+1)} \qquad \sum_{i=1}^{\mu} w_i = 1, \quad w_1 \ge w_2 \ge \dots \ge w_{\mu} > 0$$

Recombination Adaptation

$$\mathbf{C}^{(g+1)} = (1 - c_{\text{cov}})\mathbf{C}^{(g)} + \frac{c_{\text{cov}}}{\mu_{\text{cov}}} \underbrace{\mathbf{p}_{c}^{(g+1)} \mathbf{p}_{c}^{(g+1)^{T}}}_{\text{rank-one-update}} + c_{\text{cov}} \left(1 - \frac{1}{\mu_{\text{cov}}}\right)$$

$$\times \underbrace{\sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda}^{(g+1)} \left(\mathbf{y}_{i:\lambda}^{(g+1)}\right)^{T}}_{\text{rank-}\mu\text{-update}},$$



#### The $(\mu/\mu_w,\lambda)$ -CMA-ES in mathematical terms

Sampling

$$\mathbf{x}_k^{(g+1)} \sim \mathbf{m}^{(g)} + \sigma^{(g)} \mathcal{N} \left( \mathbf{0}, \mathbf{C}^{(g)} \right)$$
 for  $k = 1, \dots, \lambda$ .

**Evaluation** 

Calculate fitness of all  $\lambda$  individuals and sort them

Selection

$$\mathbf{m}^{(g+1)} = \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda}^{(g+1)} \qquad \sum_{i=1}^{\mu} w_i = 1, \quad w_1 \ge w_2 \ge \dots \ge w_{\mu} > 0$$

Recombination Adaptation

$$\mathbf{C}^{(g+1)} = (1 - c_{\text{cov}})\mathbf{C}^{(g)} + \frac{c_{\text{cov}}}{\mu_{\text{cov}}} \underbrace{\mathbf{p}_{c}^{(g+1)}\mathbf{p}_{c}^{(g+1)^{T}}}_{\text{rank-one-update}} + c_{\text{cov}} \left(1 - \frac{1}{\mu_{\text{cov}}}\right)$$

$$\times \underbrace{\sum_{i=1}^{\mu} w_{i}\mathbf{y}_{i:\lambda}^{(g+1)} \left(\mathbf{y}_{i:\lambda}^{(g+1)}\right)^{T}}_{\text{rank-}\mu\text{-update}},$$

$$\sigma^{(g+1)} = \sigma^{(g)} \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{||\mathbf{p}_{\sigma}^{(g+1)}||}{E||\mathcal{N}(\mathbf{0}, \mathbf{I})||} - 1\right)\right).$$

# A NOTE ON DESIGN PRINCIPLES FOR OPTIMIZATION HEURISTICS

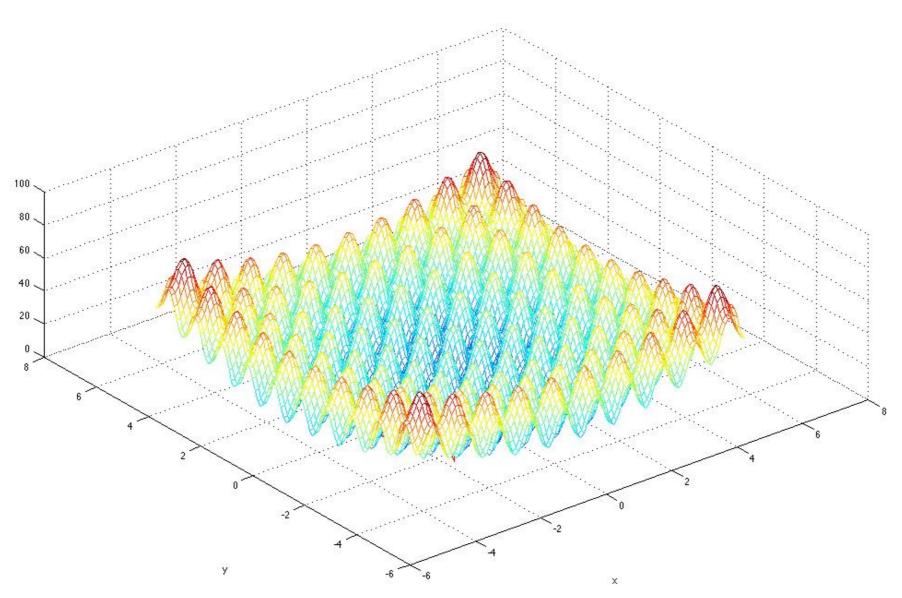


- Use invariance (symmetry) principles as much as possible
- CMA-ES is invariant to affine transformations of the domain
- CMA-ES is invariant to monotone transformations of the objective function



#### Rastrigin's Function

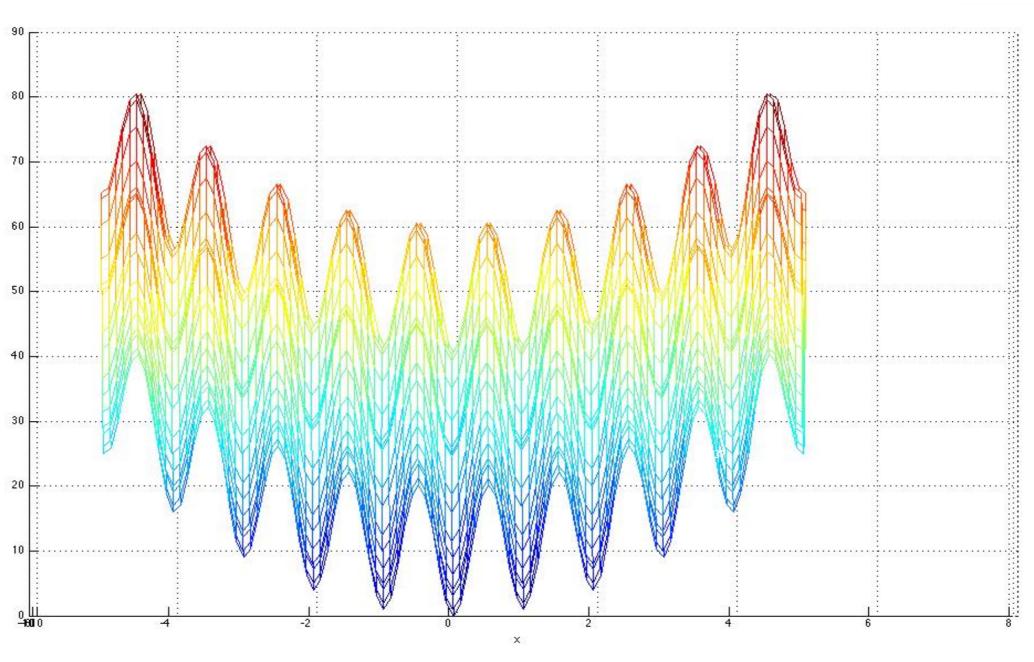
$$f(\vec{x}) = 10 \times n + \sum_{i=1}^{n} (x_i^2 - 10 \times \cos(2\pi x_i))$$



