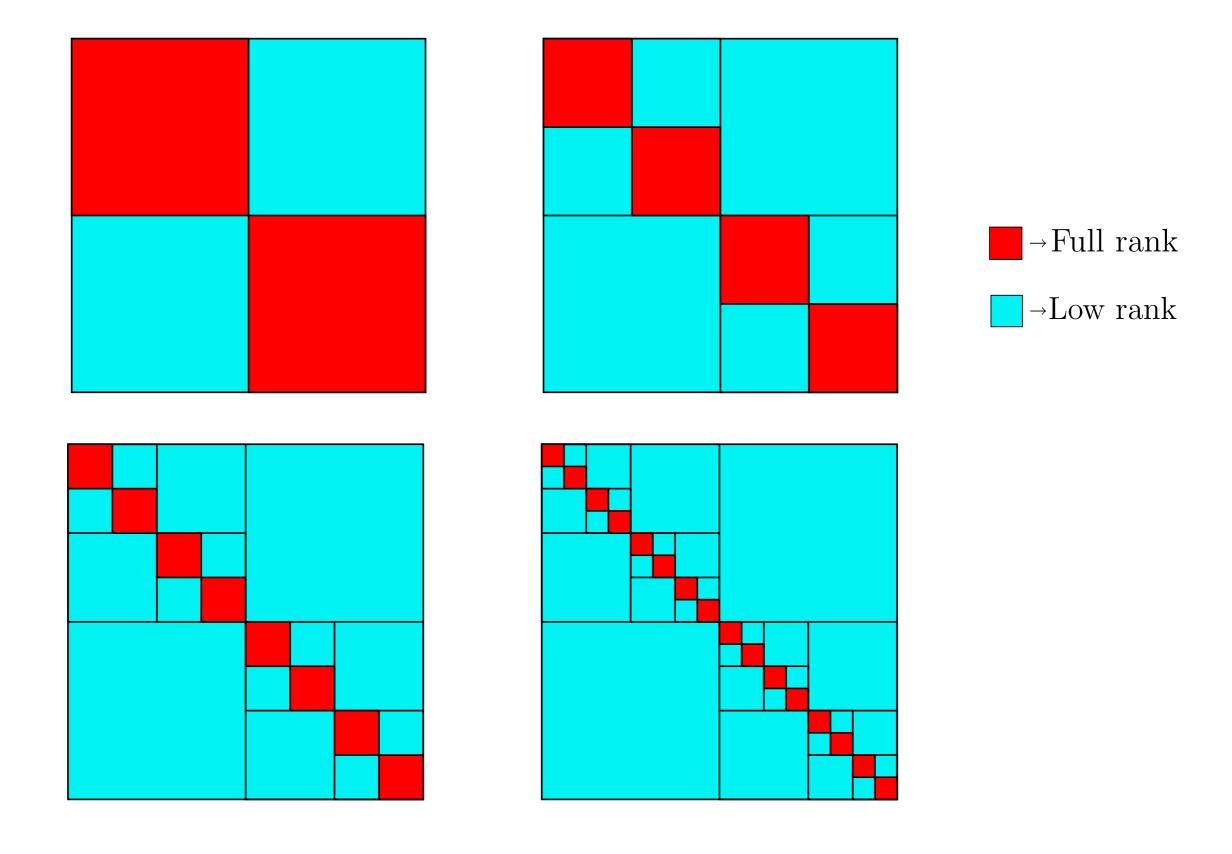


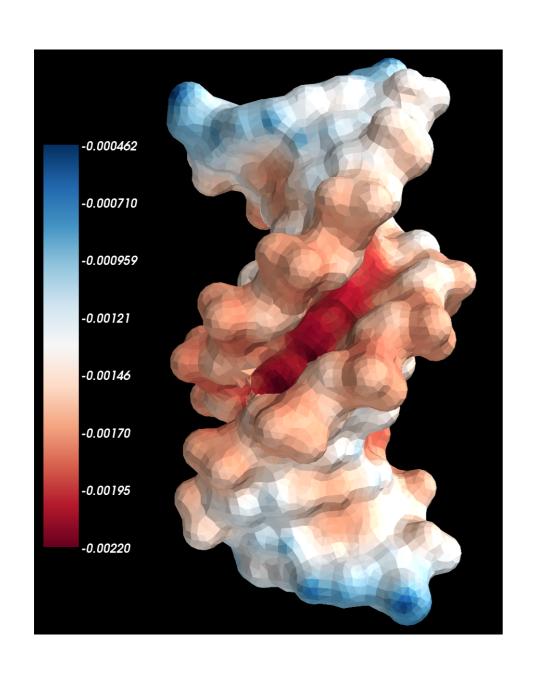
Fast algorithms for hierarchically compressible matrices

FWAM Nov 1, 2019

What is a hierarchical matrix?



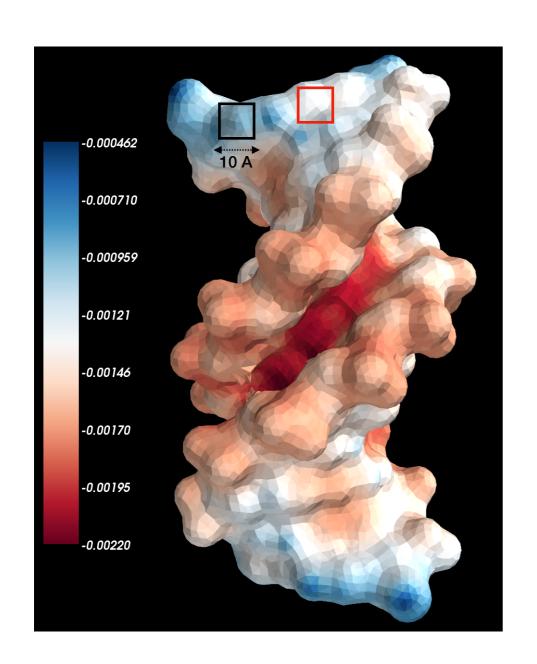
Applications - Molecular dynamics



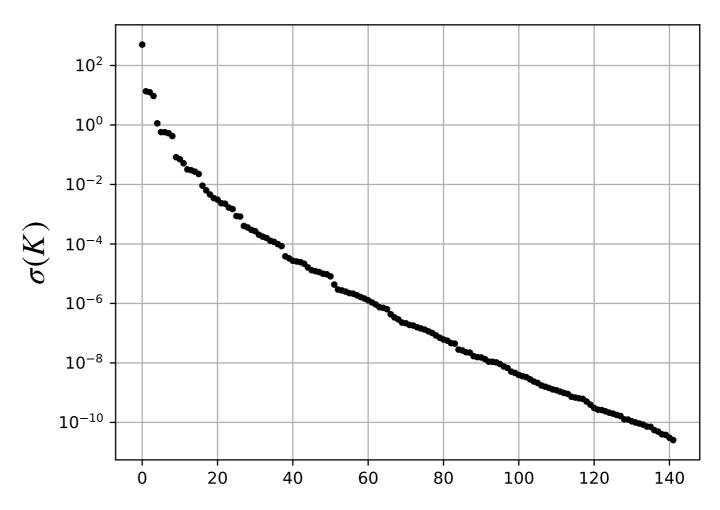
- pKa computation
- Docking

$$-\Delta arphi = 0$$
 in Ω_0 $-\Delta arphi = rac{1}{arepsilon_1} \sum_i q_i \delta\left(\mathbf{r} - \mathbf{r}_i
ight)$ in Ω_1 $\left[arphi\right] = \left[arepsilon rac{\partial arphi}{\partial
u}\right] = 0$ on Σ

