

Introduction to Integral Equation Methods

Jun Wang¹

FWAM, Flatiron Institute, 10/30/19

¹Center for Computational Mathematics, Flatiron Institute, Simons Foundation, NYC

Outline

- Introduction
- Mathematical preliminary
- Numerical methods
 - Discretization
 - Numerical quadratures
 - Fast algorithms
- Numerical examples

Setting

Solving linear BVPs:

$$Lu = 0$$
, in Ω
 $u = g$, on $\Gamma := \partial \Omega$,

- L is a 2nd order diff. op. (elliptic/parabolic).
- $\Omega \in \mathbb{R}^d$ (d = 2, 3) can be interior or exterior (decay conditions at ∞ for the exterior case).
- Other boundary conditions: $\partial u/\partial \mathbf{n} = \mathbf{g}$, or mix.

Setting

Solving linear BVPs:

$$Lu = 0$$
, in Ω
 $u = g$, on $\Gamma := \partial \Omega$,

- L is a 2nd order diff. op. (elliptic/parabolic).
- $\Omega \in \mathbb{R}^d$ (d = 2, 3) can be interior or exterior (decay conditions at ∞ for the exterior case).
- Other boundary conditions: $\partial u/\partial \mathbf{n} = \mathbf{g}$, or mix.
- For simplicity, consider $\Delta u = 0$.

Mathematical preliminary: potential theory

Definition (fundamental solution)

The function

$$G(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{1}{2\pi} \ln \frac{1}{|\mathbf{x} - \mathbf{y}|}, & d = 2\\ \frac{1}{4\pi} \frac{1}{|\mathbf{x} - \mathbf{y}|}, & d = 3 \end{cases}$$

is called the fundamental solution of Laplace's equation. For fixed $\mathbf{y} \in \mathbb{R}^d$ it is harmonic in $\mathbb{R}^d \setminus \{\mathbf{y}\}$.

Definition (fundamental solution)

The function

$$G(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{1}{2\pi} \ln \frac{1}{|\mathbf{x} - \mathbf{y}|}, & d = 2\\ \frac{1}{4\pi} \frac{1}{|\mathbf{x} - \mathbf{y}|}, & d = 3 \end{cases}$$

is called the fundamental solution of Laplace's equation. For fixed $\mathbf{y} \in \mathbb{R}^d$ it is harmonic in $\mathbb{R}^d \setminus \{\mathbf{y}\}$.

Theorem (Green's identity)

Let Ω be a bounded domain of class C^1 , and let $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ satisfy $\Delta u = 0$. Then u satisfies

$$u(x) = \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \frac{\partial u(\mathbf{y})}{\partial \mathbf{n}} ds_{\mathbf{y}} - \int_{\Gamma} \frac{\partial}{\partial \mathbf{n}_{\mathbf{y}}} G(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) ds_{\mathbf{y}},$$

where $\Gamma = \partial \Omega$ is the boundary of Ω , and $\mathbf{x} \in \Omega$.

Definition (layer potentials)

The integral operators

$$S[\sigma] := \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}}$$
$$\mathcal{D}[\mu] := \int_{\Gamma} \frac{\partial}{\partial \mathbf{n_{y}}} G(\mathbf{x}, \mathbf{y}) \mu(\mathbf{y}) ds_{\mathbf{y}}$$

are called a single layer potential and a double layer potential respectively.

Definition (layer potentials)

The integral operators

$$S[\sigma] := \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}}$$

$$D[\mu] := \int_{\Gamma} \frac{\partial}{\partial \mathbf{n}_{\mathbf{y}}} G(\mathbf{x}, \mathbf{y}) \mu(\mathbf{y}) ds_{\mathbf{y}}$$

are called a single layer potential and a double layer potential respectively.

Green's identity:

$$u(\mathbf{x}) = \mathcal{S}\left[\frac{\partial u}{\mathbf{n}}\right] - \mathcal{D}[u]. \ \mathbf{x} \in \Omega$$

Potential theory

Theorem (the jump relation)

Let Γ be of class C^2 and $\sigma \in C(\Gamma)$. Then the single layer potential $u = S[\sigma]$ is continuous throughout \mathbb{R}^d . It satisfies $\Delta u = 0$ for $\mathbf{x} \notin \Gamma$. On the boundary there holds:

$$\lim_{\substack{\mathbf{x} \to \mathbf{x}_0 \in \Gamma \\ \mathbf{x} \in \Omega}} \frac{\partial u(\mathbf{x})}{\partial \mathbf{n}} = \frac{1}{2} \sigma(\mathbf{x}_0) + \frac{\partial}{\partial \mathbf{n}} \mathcal{S}[\sigma](\mathbf{x}_0)$$

$$\lim_{\substack{\mathbf{x} \to \mathbf{x}_0 \in \Gamma \\ \mathbf{x} \notin \Omega}} \frac{\partial u(\mathbf{x})}{\partial \mathbf{n}} = -\frac{1}{2} \sigma(\mathbf{x}_0) + \frac{\partial}{\partial \mathbf{n}} \mathcal{S}[\sigma](\mathbf{x}_0)$$

Potential theory

Theorem (the jump relation)

Let Γ be of class C^2 and $\mu \in C(\Gamma)$. Then the double layer potential $v = \mathcal{D}[\mu]$ satisfies $\Delta v = 0$ for $\mathbf{x} \notin \Gamma$, and can be continuously extended to the boundary from the interior or the exterior, with limiting values

$$\lim_{\substack{\mathbf{x} \to \mathbf{x}_0 \in \Gamma \\ \mathbf{x} \in \Omega}} v(\mathbf{x}) = -\frac{1}{2}\mu(\mathbf{x}_0) + \mathcal{D}[\mu](\mathbf{x}_0)$$
$$\lim_{\substack{\mathbf{x} \to \mathbf{x}_0 \in \Gamma \\ \mathbf{x} \notin \Omega}} v(\mathbf{x}) = \frac{1}{2}\mu(\mathbf{x}_0) + \mathcal{D}[\mu](\mathbf{x}_0).$$