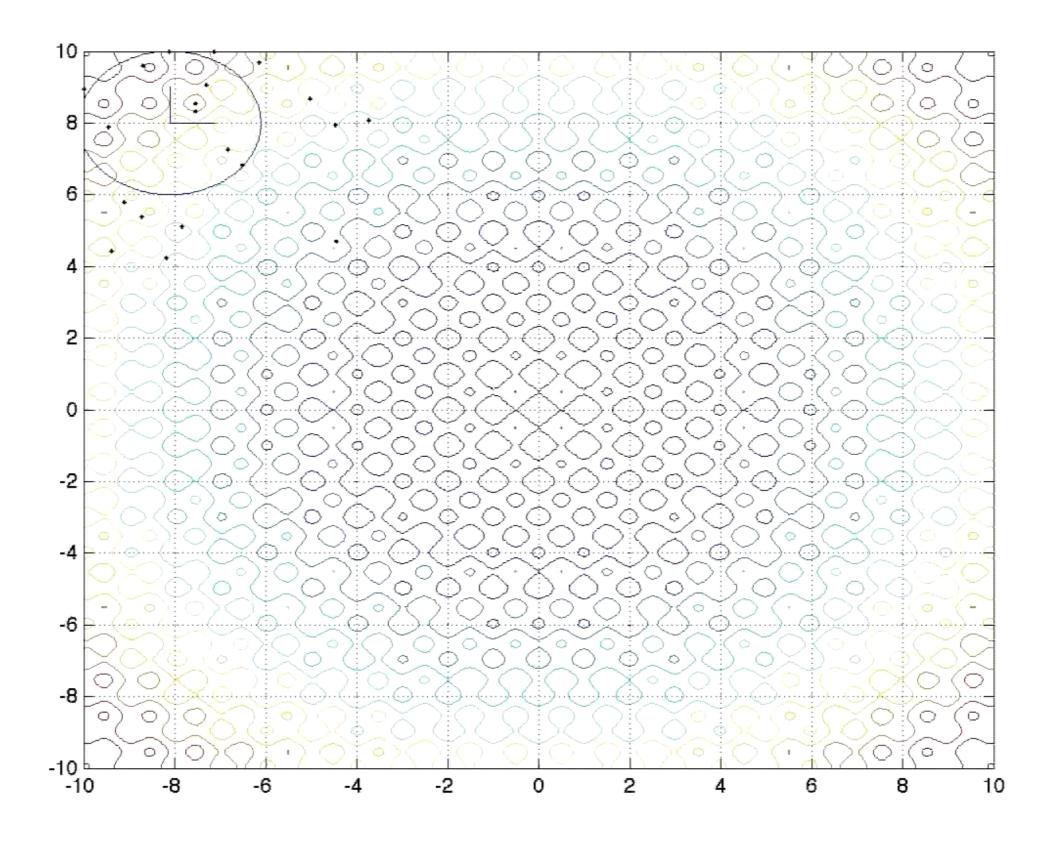


#### Rastrigin's Function

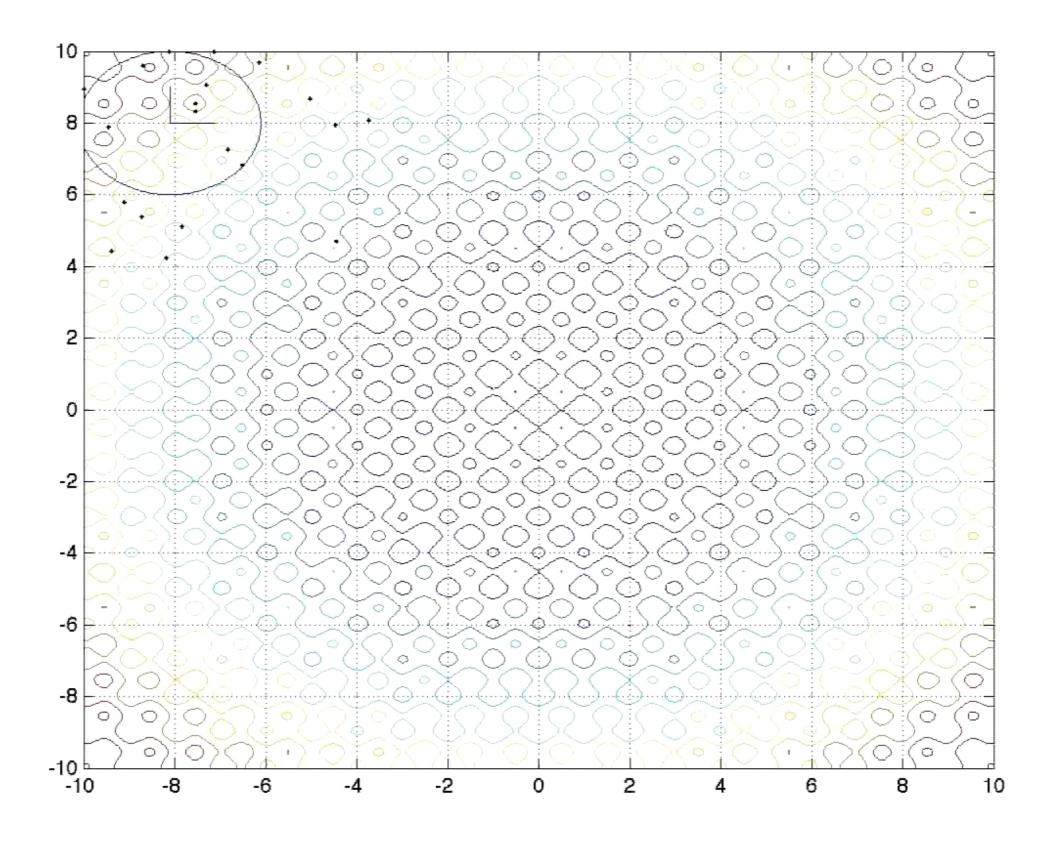
$$f(\vec{x}) = 10 \times n + \sum_{i=1}^{n} (x_i^2 - 10 \times \cos(2\pi x_i))$$







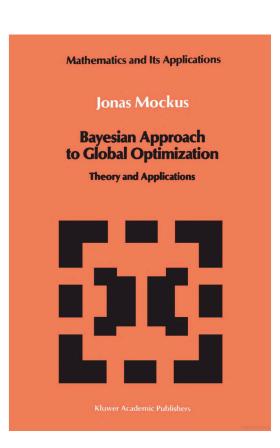




### BAYESIAN OPTIMIZATION



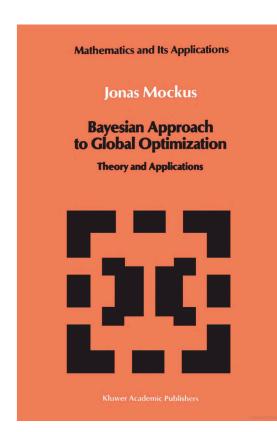
- Bayesian optimization is a type of sequential design scheme
- An acquisition function guides the generation of a new function evaluation that balances exploration and exploitation
- Builds a surrogate model of the function (often with Gaussian Processes) (see Directed Evolution example)
- Use it when you know very little about the function and the function is costly and low-dimensional
- Input domain is simple, e.g. a hyper-cube



### BAYESIAN OPTIMIZATION



- Bayesian optimization is a type of sequential design scheme
- An acquisition function guides the generation of a new function evaluation that balances exploration and exploitation
- Builds a surrogate model of the function (often with Gaussian Processes) (see Directed Evolution example)
- Use it when you know very little about the function and the function is costly and low-dimensional
- Input domain is simple, e.g. a hyper-cube



#### Practical Bayesian Optimization of Machine Learning Algorithms

#### Jasper Snoek

Department of Computer Science University of Toronto jasper@cs.toronto.edu

#### Hugo Larochelle

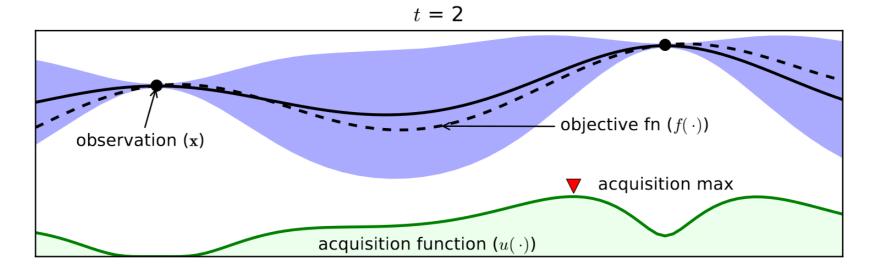
Department of Computer Science University of Sherbrooke hugo.larochelle@usherbrooke.edu

#### Rvan P. Adams

School of Engineering and Applied Sciences
Harvard University
rpa@seas.harvard.edu