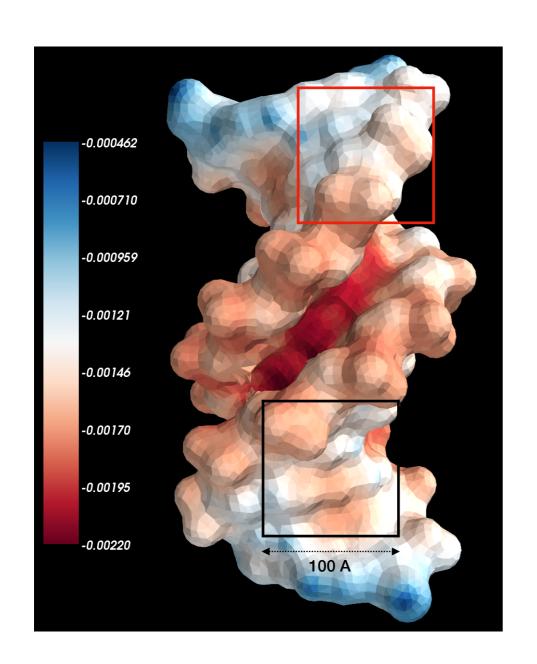
Applications - Molecular dynamics



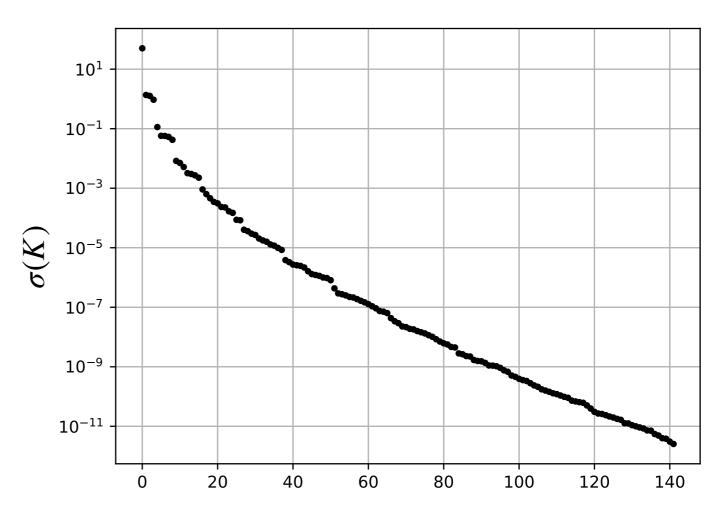
$$K_{i,j} = \frac{1}{|x_i - x_j|}$$

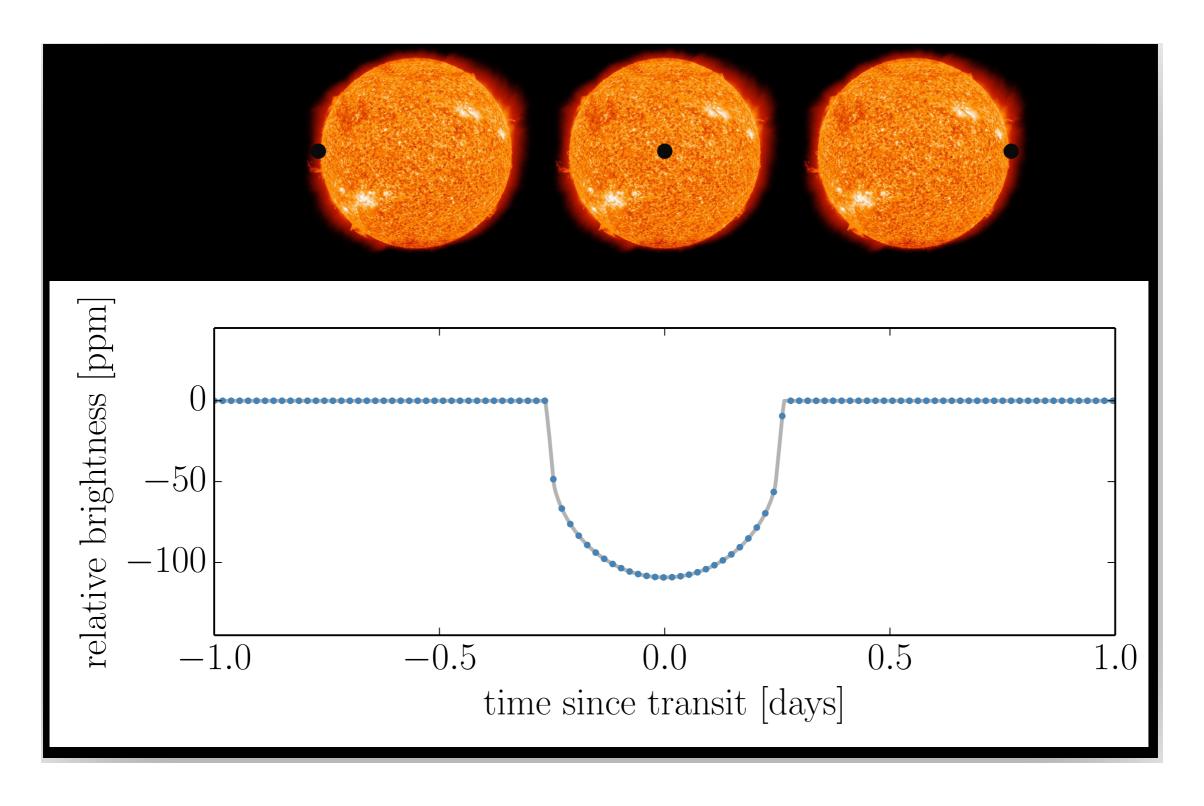


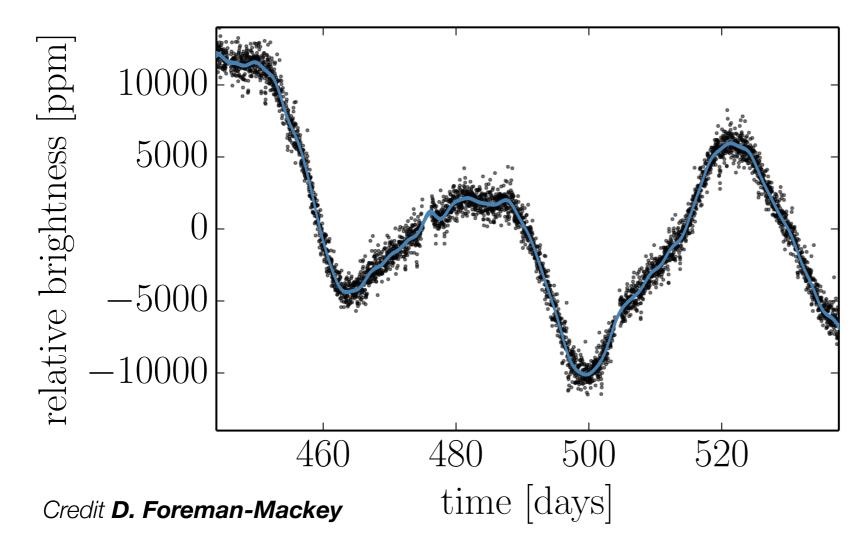
Applications - Molecular dynamics



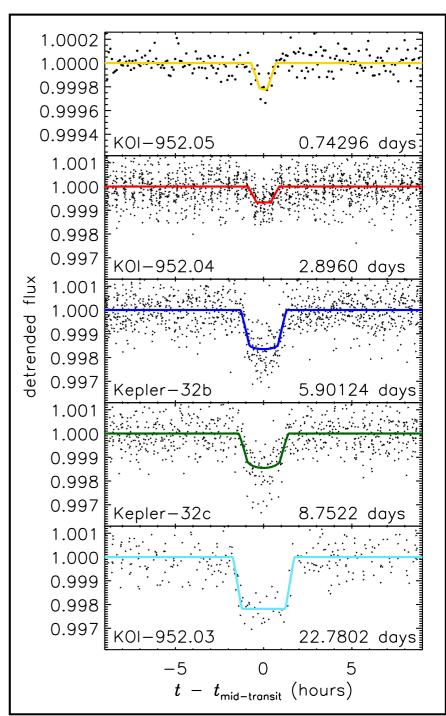
$$K_{i,j} = \frac{1}{|x_i - x_j|}$$







Computational Task: $\arg\max_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} \propto \frac{1}{\det C(\boldsymbol{t};\boldsymbol{\theta})^{1/2}} e^{-\frac{1}{2}\boldsymbol{y}^T C^{-1}(\boldsymbol{t};\boldsymbol{\theta})\boldsymbol{y}}$