Boundary integral equation (BIE)

Turning back to the Green's identity

$$u(\mathbf{x}) = \mathcal{S}\left[\frac{\partial u}{\mathbf{n}}\right] - \mathcal{D}[u] \quad (if \ \Delta u = 0 \ in \ \Omega),$$

letting $x \to \Gamma$, we obtain (e.g. for the interior Dirichlet problem)

$$S[\sigma] = \frac{1}{2}g(\mathbf{x}) + \mathcal{D}[g].$$

- An integral equation (first kind Fredholm) for the unknown density function σ .
- Once σ is obtained, the solution can be recovered by

$$u(\mathbf{x}) = \mathcal{S}[\sigma] - \mathcal{D}[g].$$

• Unkowns on the boundary only.

Boundary integral equation (BIE)

Alternatively, we seek solution of the form $u(\mathbf{x}) = \mathcal{D}[\mu]$, where μ is an unkown density function supported on the boundary. $u(\mathbf{x})$ satisfies $\Delta u = 0$ automatically for $\mathbf{x} \in \Omega$. It only remains to enforce the boundary condition. Letting $\mathbf{x} \to \Gamma$, we obtain (e.g. for the interior Dirichlet problem)

$$-\frac{1}{2}\mu + \mathcal{D}[\mu] = g.$$

- An integral equation (second kind Fredholm) for the unkown density function μ , well conditioned. $Cond(\mathcal{P}) = ||\mathcal{P}|| \cdot ||\mathcal{P}^{-1}||$.
- ullet Once μ is obtained, the solution can be recovered by

$$u(\mathbf{x}) = \mathcal{D}[\mu].$$

Unkowns on the boundary only.

Numerical methods

Discretization of the BIE

Consider the BIE

$$(I + \mathcal{K})\sigma = f$$
,

where $K\sigma = \int_{\Gamma} K(x, y) \sigma ds_y$, K is weakly singular when x = y.

Task I: representation of Γ

- global (simple smooth geoms)
- local (adaptive and/or CAD geoms)

peri. trap. rule

G-L panels

Discretization of the BIE

Three types of discretization

 Nyström: replace the integral by quadrature and impose the BIE at nodes (points→ points)

$$\sigma_i + \sum_j w_j K(\boldsymbol{x}_i, \boldsymbol{x}_j) \sigma_j = f(\boldsymbol{x}_i)$$

• Galerkin: project into basis: $\sigma = \sum_{m=1}^{N} \alpha_m \varphi_m$ (basis \rightarrow basis)

$$\sum_{n=1}^{N} [(\varphi_m, \varphi_n) + (\varphi_m, \mathcal{K}\varphi_n)] \alpha_n = (\varphi_m, f)$$

• Collocation: project σ into basis, impose the BIE at nodes (basis \rightarrow points).

$$\sum_{n=1}^{N} (\varphi_n(\mathbf{x}_m) + \mathcal{K}\varphi_n(\mathbf{x}_m))\alpha_n = f(\mathbf{x}_m).$$

At the same order, accuracy basically the same. Nyström is the simplest to implement, and is naturally compatible with fast algorithms.

Quadrature tasks and challenges

Consider Nyström: $\sigma_i + (\mathcal{K}\sigma)(\mathbf{x}_i) = f_i$.

• Begin with a smooth ("native") quadrature rule

$$\int_{\Gamma} g(\mathbf{x}) ds_{\mathbf{x}} = \sum_{j=1}^{N} w_{j} g(\mathbf{x}_{j}). \quad g \in C^{\infty}(\Gamma)$$

- Challenge 1: filling in the matrix. i.e. approx $\mathcal{K}\sigma(\mathbf{x}_i)$ on surface Γ . weak singularity of $K(\mathbf{x}, \mathbf{y})$ when $\mathbf{x} = \mathbf{y}$.
- Challenge 2: recovering the solution. i.e. approx $\mathcal{K}\sigma(\mathbf{x})$ off surface Γ .

Exponential in N, but rate depends on target \times (Barnett '14)

Quadrature: ideas

 on-surface (Review in 2D:(Hao-Barnett-Martinsson-Young '14)) auxiliary nodes, (analytic) complex Cauchy integrals, etc.

• off-surface: QBX, hedgehog, etc.

Fast algorithms

Discretization of $(I + \mathcal{K})\sigma = f$ leades to a dense $N \times N$ linear system.

- Fast multipole methods (FMM) reduces the cost of applying $\mathcal{K}\sigma$ to O(N).
 - (Greengard-Rokhlin '87; Greengard-Rokhlin '97; Cheng-Greengard-Rokhlin '99)
 - 3D FMM lib developed at Flatiron: https://fmm3d.readthedocs.io
 - Combine with GMRES. Well conditioning $\Rightarrow O(1)$ iterations.
- Fast direct solvers.
 - Talk by Manas Rachh.
 - Suitable for: low rank perturbation of K, multiple RHS, MFS, etc.

Numerical examples

Example 1: Inhomogeneous heat equation on a unit box with periodic boundary condition: automatic adaptivity

Numerical examples

Example 2: suspensions of rigid ellipses in shearing viscous flow

Summary

Integral equation methods have become powerful tools for the numerical solution of PDEs. They have the remarkable benefits:

- High accuracy
- Optimal/Near optimal complexity
- Ability to handle complex geometry
- Compatibility with automatic adaptivity

Requires a lot of machinery:

- Well conditioned integral formulation
- Efficient numerical quadratures
- Fast algorithms