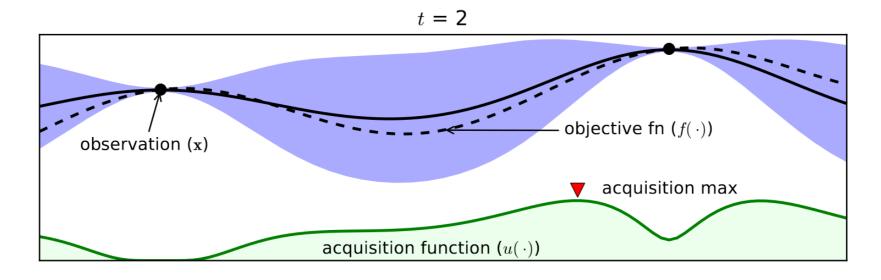
### BAYESIAN OPTIMIZATION

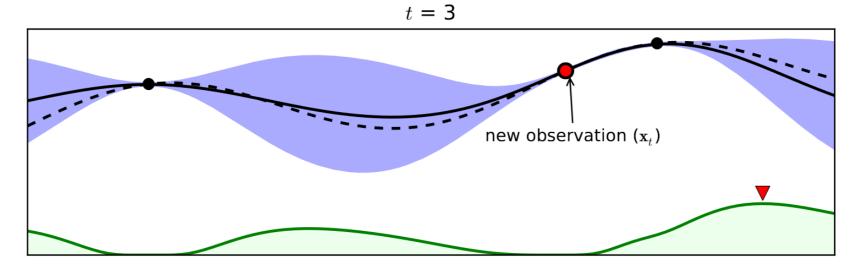




## BAYESIAN OPTIMIZATION

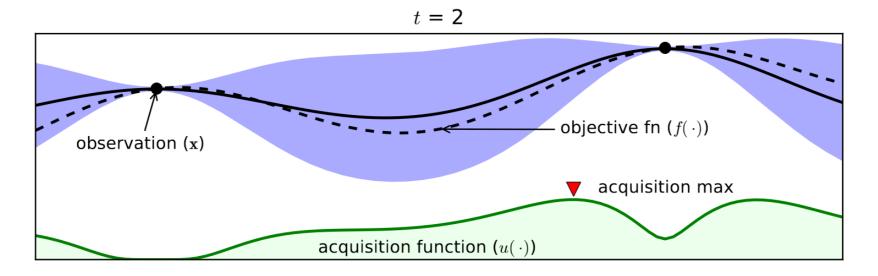


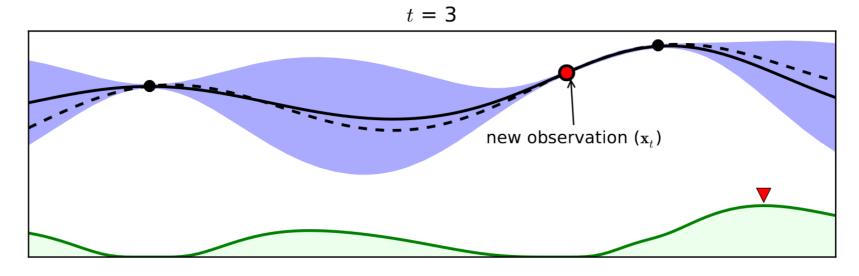


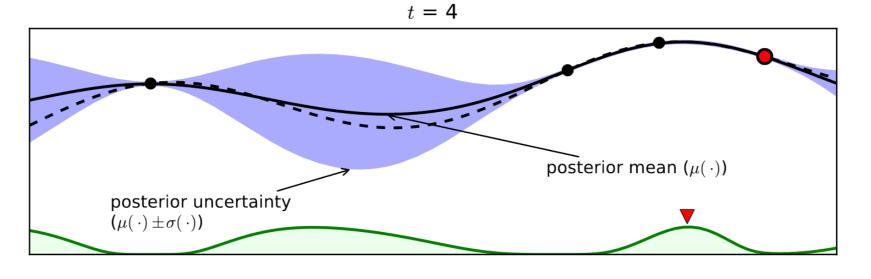


## BAYESIAN OPTIMIZATION

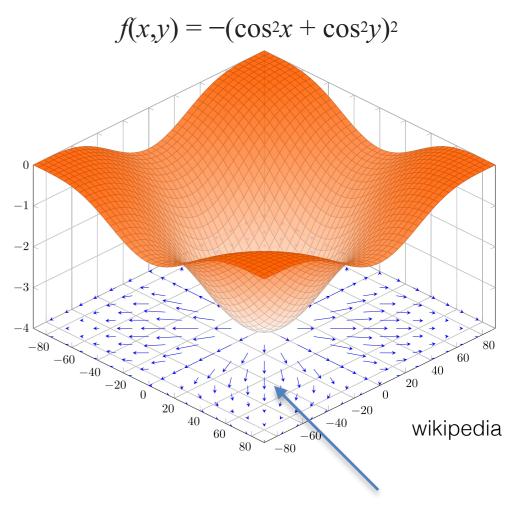








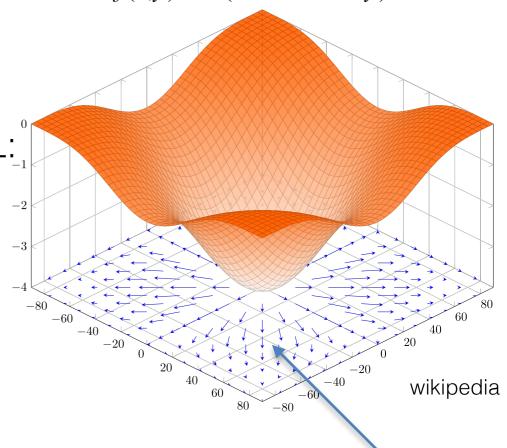






- The gradient of the function f is available
- The function can be high-dimensional
- The function is smooth with Lipschitz constant L:

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d.$$



 $f(x,y) = -(\cos^2 x + \cos^2 y)^2$ 

gradient field



- The gradient of the function f is available
- The function can be high-dimensional
- The function is smooth with Lipschitz constant L:

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d.$$

Gradient descent:

**Goal:** Find  $\mathbf{x} \in \mathbb{R}^d$  such that

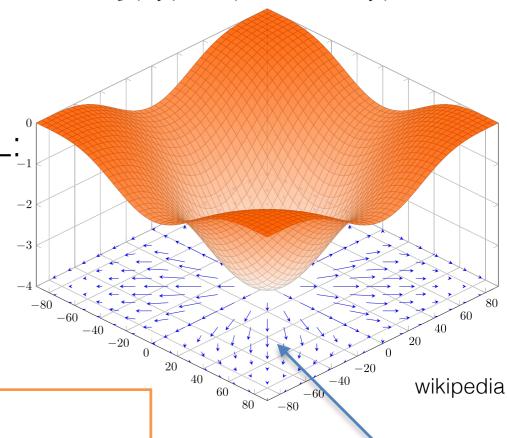
$$f(\mathbf{x}) - f(\mathbf{x}^*) \le \varepsilon.$$

Note that there can be several minima  $\mathbf{x}_1^{\star} \neq \mathbf{x}_2^{\star}$  with  $f(\mathbf{x}_1^{\star}) = f(\mathbf{x}_2^{\star})$ .

**Iterative Algorithm:** 

$$\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t),$$

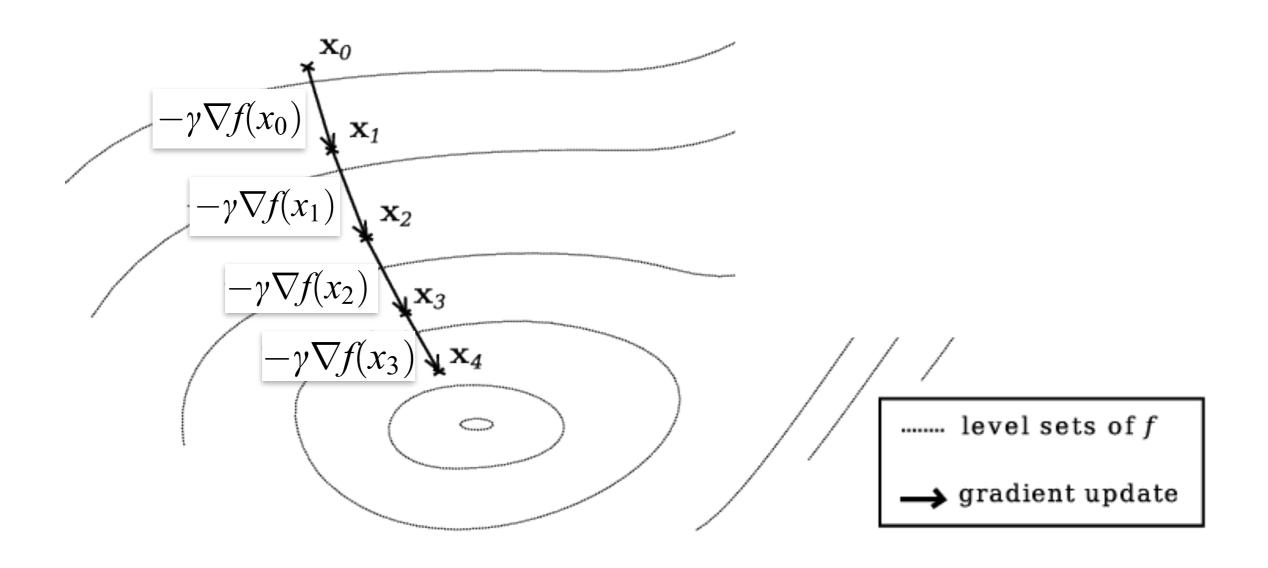
for timesteps  $t = 0, 1, \ldots$ , and stepsize  $\gamma \geq 0$ .



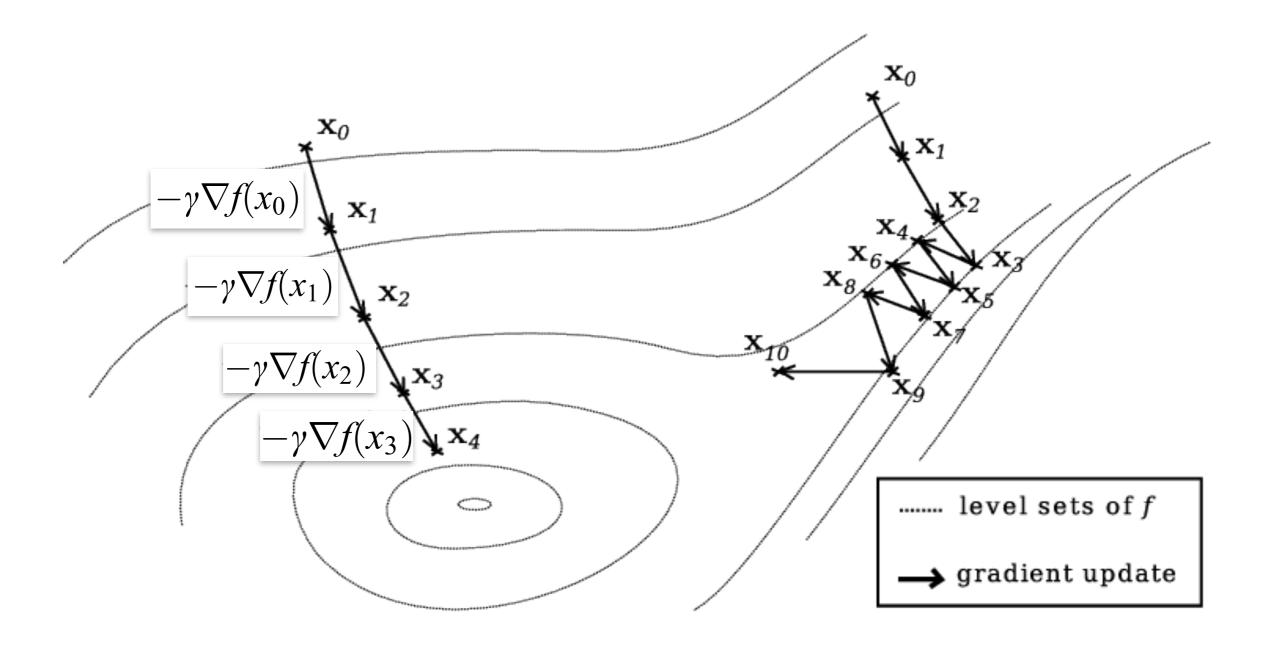
 $f(x,y) = -(\cos^2 x + \cos^2 y)^2$ 

gradient field









# GRADIENT DESCENT RULES THE WORLD!!!



# GRADIENT DESCENT RULES THE WORLD!!!

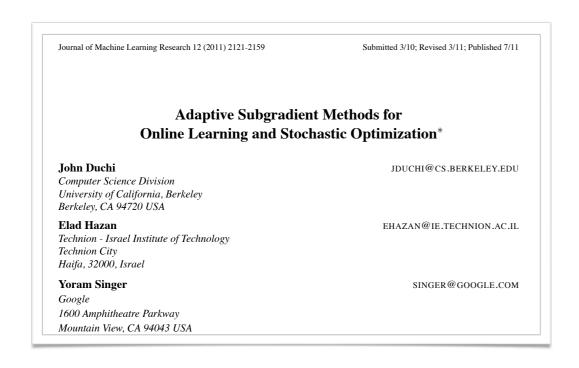


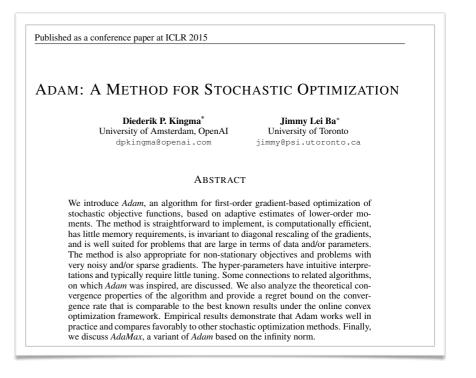
- When the function is VERY high-dimensional, only stochastic gradients are computable (see Elad's talk)
- Adaptive gradient descent (ADAGRAD) or Nesterov acceleration is a standard workhorse in large-scale optimization in (online) machine learning
- Stochastic, batch, mini-batch gradient descent (with adaptive step sizes), such as ADAM, is the standard optimizer for Deep NN