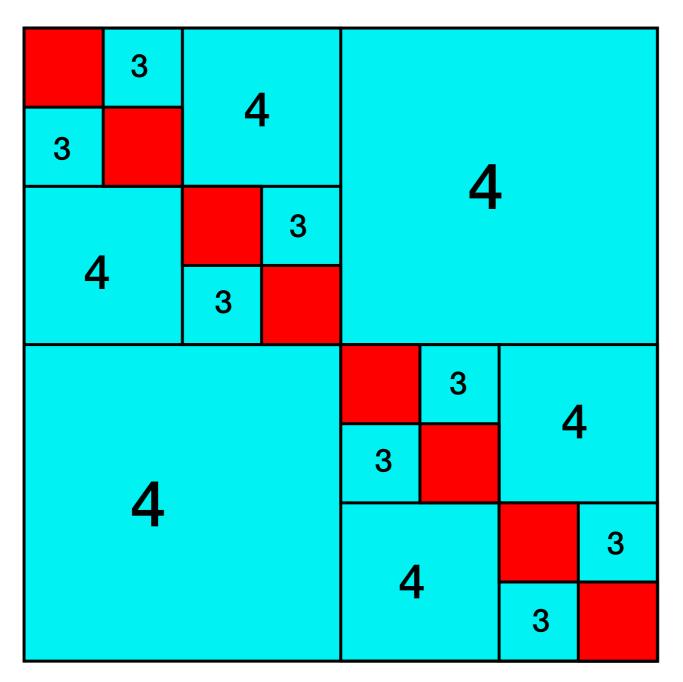


Credit Fabrycky et al. (2012)

Computational Task:

$$\operatorname{argmax}_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} \propto \frac{1}{\det C(t; \boldsymbol{\theta})^{1/2}} e^{-\frac{1}{2} \mathbf{y}^T C^{-1}(t; \boldsymbol{\theta}) \mathbf{y}}$$

$$C(t, \boldsymbol{\theta}) = \sigma_{\varepsilon}^2 I + K(t, t'; \boldsymbol{\theta})$$



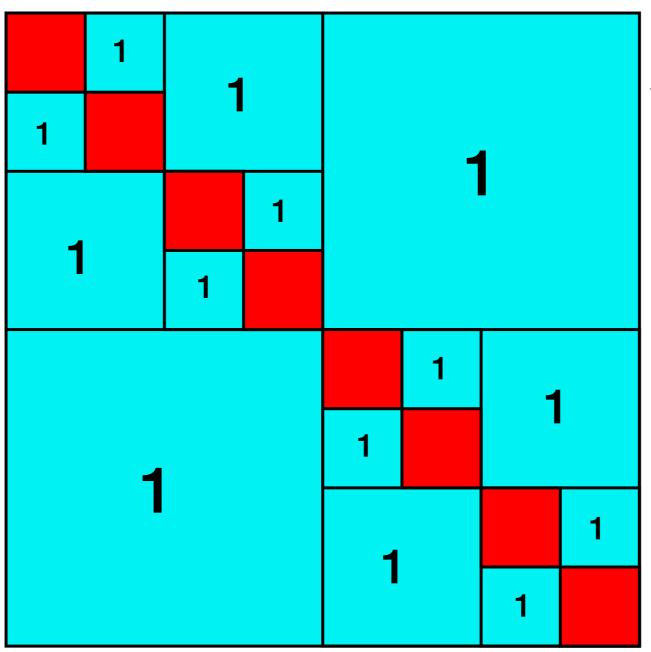
$$K(t, t', \boldsymbol{\theta}) = \theta(0) + e^{-\frac{(t-t')^2}{2\theta(1)^2}}$$

$$\theta(0) = 1, \theta(1) = 3$$

Computational Task:

$$\operatorname{argmax}_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} \propto \frac{1}{\det C(t; \boldsymbol{\theta})^{1/2}} e^{-\frac{1}{2} \mathbf{y}^T C^{-1}(t; \boldsymbol{\theta}) \mathbf{y}}$$

$$C(t, \boldsymbol{\theta}) = \sigma_{\varepsilon}^2 I + K(t, t'; \boldsymbol{\theta})$$



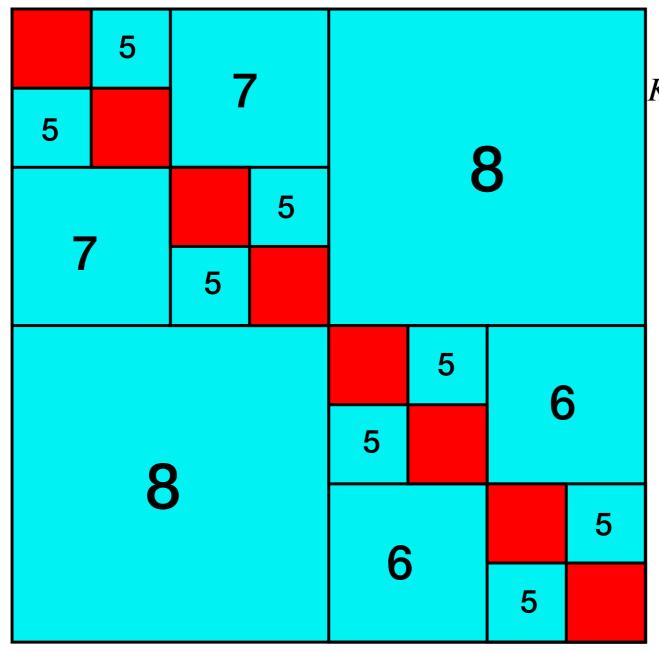
$$K(t, t', \boldsymbol{\theta}) = \theta(0) + e^{-\theta(1)|t-t'|}$$

$$\theta(0) = 1, \theta(1) = 3$$

Computational Task:

$$\operatorname{argmax}_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} \propto \frac{1}{\det C(t; \boldsymbol{\theta})^{1/2}} e^{-\frac{1}{2} \mathbf{y}^T C^{-1}(t; \boldsymbol{\theta}) \mathbf{y}}$$

$$C(t, \theta) = \sigma_{\varepsilon}^2 I + K(t, t'; \theta)$$



$$K(t, t', \theta) = \theta(0) + \frac{1}{1 + (x(i) - x(j))^2}$$
$$\theta(0) = 1$$

What is fast?

Suppose $A \in \mathbb{R}^{n \times n}$, and, $v \in \mathbb{R}^n$

- Matrix vector product (matvec) $A \cdot v : O(n^2)$
- Inversion A^{-1} : $O(n^3)$
- Determinants $\det A : O(n^3)$

For a given task, an algorithm is fast if it's runtime beats the asymptotic complexity

The dream: $O(n \log^s n)$

Examples

- Sparse matrices, matvecs in O(kn), if well-conditioned, inverse in O(kn)
- FFT matrices, matvecs in $O(n \log n)$, inverse analytically known, and inverse application in $O(n \log n)$

Dense matrices ≠ Data dense

$$A_{j,k} = \delta_{j,k} + \cos(t_j - s_k)$$

$$= \delta_{j,k} + \cos(t_j)\cos(s_k) + \sin(t_j)\sin(s_k)$$

$$t_j$$

Matvec $b = A \cdot v$: $O(n^2)$

Step 1:

$$W_1 = \sum_{k=1}^{n} \cos(s_k) v_k, \quad W_2 = \sum_{k=1}^{n} \sin(s_k) v_k$$

$$b_j = v_j + \cos(t_j) W_1 + \sin(t_j) W_2$$

Step 2:

$$b_j = v_j + \cos(t_j)W_1 + \sin(t_j)W_2$$
 $O(n)!$

$$A = I + UV^{T}, \quad U = \begin{bmatrix} \cos(t_1) & \sin(t_1) \\ \cos(t_2) & \sin(t_2) \\ \vdots & \vdots \\ \cos(t_n) & \sin(t_n) \end{bmatrix}, \quad V = \begin{bmatrix} \cos(s_1) & \sin(s_1) \\ \cos(s_2) & \sin(s_2) \\ \vdots & \vdots \\ \cos(s_n) & \sin(s_n) \end{bmatrix}$$

Inversion A^{-1} : $O(n^3)$

Sherman Morrison Woodbury formula: $A^{-1} = I - U(I_2 + V^T U)^{-1} V^T$ O(n)!