# GRADIENT DESCENT RULES THE WORLDIII



- When the function is VERY high-dimensional, only stochastic gradients are computable (see Elad's talk)
- Adaptive gradient descent (ADAGRAD) or Nesterov acceleration is a standard workhorse in large-scale optimization in (online) machine learning
- Stochastic, batch, mini-batch gradient descent (with adaptive step sizes), such as ADAM, is the standard optimizer for Deep NN





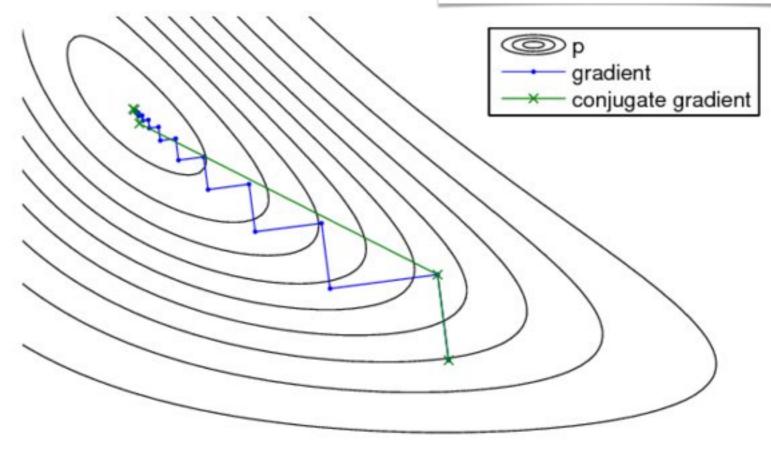


- Extension: Nonlinear conjugate gradient descent
- Use consecutive gradient directions to generate better search directions (conjugate directions)
- Use line search along the new search directions
- Keywords: Fletcher-Reeves, Polak-Ribière

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain Edition 1\frac{1}{4}

Jonathan Richard Shewchuk August 4, 1994

School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213



## SECOND-ORDER OPTIMIZATION



- The gradient and the **Hessian** of the function f is available, i.e. local curvature information
- The function is moderately high-dimensional
- The function is smooth with Lipschitz constant L

### SECOND-ORDER OPTIMIZATION



- The gradient and the **Hessian** of the function f is available, i.e. local curvature information
- The function is moderately high-dimensional
- The function is smooth with Lipschitz constant L
- Gradient descent:

General update scheme:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - H(\mathbf{x}_t) \nabla f(\mathbf{x}_t),$$

where  $H(\mathbf{x}) \in \mathbb{R}^{d \times d}$  is some matrix.

Newton's method:  $H = \nabla^2 f(\mathbf{x}_t)^{-1}$ .

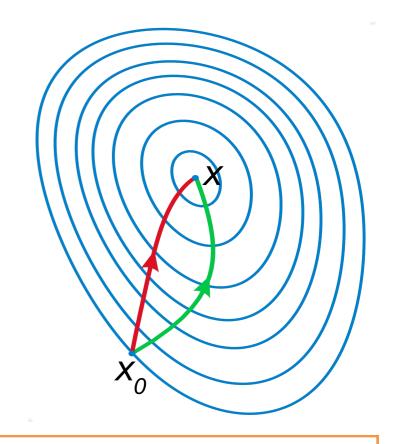
Gradient descent:  $H = \gamma I$ .

Newton's method: "adaptive gradient descent", adaptation is w.r.t. the local geometry of the function at  $\mathbf{x}_t$ .

## SECOND-ORDER OPTIMIZATION



- The gradient and the **Hessian** of the function f is available, i.e. local curvature information
- The function is moderately high-dimensional
- The function is smooth with Lipschitz constant L



Gradient descent:

General update scheme:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - H(\mathbf{x}_t) \nabla f(\mathbf{x}_t),$$

where  $H(\mathbf{x}) \in \mathbb{R}^{d \times d}$  is some matrix.

Newton's method:  $H = \nabla^2 f(\mathbf{x}_t)^{-1}$ .

Gradient descent:  $H = \gamma I$ .

Newton's method: "adaptive gradient descent", adaptation is w.r.t. the local geometry of the function at  $\mathbf{x}_t$ .

# SECOND-ORDER OPTIMIZATION AND APPROXIMATIONS



- Second-order very useful when the dimension is not too high;
   otherwise storage of the Hessian becomes prohibitive (O(n²))
- When the function has many saddle-points, Newton's method needs to be modified
- Variable-metric methods provide an efficient alternative, e.g., BFGS (Broyden, Fletcher, Goldfarb, Shanno) and L-BFGS

SIAM J. OPTIMIZATION Vol. 1, No. 1, pp. 1-17, February 1991 © 1991 Society for Industrial and Applied Mathematics 001

#### **VARIABLE METRIC METHOD FOR MINIMIZATION\***

WILLIAM C. DAVIDON†

Abstract. This is a method for determining numerically local minima of differentiable functions of several variables. In the process of locating each minimum, a matrix which characterizes the behavior of the function about the minimum is determined. For a region in which the function depends quadratically on the variables, no more than N iterations are required, where N is the number of variables. By suitable choice of starting values, and without modification of the procedure, linear constraints can be imposed upon the variables.

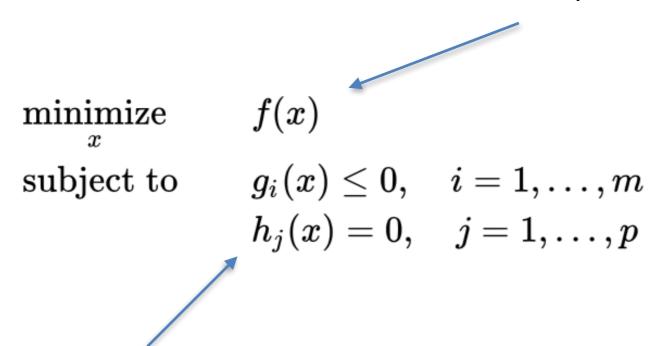
Key words. variable metric algorithms, quasi-Newton, optimization

AMS(MOS) subject classifications. primary, 65K10; secondary, 49D37, 65K05, 90C30

# PDE-CONSTRAINT OPTIMIZATION



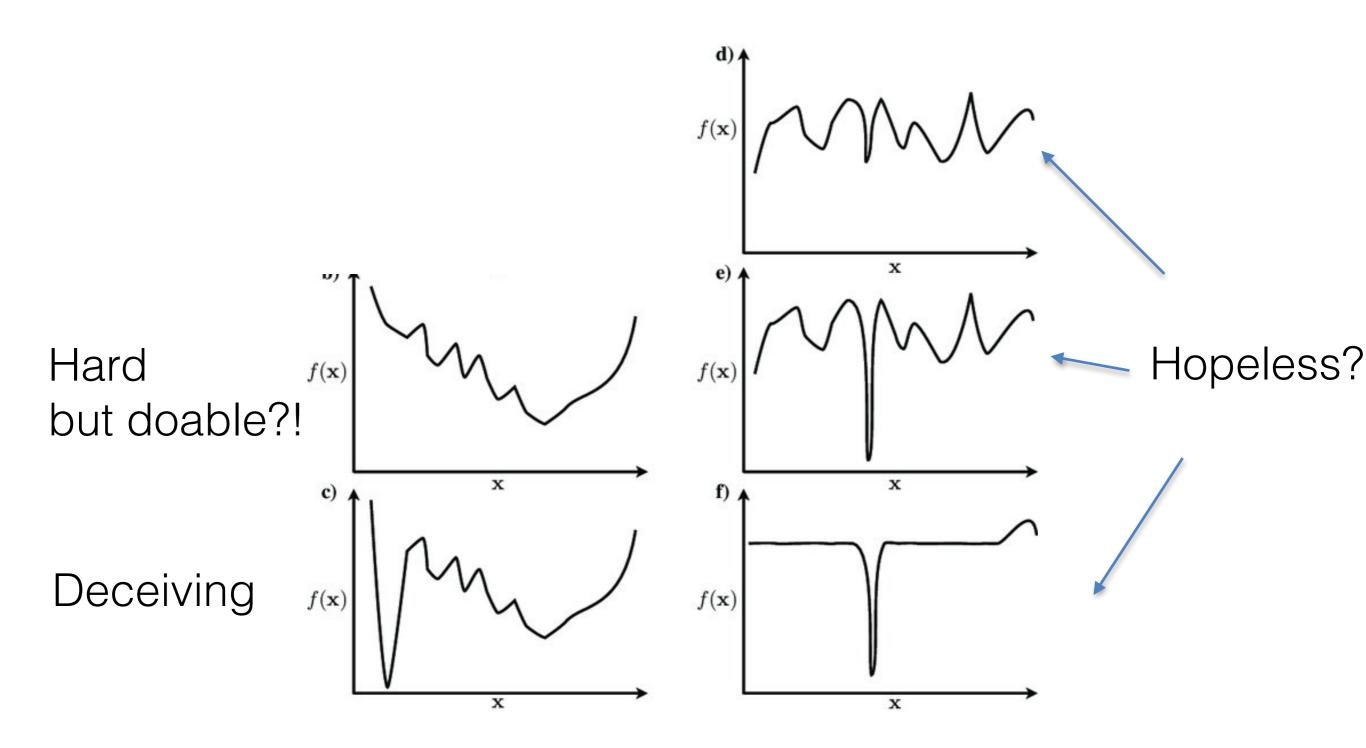
#### Complicated!



Solution of a (parameterized) partial differential equation!

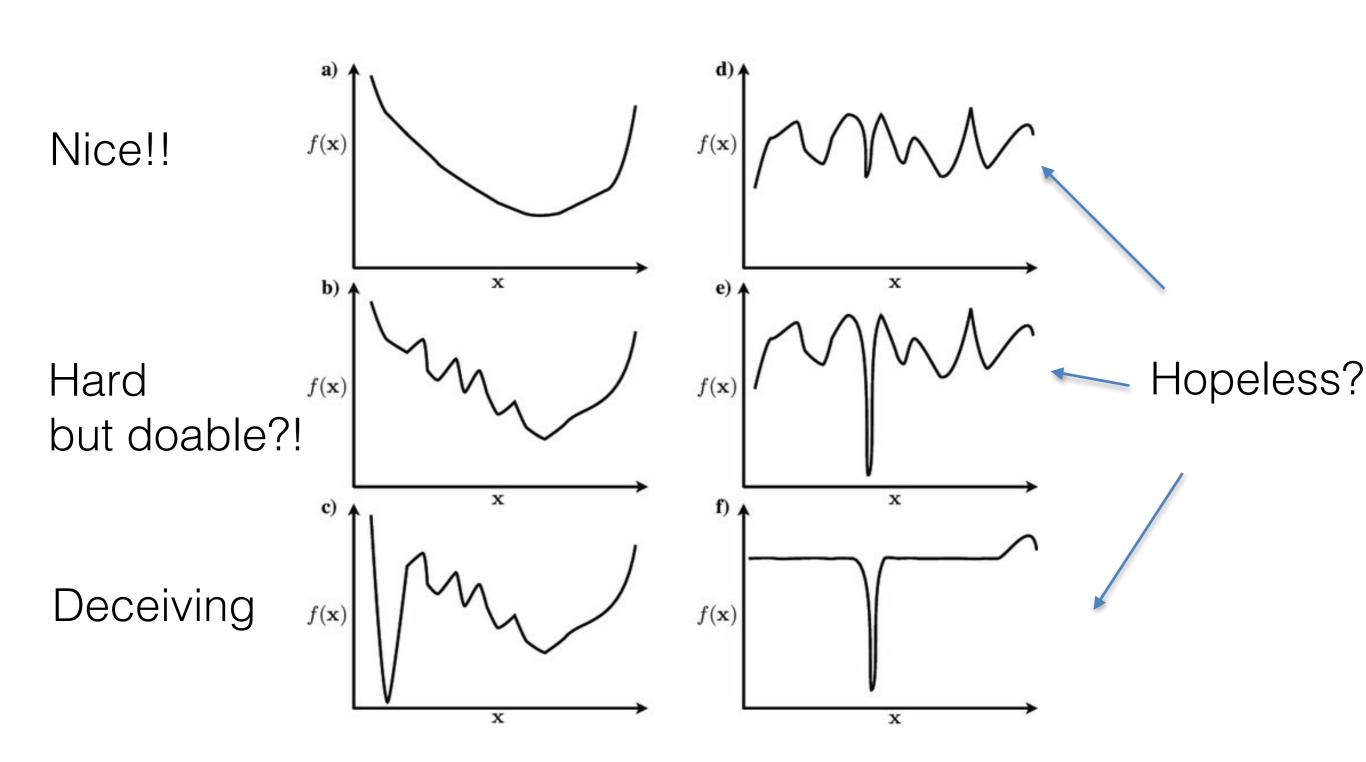
- Arises in many optimal control problems
- Extremely costly is moderately high-dimensional
- Certain tricks allow efficient optimization (see Leslie's talk)





Stochastic Methods for Single Objective Global Optimization, Christian L. Müller, in: Computational Intelligence in Aerospace Sciences - Fundamental Concepts and Methods (2015) <a href="https://doi.org/10.2514/5.9781624102714.0063.0112">https://doi.org/10.2514/5.9781624102714.0063.0112</a>





Stochastic Methods for Single Objective Global Optimization, Christian L. Müller, in: Computational Intelligence in Aerospace Sciences - Fundamental Concepts and Methods (2015) <a href="https://doi.org/10.2514/5.9781624102714.0063.0112">https://doi.org/10.2514/5.9781624102714.0063.0112</a>





## CONVEX FUNCTIONS!



### CONVEX FUNCTIONS!

- "...in fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."
- R. Tyrrell Rockafellar, in SIAM Review, 1993



### CONVEX FUNCTIONS!

- "...in fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."
- R. Tyrrell Rockafellar, in SIAM Review, 1993

"if it's not convex, it's not science"

- attributed to Emmanuel Candes, undated



A convex optimization problem is said to be in the standard form if it is written as

$$egin{array}{ll} ext{minimize} & f(\mathbf{x}) \ ext{subject to} & g_i(\mathbf{x}) \leq 0, \quad i=1,\ldots,m \ h_i(\mathbf{x}) = 0, \quad i=1,\ldots,p, \end{array}$$

where  $x\in\mathbb{R}^n$  is the optimization variable, the functions  $f,g_1,\dots,g_m$  are convex, and the functions  $h_1,\dots,h_p$  are affine.



A convex optimization problem is said to be in the standard form if it is written as

$$egin{array}{ll} ext{minimize} & f(\mathbf{x}) \ ext{subject to} & g_i(\mathbf{x}) \leq 0, \quad i=1,\ldots,m \ h_i(\mathbf{x}) = 0, \quad i=1,\ldots,p, \end{array}$$

where  $x\in\mathbb{R}^n$  is the optimization variable, the functions  $f,g_1,\dots,g_m$  are convex, and the functions  $h_1,\dots,h_p$  are affine.

Let X be a convex set in a real vector space and let  $f:X o\mathbb{R}$  be a function.

• f is called **convex** if:

$$orall x_1, x_2 \in X, orall t \in [0,1]: \qquad f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)$$

• f is called **strictly convex** if:

$$orall x_1 
eq x_2 \in X, orall t \in (0,1): \qquad f(tx_1 + (1-t)x_2) < tf(x_1) + (1-t)f(x_2)$$



A convex optimization problem is said to be in the standard form if it is written as

$$egin{array}{ll} ext{minimize} & f(\mathbf{x}) \ ext{subject to} & g_i(\mathbf{x}) \leq 0, \quad i=1,\ldots,m \ h_i(\mathbf{x}) = 0, \quad i=1,\ldots,p, \end{array}$$

where  $x\in\mathbb{R}^n$  is the optimization variable, the functions  $f,g_1,\ldots,g_m$  are convex, and the functions  $h_1,\ldots,h_p$  are affine.

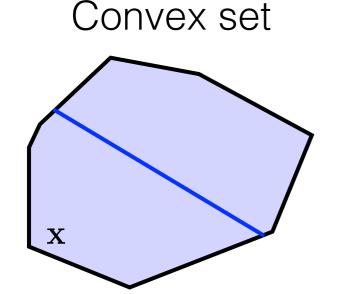
Let X be a convex set in a real vector space and let  $f:X o \mathbb{R}$  be a function.

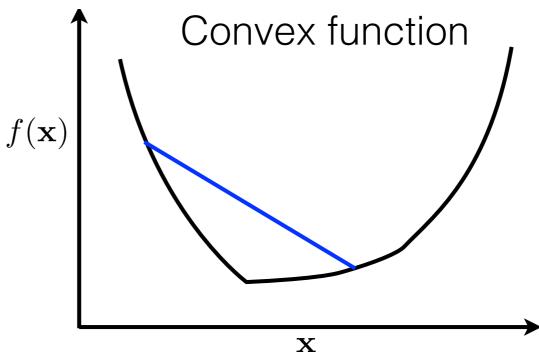
• f is called **convex** if:

$$orall x_1, x_2 \in X, orall t \in [0,1]: \qquad f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)$$

• f is called **strictly convex** if:

$$orall x_1 
eq x_2 \in X, orall t \in (0,1): \qquad f(tx_1 + (1-t)x_2) < tf(x_1) + (1-t)f(x_2)$$







A convex optimization problem is said to be in the standard form if it is written as

$$egin{array}{ll} ext{minimize} & f(\mathbf{x}) \ ext{subject to} & g_i(\mathbf{x}) \leq 0, \quad i=1,\ldots,m \ h_i(\mathbf{x}) = 0, \quad i=1,\ldots,p, \end{array}$$

where  $x\in\mathbb{R}^n$  is the optimization variable, the functions  $f,g_1,\dots,g_m$  are convex, and the functions  $h_1,\dots,h_p$  are affine.

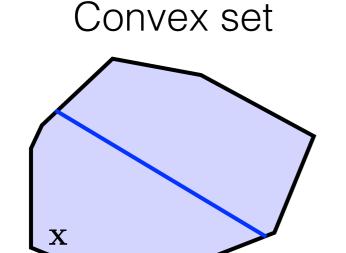
Let X be a convex set in a real vector space and let  $f:X o\mathbb{R}$  be a function.

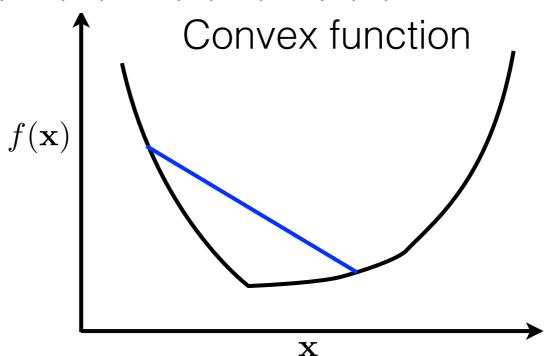
f is called convex if:

## Every local minimum is a global minimum!

• f is called surely convex II.

$$orall x_1 
eq x_2 \in X, orall t \in (0,1): \qquad f(tx_1 + (1-t)x_2) < tf(x_1) + (1-t)f(x_2)$$



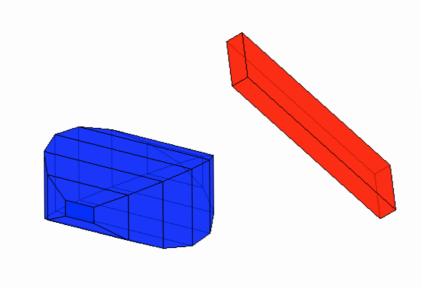


# CONVEX OPTIMIZATION WITH CONVEX CONSTRAINTS



$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

s.t.  $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ .