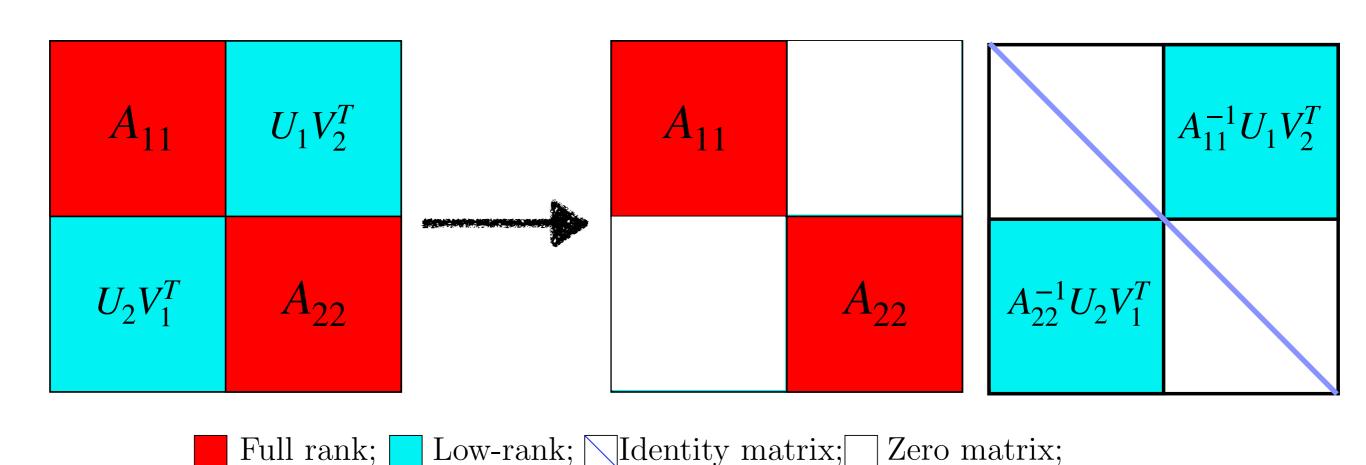
Determinants $\det A : O(n^3)$

Slyvester formula formula: $\det A = \det (I_2 + V^T U)$

O(n)!

One level scheme - factorization

Assume: All off-diagonal blocks are rank r



Factorization tasks and costs:

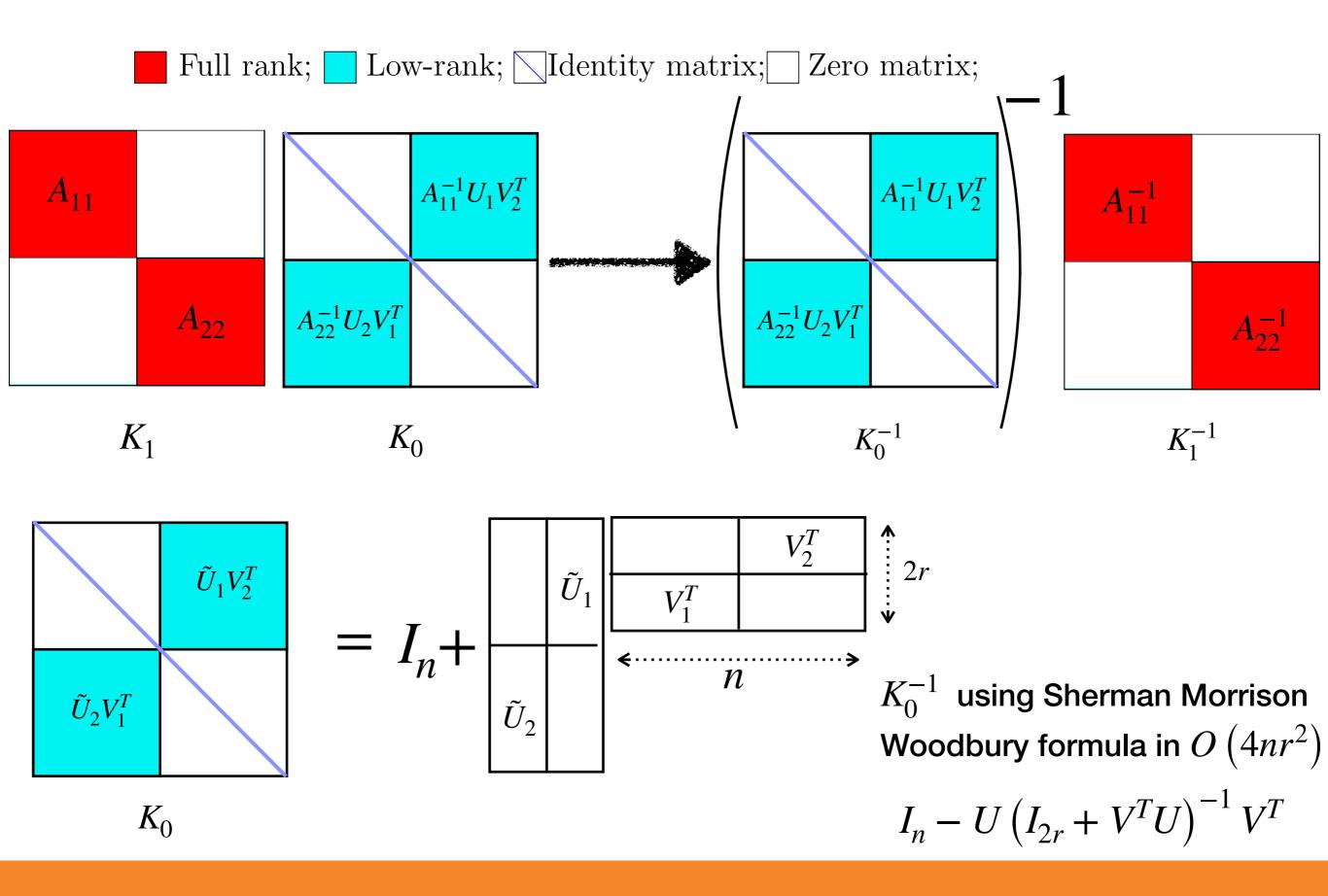
Compute
$$A_{12}=U_1V_2^T$$
, and $A_{21}=U_2V_1^T$: $2\cdot O\left(\frac{n^2}{4}\cdot r\right)$
$$\frac{n^3}{4}$$
 Compute A_{11}^{-1} , and A_{22}^{-1} : $2\cdot \frac{n^3}{8}$

Compute
$$A_{11}^{-1}$$
, and A_{22}^{-1} : $2 \cdot \frac{n^3}{8}$

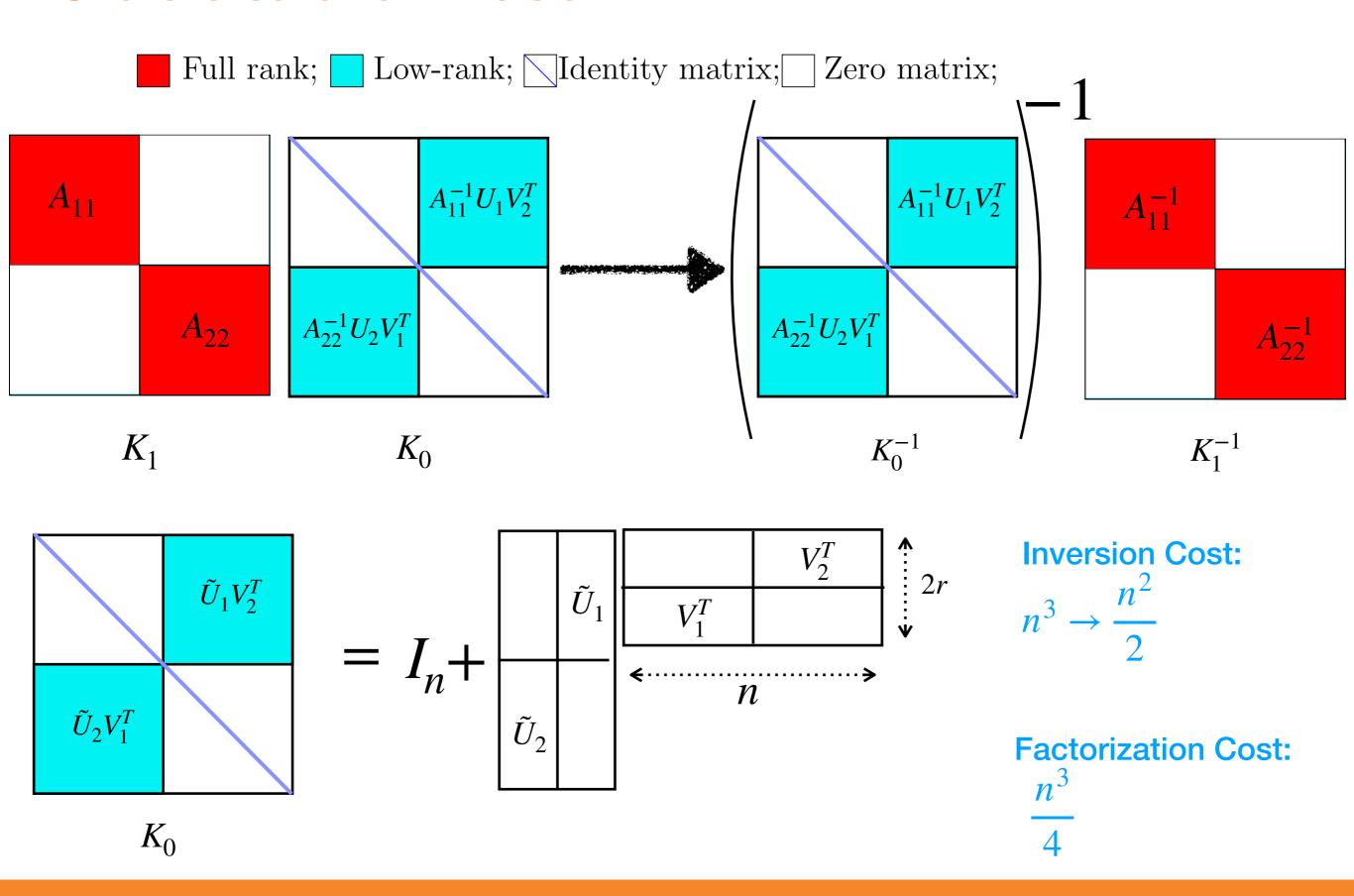
Factorization Cost:

$$\frac{n^3}{4}$$

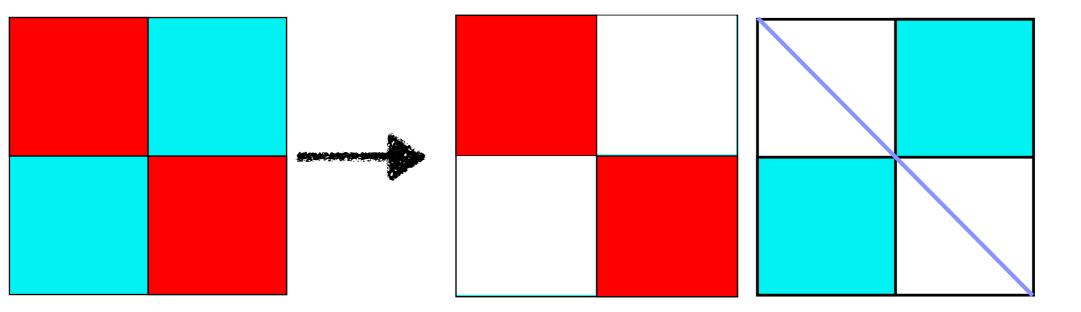
One level scheme - Inversion



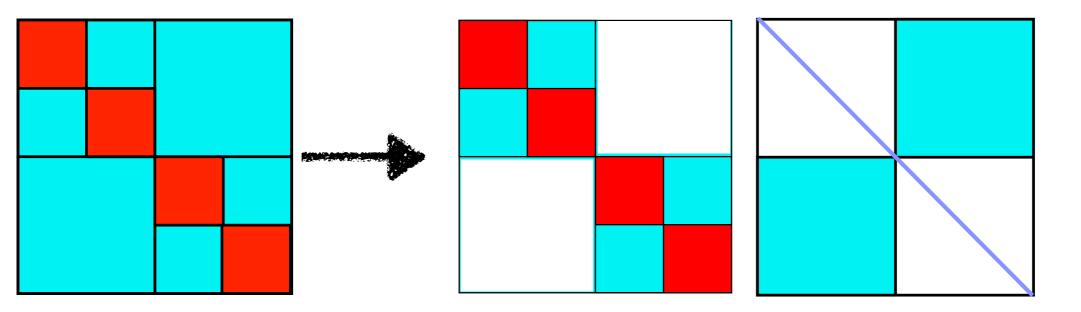
One level scheme - Inversion



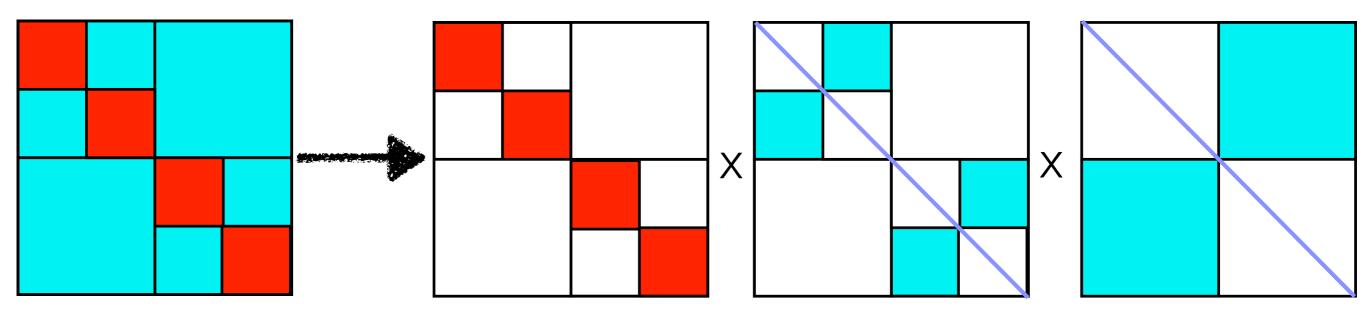
Can we induct?



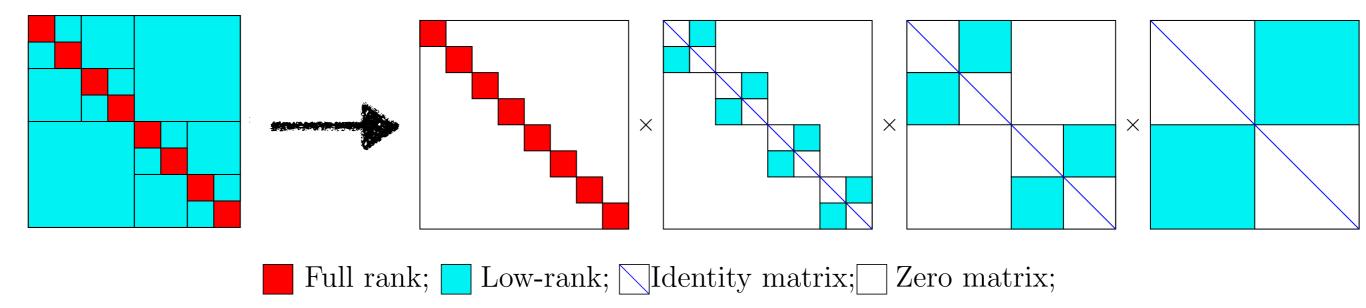
Can we induct?



Can we induct?