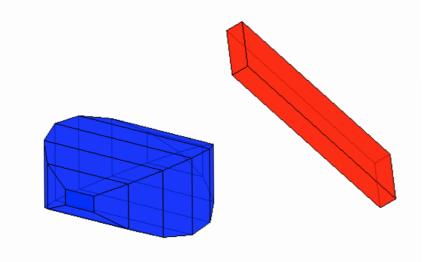
# CONVEX OPTIMIZATION WITH CONVEX CONSTRAINTS

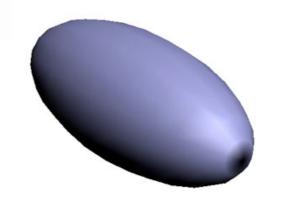


$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

s.t. 
$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$
.

s.t. 
$$\mathbf{x}^T \mathbf{A} \mathbf{x} \leq 1$$
.



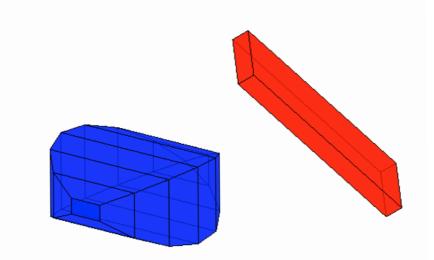


# CONVEX OPTIMIZATION WITH CONVEX CONSTRAINTS

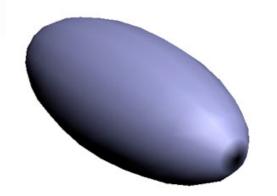


$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

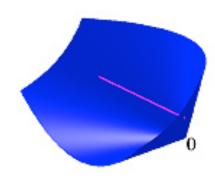
s.t.  $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ .



s.t. 
$$\mathbf{x}^T \mathbf{A} \mathbf{x} \leq 1$$
.

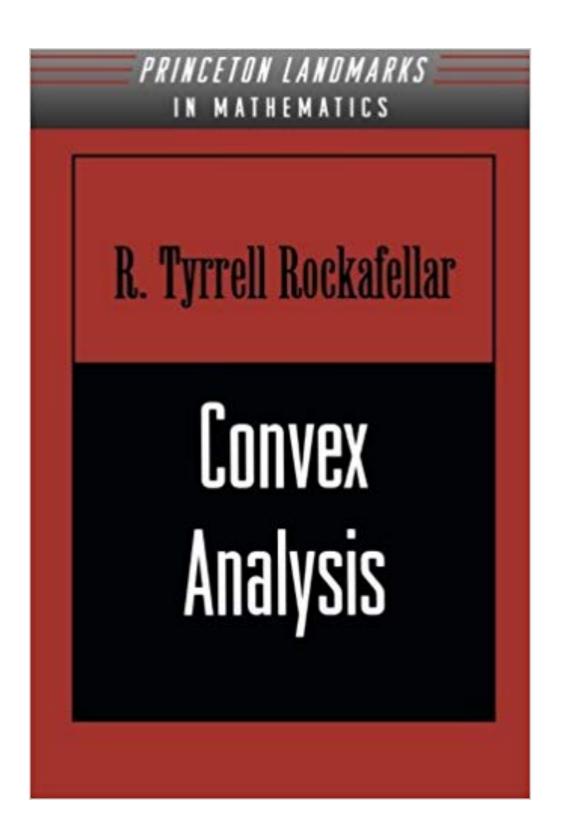


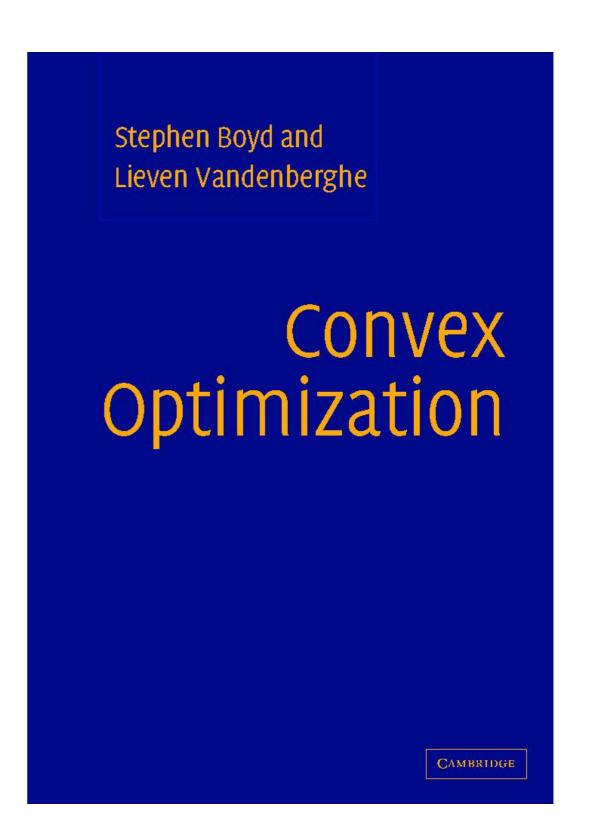
s.t. 
$$\mathbf{A}_0 + x_1 \mathbf{A}_1 + \ldots + x_n \mathbf{A}_n \leq 0$$
.



## CONVEX ANALYSIS/MODELING



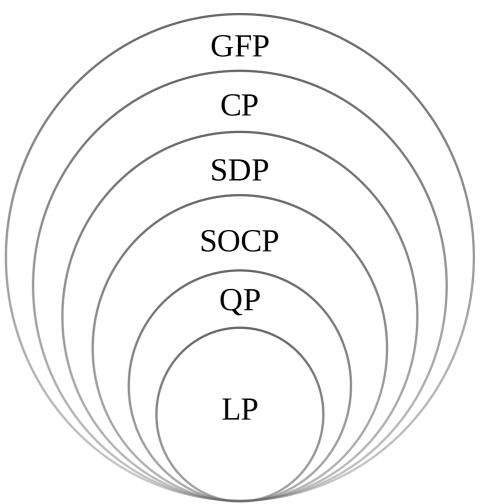




# THE HIERARCHY OF CONVEX PROGRAMS



- Each category has a standard form and associated generic solvers
- Many engineering problems can be formulated as one of these problems and efficiently solved with theoretical guarantees
- Convergence guarantees and rates can be proven under certain conditions
- Interior-point methods as fundamental breakthrough



LP: linear program

QP: quadratic program

SOCP second-order cone program

SDP: semidefinite program

CP: cone program

GFP: graph form program

# THE HIERARCHY OF CONVEX PROGRAMS

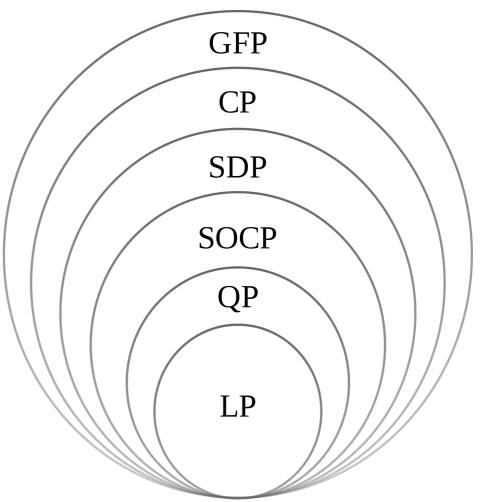


- Each category has a standard form and associated generic solvers
- Many engineering problems can be formulated as one of these problems and efficiently solved with theoretical guarantees
- Convergence guarantees and rates can be proven under certain conditions
- Interior-point methods as fundamental breakthrough

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 42, Number 1, Pages 39–56 S 0273-0979(04)01040-7 Article electronically published on September 21, 2004

THE INTERIOR-POINT REVOLUTION IN OPTIMIZATION:
HISTORY, RECENT DEVELOPMENTS,
AND LASTING CONSEQUENCES

MARGARET H. WRIGHT



LP: linear program

QP: quadratic program

SOCP second-order cone program

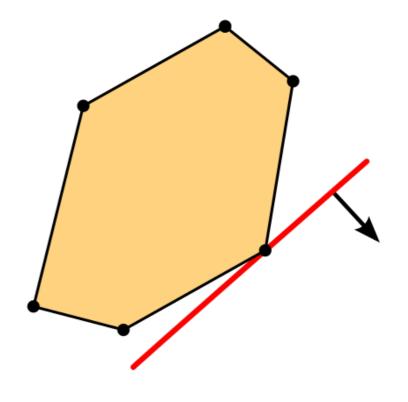
SDP: semidefinite program

CP: cone program

GFP: graph form program

## LINEAR PROGRAMS





- Dantzig's simplex algorithm popular in practice (but exponential runtime in worst case)
- Khachiyan's ellipsoidal algorithm and Karmarkar's projective algorithm give polynomial-time guarantees

# PROPERTIES OF CONVEX FUNCTIONS AND OPTIMIZATION



- Choice, run time, and applicability of different methods depend on the specific properties of the convex functions and the constraints
- Keywords: Strongly convex, smooth, non-smooth, constrained, unconstrained,...
- Optimal convergence rates (in function value and iterates) can be proven for many algorithms for specific classes of convex function

## RECENT NICE EXAMPLE



Gradient descent with adaptive step size

#### Revisiting the Polyak step size

Elad Hazan \*†

Sham M. Kakade \*

|           | convex               | $\beta$ -smooth   | $\alpha$ -strongly convex | $(\alpha, \beta)$ -well conditioned |
|-----------|----------------------|-------------------|---------------------------|-------------------------------------|
| error     | $\frac{1}{\sqrt{T}}$ | $\frac{\beta}{T}$ | $\frac{1}{\alpha T}$      | $e^{-\frac{\beta}{\alpha}T}$        |
| step size | $\frac{1}{\sqrt{T}}$ | $\frac{1}{\beta}$ | $\frac{1}{\alpha T}$      | $\frac{1}{\beta}$                   |