Algorithm and factorization costs

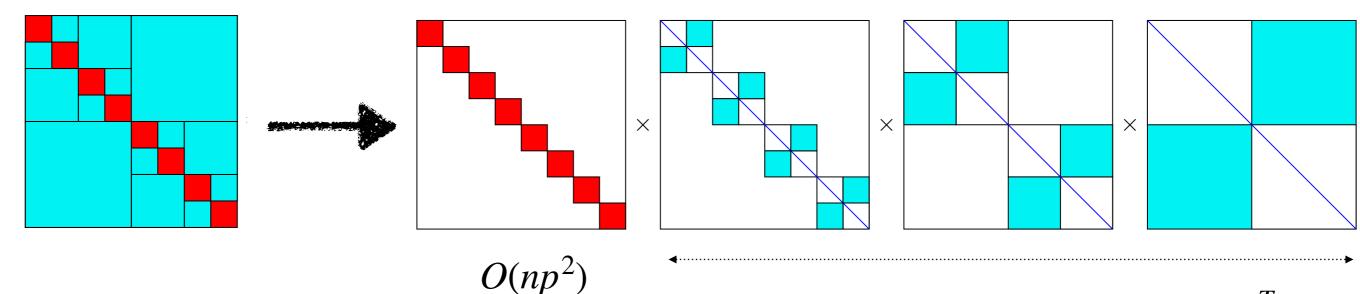


- 1. Compute all low-rank factorizations of off-diagonal blocks at all levels
- $O(n^2r)$ $O(np^2)$ Compute inverses of n/p, $p \times p$ matrices at the finest level
- 3. Loop over levels $j = \kappa 1,...1$
 - a. Update the inverses of the coarser diagonal blocks
 - b. Update the off-diagonal low rank factors using the computed inverses

 $O(npr \log n)$

Factorization cost: $O(n^2r + np^2 + npr \log^2 n)$

Apply/Inversion/Determinant cost



Each matrix is of the form $(I + UV^T)$ where rank of U,V is 2r

Cost of applying/inverting/computing determinants

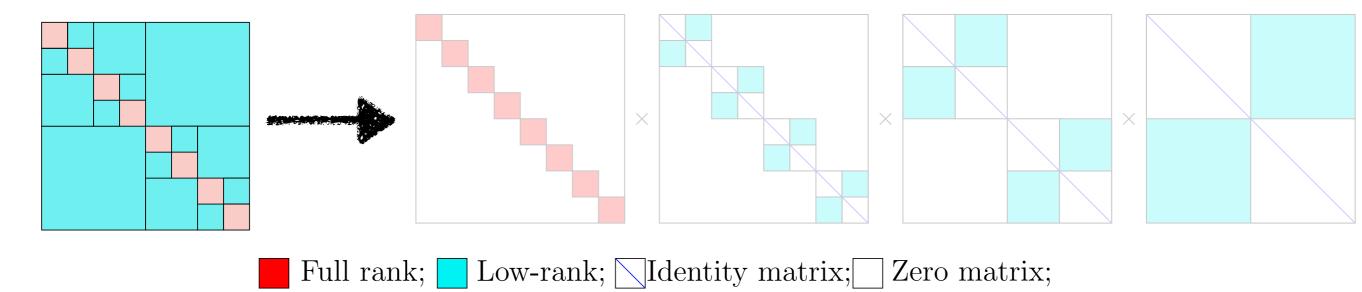
at each level: $O(nr^2)$

Post factorization

Inversion cost: O(n)

Determinant cost: O(n)

Low rank factorizations of off-diagonal blocks



Compute all low-rank factorizations of off-diagonal blocks at all levels

 $O(n^2r)$

Options:

1. Analysis

Need different expansions per kernel!

Can be unstable sometimes!

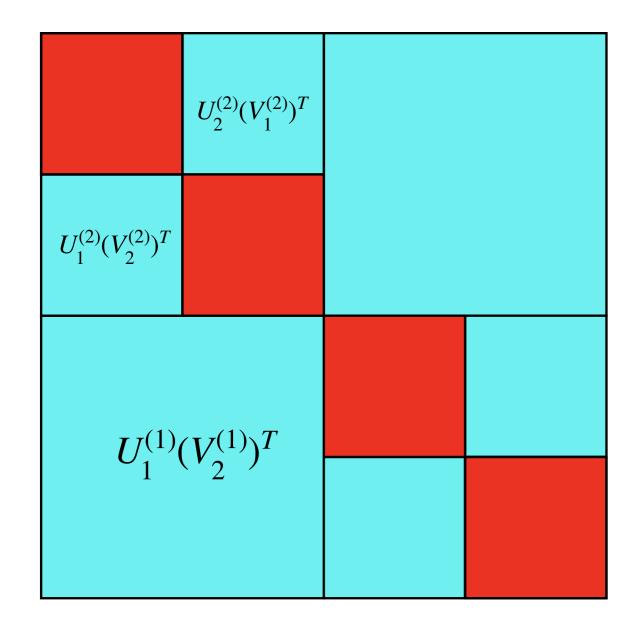
Compute analytical low rank decompositions of the kernel

$$e^{-(s-t)^2/2} = \sum_{n=0}^{r} \frac{(t-c)^n}{n!} h_n(s-c) + O(\varepsilon)$$

- 2. Linear algebra
 - Partial pivoted LU
 - Adaptive Cross Approximation
 - Adaptive Gross Approximation

L Using nested basis

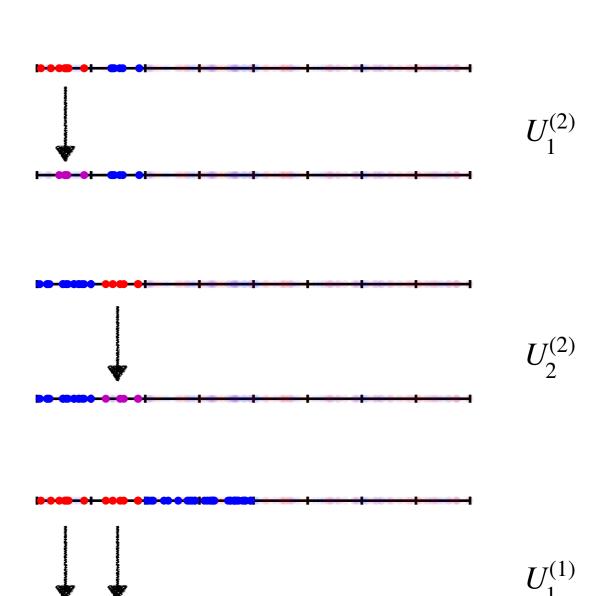
Can be unstable sometimes - but instabilities known!



Q: Given $U_{1}^{(2)}$, $U_{2}^{(2)}$, can we compute $U_{1}^{(1)}$?

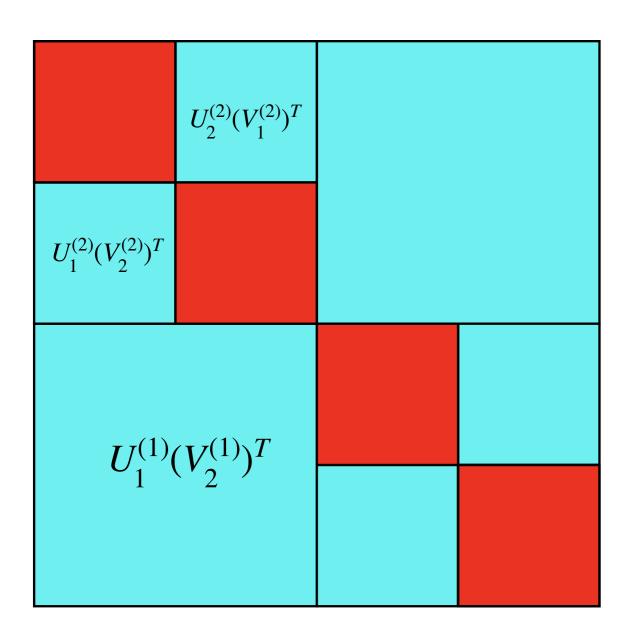
In general: No!

 $U_i^{(j)}$ can be thought of as subset of columns of original matrix

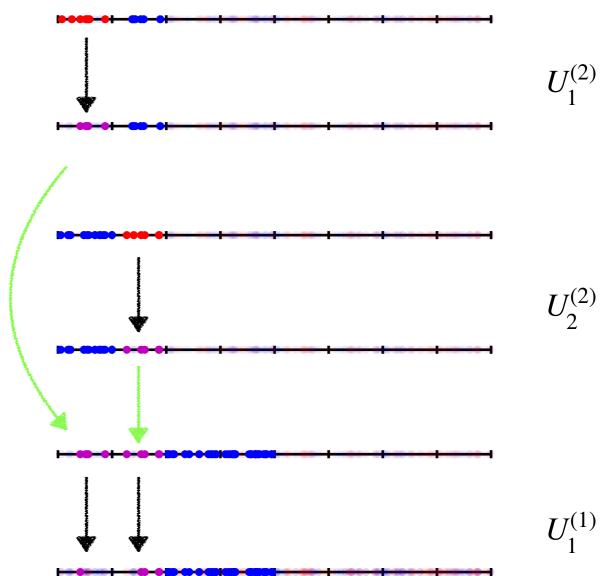


Q: Given $U_1^{(2)}$, $U_2^{(2)}$, can we compute $U_1^{(1)}$?

In general: No!

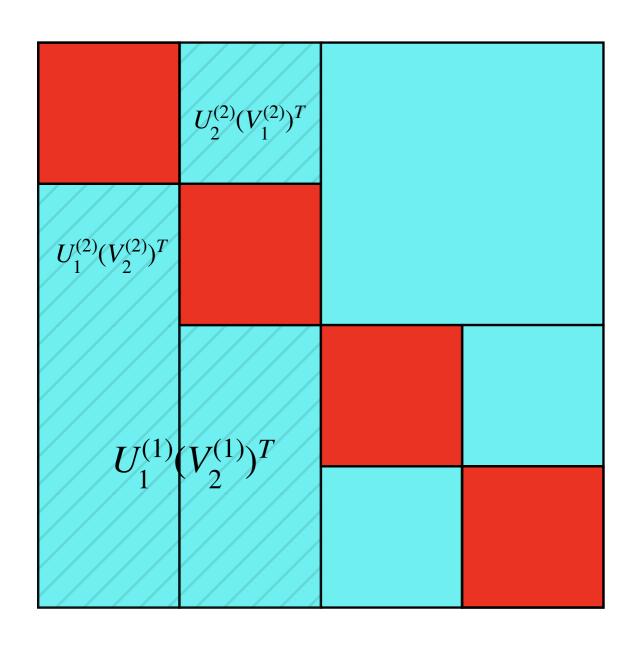


 $U_i^{(j)}$ can be thought of as subset of columns of original matrix

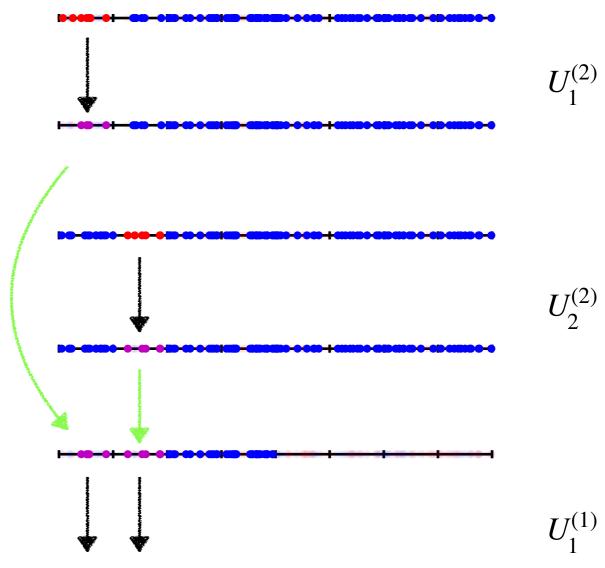


Q: Given $U_{1}^{(2)}$, $U_{2}^{(2)}$, can we compute $U_{1}^{(1)}$?

Yes, but factorization cost still $O(n^2)$

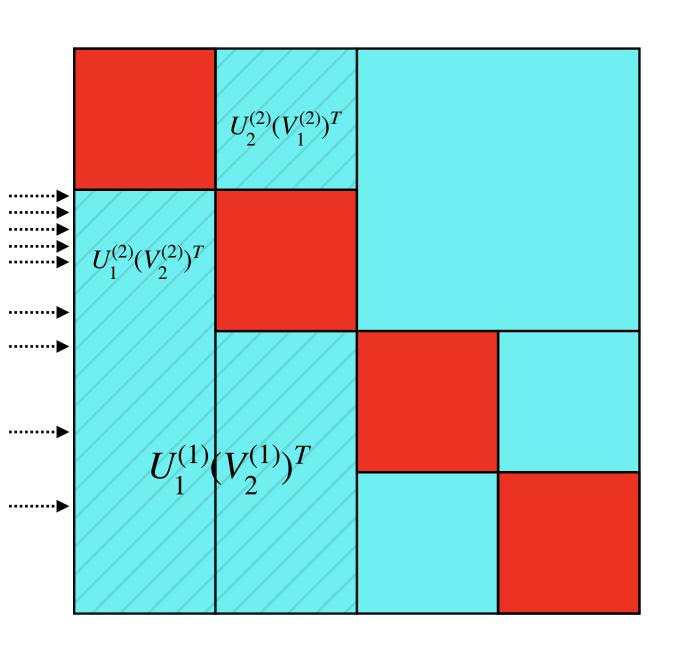


 $U_i^{(j)}$ can be thought of as subset of columns of original matrix

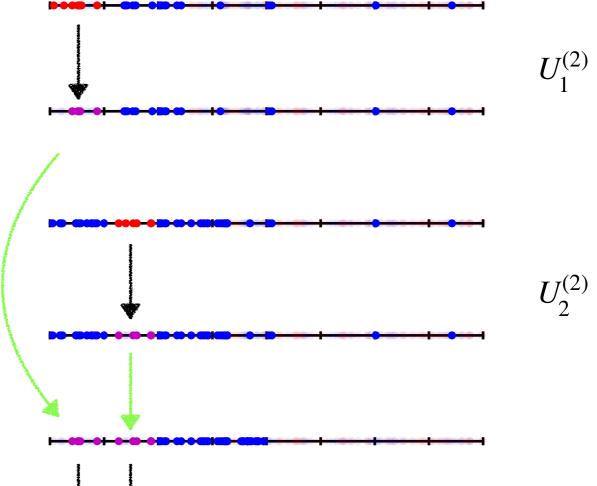


Q: Given $U_1^{(2)}$, $U_2^{(2)}$, can we compute $U_1^{(1)}$?

Use proxy points! Factorization cost O(n)



 $U_i^{(j)}$ can be thought of as subset of columns of original matrix



 $U_{_{1}}^{(1)}$

Proofs for kernels satisfying Green's identity

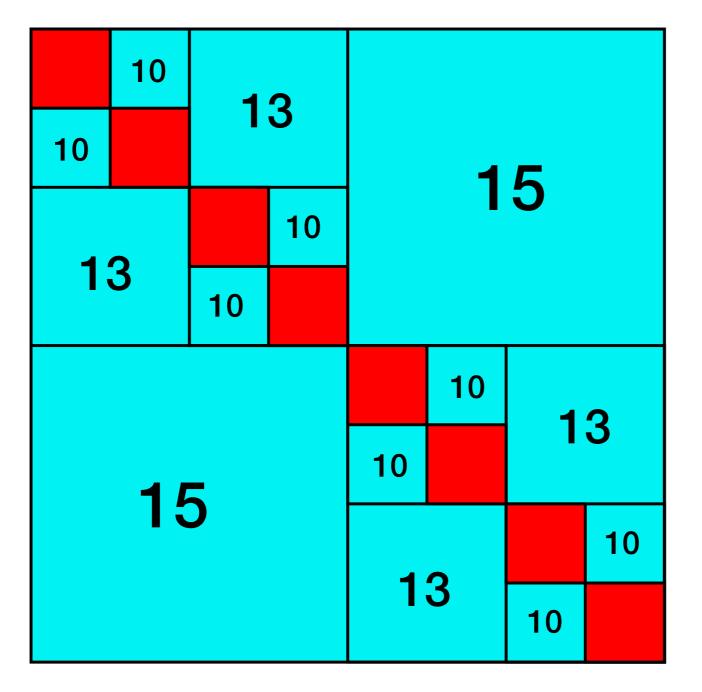
Heuristic works for larger family of kernels (e.g. Gaussians)