## RECENT NICE EXAMPLE



• Gradient descent with adaptive step size

#### Revisiting the Polyak step size

Elad Hazan \*† S

Sham M. Kakade \*

|           | convex               | $\beta$ -smooth   | $\alpha$ -strongly convex | $(\alpha, \beta)$ -well conditioned |
|-----------|----------------------|-------------------|---------------------------|-------------------------------------|
| error     | $\frac{1}{\sqrt{T}}$ | $\frac{\beta}{T}$ | $\frac{1}{\alpha T}$      | $e^{-\frac{\beta}{\alpha}T}$        |
| step size | $\frac{1}{\sqrt{T}}$ | $\frac{1}{\beta}$ | $\frac{1}{\alpha T}$      | $\frac{1}{\beta}$                   |

#### Algorithm 1 GD with the Polyak stepsize

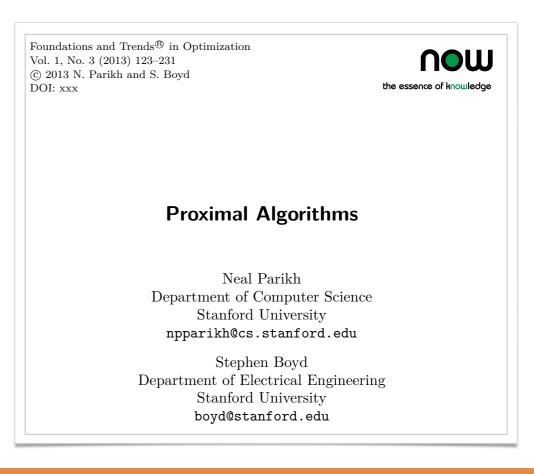
- 1: Input: time horizon T,  $x_0$
- 2: **for** t = 0, ..., T 1 **do**
- 3: Set  $\eta_t = \frac{h_t}{\|\nabla_t\|^2}$
- 4:  $\mathbf{x}_{t+1} = \mathbf{x}_t \eta_t \nabla_t$
- 5: end for
- 6: Return  $\bar{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}_t} \{ f(\mathbf{x}_t) \}$

# PROXIMAL ALGORITHMS FOR NON-SMOOTH CONVEX OPTIMIZATION

- Many high-dimensional statistics problems are non-smooth convex problems (e.g., Lasso, structured sparsity, ...)
- Proximity operator as fundamental building block
- Efficient schemes and exact convergence guarantees

## **Chapter 10 Proximal Splitting Methods in Signal Processing**

Patrick L. Combettes and Jean-Christophe Pesquet



# OPTIMIZATION FOR MACHINE LEARNING



**NEXT TALK** 

## OPTIMIZATION SOFTWARE





**CVX TFOCS** About us **News** 

CVX Forum 💟 🔀



#### **Software for Disciplined Convex Programming**

minimize 
$$||Ax - b||_2$$
  
subject to  $Cx = d$   
 $||x||_{\infty} \le e$ 

```
m = 20; n = 10; p = 4;
A = randn(m,n); b = randn(m,1);
C = randn(p,n); d = randn(p,1); e = rand;
cvx_begin
   variable x(n)
   minimize( norm(A * x - b, 2))
    subject to
       C * x == d
        norm(x, Inf) \le e
cvx_end
```

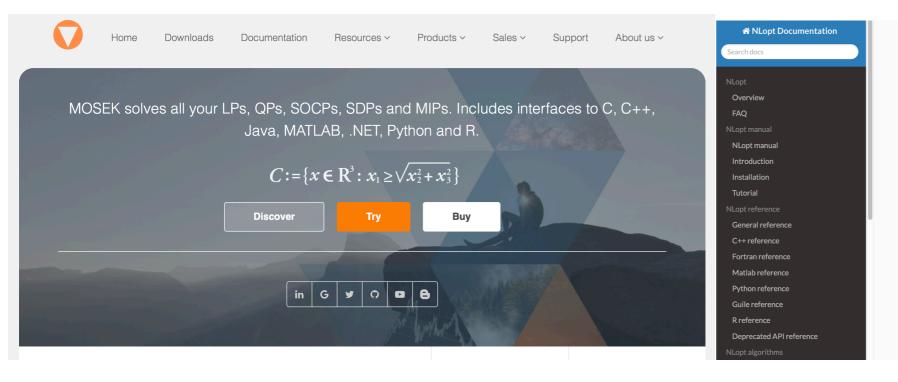
### OPTIMIZATION SOFTWARE



Q

English

**Free Trial** 



NLopt Algorithms

NLopt includes implementations of a number of different optimization algorithms. These algorithms are listed below, including links to the original source code (if any) and citations to the relevant articles in the literature (see Citing NLopt).

Even where I found available free/open-source code for the various algorithms, I modified the code at least slightly (and in some cases noted below, substantially) for inclusion into NLopt. I apologize in advance to the authors for any new bugs I may have inadvertantly introduced into their code.

Nomenclature

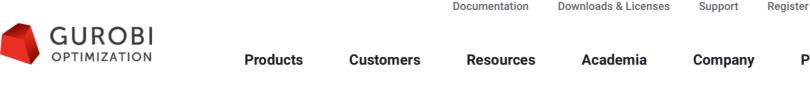
Each algorithm in NLopt is identified by a named constant, which is passed to the NLopt routines in the various languages in order to select a particular algorithm. These constants are mostly of the form NLOPT\_(G, L) (N, D)\_xxxx , where G / L denotes global/local optimization and N / D denotes derivative-free/gradient-based algorithms, respectively.

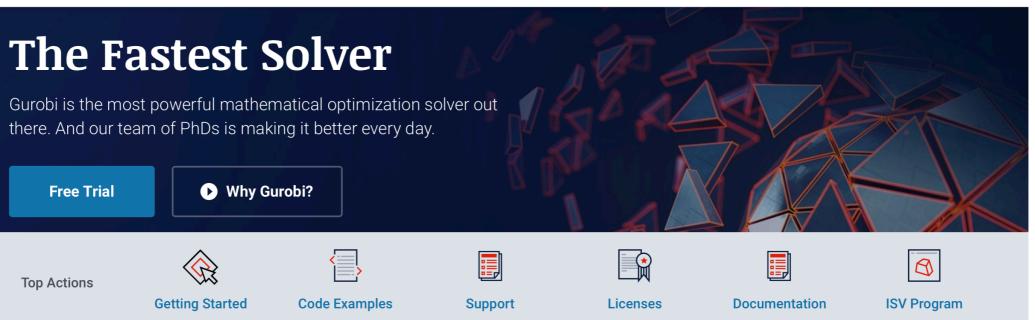
For example, the NLOPT\_LN\_COBYLA constant refers to the COBYLA algorithm (described below),

which is a local ( L ) derivative-free ( N ) optimization algorithm.

→ Login

**Partners** 







#### Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes

#### Lei Wu

School of Mathematics, Peking University Beijing, China leiwu@pku.edu.cn

#### **Zhanxing Zhu**

Beijing Institute of Big Data Research (BIBDR)
Center for Data Science, Peking University
Beijing, China
zhanxing.zhu@pku.edu.cn

#### Weinan E

Beijing Institute of Big Data Research (BIBDR)
Center for Data Science and BICMR, Peking University, Beijing, China
Department of Mathematics and PACM, Princeton University, Princeton, NJ, USA
weinan@math.princeton.edu



#### Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes

#### Lei Wu

School of Mathematics, Peking University Beijing, China leiwu@pku.edu.cn

#### **Zhanxing Zhu**

Beijing Institute of Big Data Research (BIBDR) Center for Data Science, Peking University Beijing, China zhanxing.zhu@pku.edu.cn

#### Weinan E

Beijing Institute of Big Data Research (BIBDR)
Center for Data Science and BICMR, Peking University, Beijing, China
Department of Mathematics and PACM, Princeton University, Princeton, NJ, USA
weinan@math.princeton.edu

#### Large Scale Structure of Neural Network Loss Landscapes

#### Stanislav Fort\*

Google Research Zurich, Switzerland stanislavfort@google.com

#### Stanislaw Jastrzebski<sup>†</sup>

New York University New York, United States

#### Abstract

There are many surprising and perhaps counter-intuitive properties of optimization of deep neural networks. We propose and experimentally verify a unified phenomenological model of the loss landscape that incorporates many of them. High dimensionality plays a key role in our model. Our core idea is to model the loss landscape as a set of high dimensional wedges that together form a large-scale, inter-connected structure and towards which optimization is drawn. We first show that hyperparameter choices such as learning rate, network width and  $L_2$  regularization, affect the path optimizer takes through the landscape in a similar ways, influencing the large scale curvature of the regions the optimizer explores. Finally, we predict and demonstrate new counter-intuitive properties of the loss-landscape. We show an existence of low loss subspaces connecting a set (not only a pair) of solutions, and verify it experimentally. Finally, we analyze recently popular ensembling techniques for deep networks in the light of our model.



#### Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes

#### Lei Wu

School of Mathematics, Peking University Beijing, China leiwu@pku.edu.cn

#### **Zhanxing Zhu**

Beijing Institute of Big Data Research (BIBDR) Center for Data Science, Peking University Beijing, China zhanxing.zhu@pku.edu.cn

#### Weinan E

Beijing Institute of Big Data Research (BIBDR)
Center for Data Science and BICMR, Peking University, Beijing, China
Department of Mathematics and PACM, Princeton University, Princeton, NJ, USA
weinan@math.princeton.edu

#### **Visualizing the Loss Landscape of Neural Nets**

Hao Li<sup>1</sup>, Zheng Xu<sup>1</sup>, Gavin Taylor<sup>2</sup>, Christoph Studer<sup>3</sup>, Tom Goldstein<sup>1</sup>

<sup>1</sup>University of Maryland, College Park <sup>2</sup>United States Naval Academy <sup>3</sup>Cornell University {haoli,xuzh,tomg}@cs.umd.edu,taylor@usna.edu,studer@cornell.edu

#### Abstract

Neural network training relies on our ability to find "good" minimizers of highly non-convex loss functions. It is well-known that certain network architecture designs (e.g., skip connections) produce loss functions that train easier, and well-chosen training parameters (batch size, learning rate, optimizer) produce minimizers that generalize better. However, the reasons for these differences, and their effect on the underlying loss landscape, are not well understood. In this paper, we explore the structure of neural loss functions, and the effect of loss landscapes on generalization, using a range of visualization methods. First, we introduce a simple "filter normalization" method that helps us visualize loss function curvature and make meaningful side-by-side comparisons between loss functions. Then, using a variety of visualizations, we explore how network architecture affects the loss landscape, and how training parameters affect the shape of minimizers.

#### Large Scale Structure of Neural Network Loss Landscapes

#### Stanislav Fort\*

Google Research Zurich, Switzerland stanislavfort@google.com

#### Stanislaw Jastrzebski†

New York University New York, United States

#### Abstract

There are many surprising and perhaps counter-intuitive properties of optimization of deep neural networks. We propose and experimentally verify a unified phenomenological model of the loss landscape that incorporates many of them. High dimensionality plays a key role in our model. Our core idea is to model the loss landscape as a set of high dimensional wedges that together form a large-scale, inter-connected structure and towards which optimization is drawn. We first show that hyperparameter choices such as learning rate, network width and  $L_2$  regularization, affect the path optimizer takes through the landscape in a similar ways, influencing the large scale curvature of the regions the optimizer explores. Finally, we predict and demonstrate new counter-intuitive properties of the loss-landscape. We show an existence of low loss subspaces connecting a set (not only a pair) of solutions, and verify it experimentally. Finally, we analyze recently popular ensembling techniques for deep networks in the light of our model.



#### Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes

#### Lei Wu

School of Mathematics, Peking University Beijing, China leiwu@pku.edu.cn

#### **Zhanxing Zhu**

Beijing Institute of Big Data Research (BIBDR) Center for Data Science, Peking University Beijing, China zhanxing.zhu@pku.edu.cn

#### Weinan E

Beijing Institute of Big Data Research (BIBDR)
Center for Data Science and BICMR, Peking University, Beijing, China
Department of Mathematics and PACM, Princeton University, Princeton, NJ, USA
weinan@math.princeton.edu

#### **Visualizing the Loss Landscape of Neural Nets**

Hao Li<sup>1</sup>, Zheng Xu<sup>1</sup>, Gavin Taylor<sup>2</sup>, Christoph Studer<sup>3</sup>, Tom Goldstein<sup>1</sup>

<sup>1</sup>University of Maryland, College Park <sup>2</sup>United States Naval Academy <sup>3</sup>Cornell University {haoli,xuzh,tomg}@cs.umd.edu,taylor@usna.edu,studer@cornell.edu

#### Abstract

Neural network training relies on our ability to find "good" minimizers of highly non-convex loss functions. It is well-known that certain network architecture designs (e.g., skip connections) produce loss functions that train easier, and well-chosen training parameters (batch size, learning rate, optimizer) produce minimizers that generalize better. However, the reasons for these differences, and their effect on the underlying loss landscape, are not well understood. In this paper, we explore the structure of neural loss functions, and the effect of loss landscapes on generalization, using a range of visualization methods. First, we introduce a simple "filter normalization" method that helps us visualize loss function curvature and make meaningful side-by-side comparisons between loss functions. Then, using a variety of visualizations, we explore how network architecture affects the loss landscape, and how training parameters affect the shape of minimizers.

#### Large Scale Structure of Neural Network Loss Landscapes

#### Stanislav Fort\*

Google Research Zurich, Switzerland stanislavfort@google.com

#### Stanislaw Jastrzebski<sup>†</sup>

New York University New York, United States

#### **Abstract**

There are many surprising and perhaps counter-intuitive properties of optimization of deep neural networks. We propose and experimentally verify a unified phenomenological model of the loss landscape that incorporates many of them. High dimensionality plays a key role in our model. Our core idea is to model the loss landscape as a set of high dimensional wedges that together form a large-scale, inter-connected structure and towards which optimization is drawn. We first show that hyperparameter choices such as learning rate, network width and  $L_2$  regularization, affect the path optimizer takes through the landscape in a similar ways, influencing the large scale curvature of the regions the optimizer explores. Finally, we predict and demonstrate new counter-intuitive properties of the loss-landscape. We show an existence of low loss subspaces connecting a set (not only a pair) of solutions, and verify it experimentally. Finally, we analyze recently popular ensembling techniques for deep networks in the light of our model.

Journal of Machine Learning Research 20 (2019) 1-34

Submitted 9/18; Revised 7/19; Published 8/19

#### Spurious Valleys in One-hidden-layer Neural Network Optimization Landscapes

Luca Venturi

VENTURI@CIMS.NYU.EDU

Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012

Afonso S. Bandeira Joan Bruna

BANDEIRA@CIMS.NYU.EDU

BRUNA@CIMS.NYU.EDU

Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012 Center for Data Science, 60 5th Avenue, New York, NY 10011

Editor: Animashree Anandkumar

### OUTLOOK



#### Visualizing the Loss Landscape of Neural Nets

Hao Li<sup>1</sup>, Zheng Xu<sup>1</sup>, Gavin Taylor<sup>2</sup>, Christoph Studer<sup>3</sup>, Tom Goldstein<sup>1</sup>

<sup>1</sup>University of Maryland, College Park <sup>2</sup>United States Naval Academy <sup>3</sup>Cornell University {haoli,xuzh,tomg}@cs.umd.edu,taylor@usna.edu,studer@cornell.edu

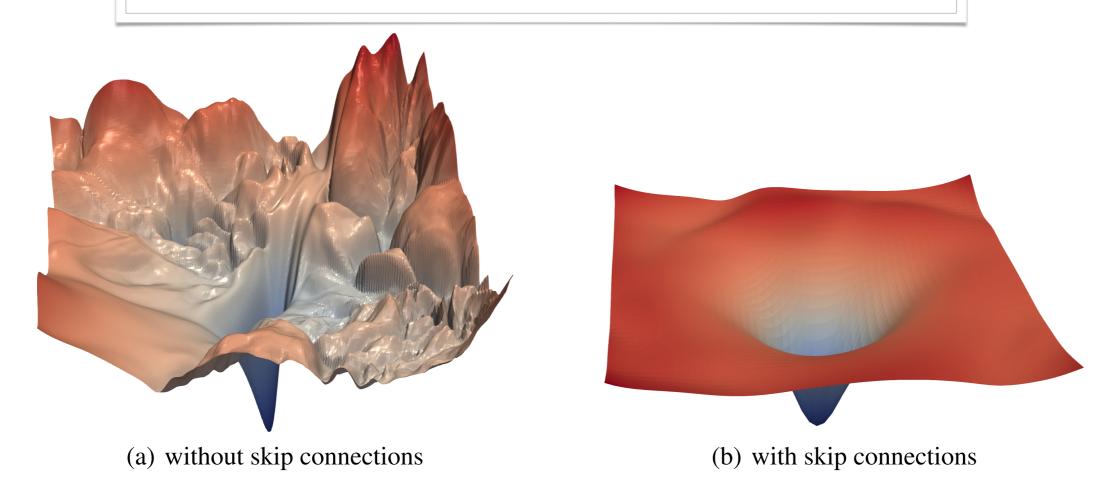
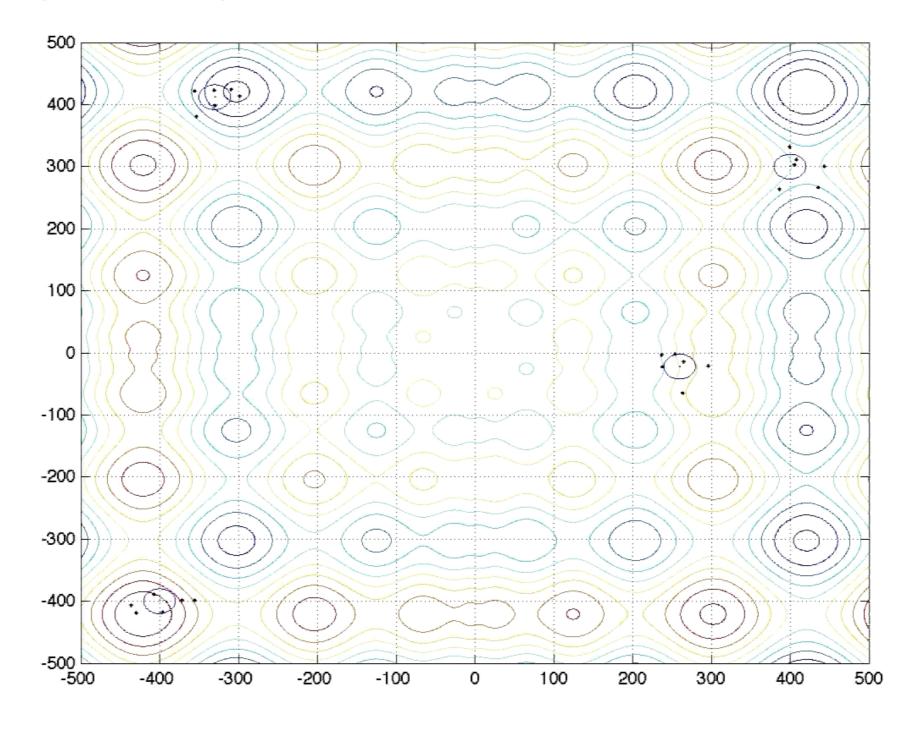


Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

## Thank you for your time! Questions?









## Thank you for your time! Questions?