The need for order

Computational Task:

$$\operatorname{argmax}_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} \propto \frac{1}{\det C(t; \boldsymbol{\theta})^{1/2}} e^{-\frac{1}{2} \mathbf{y}^T C^{-1}(t; \boldsymbol{\theta}) \mathbf{y}}$$

$$C(t, \boldsymbol{\theta}) = \sigma_{\varepsilon}^2 I + K(t, t'; \boldsymbol{\theta})$$



$$K(t, t', \boldsymbol{\theta}) = \theta(0) + \frac{1}{\sqrt{\theta(1) + (t - t')^2}}$$

$$\theta(0) = 1, \theta(1) = 0.01$$

10k $t_i's$ uniformly distributed on [0,1]

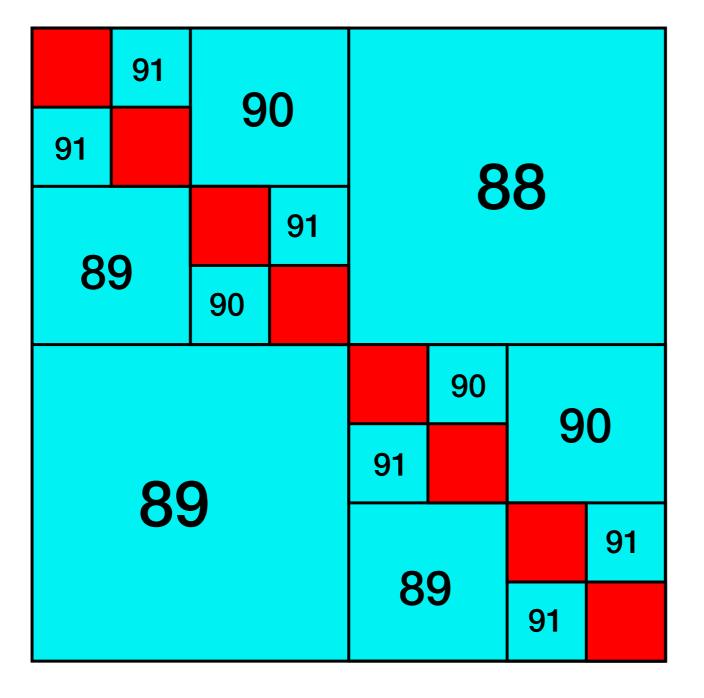
Rank structure exists only if points are sorted

The need for order

Computational Task:

$$\operatorname{argmax}_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} \propto \frac{1}{\det C(t; \boldsymbol{\theta})^{1/2}} e^{-\frac{1}{2} \mathbf{y}^T C^{-1}(t; \boldsymbol{\theta}) \mathbf{y}}$$

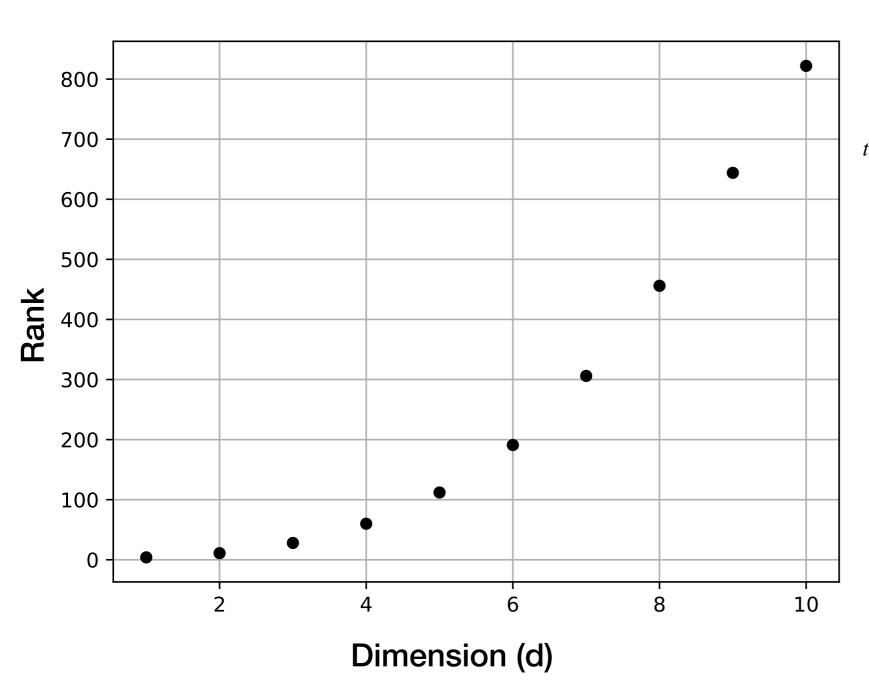
$$C(t, \boldsymbol{\theta}) = \sigma_{\varepsilon}^2 I + K(t, t'; \boldsymbol{\theta})$$



$$K(t, t', \boldsymbol{\theta}) = \theta(0) + \frac{1}{\sqrt{\theta(1) + (t - t')^2}}$$

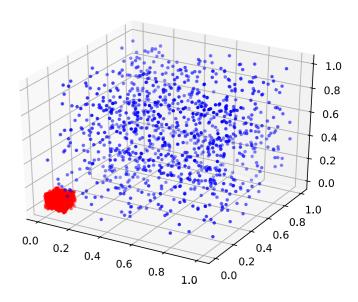
$$\theta(0) = 1, \theta(1) = 0.01$$

The curse of dimensionality



$$K(t, t', \boldsymbol{\theta}) = \theta(0) + e^{-\frac{|t-t|^2}{2\theta(1)^2}}$$
$$\theta(0) = 1, \theta(1) = 3$$

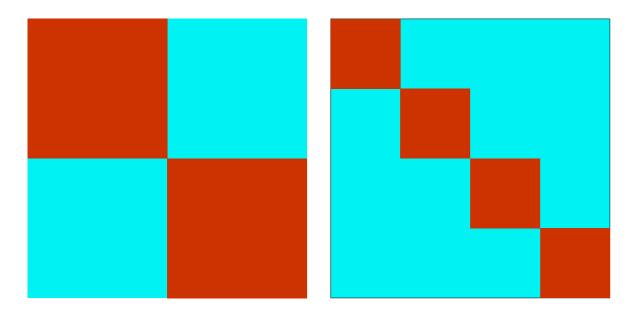
 $t, t' \in \mathbb{R}^d$, $t' \in [0,0.125]^d$, $t \in [0,1]^d \setminus [0,0.125]^d$



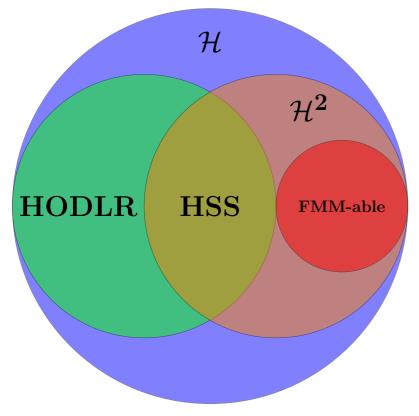
Sample distribution in 3d

Fast direct solvers in action

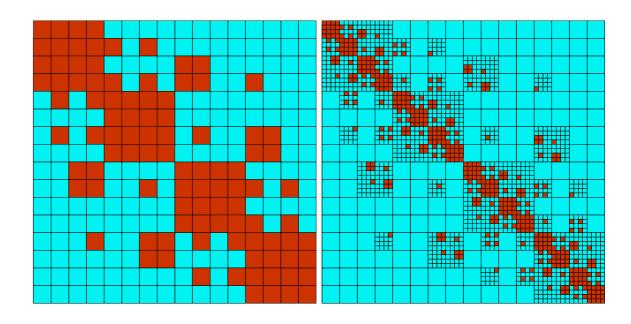
The zoo of matrix factorizations



HODLR/HSS matrices



Butterfly/FFT matrices



 FMM/\mathcal{H}^2 matrices

structure _		Nested basis	
truc		No	Yes
rank s	Strong	HODLR	HSS
	Weak	\mathcal{H}	\mathcal{H}^2
1			

Other applications - Neural networks

A multiscale neural network based on hierarchical nested bases

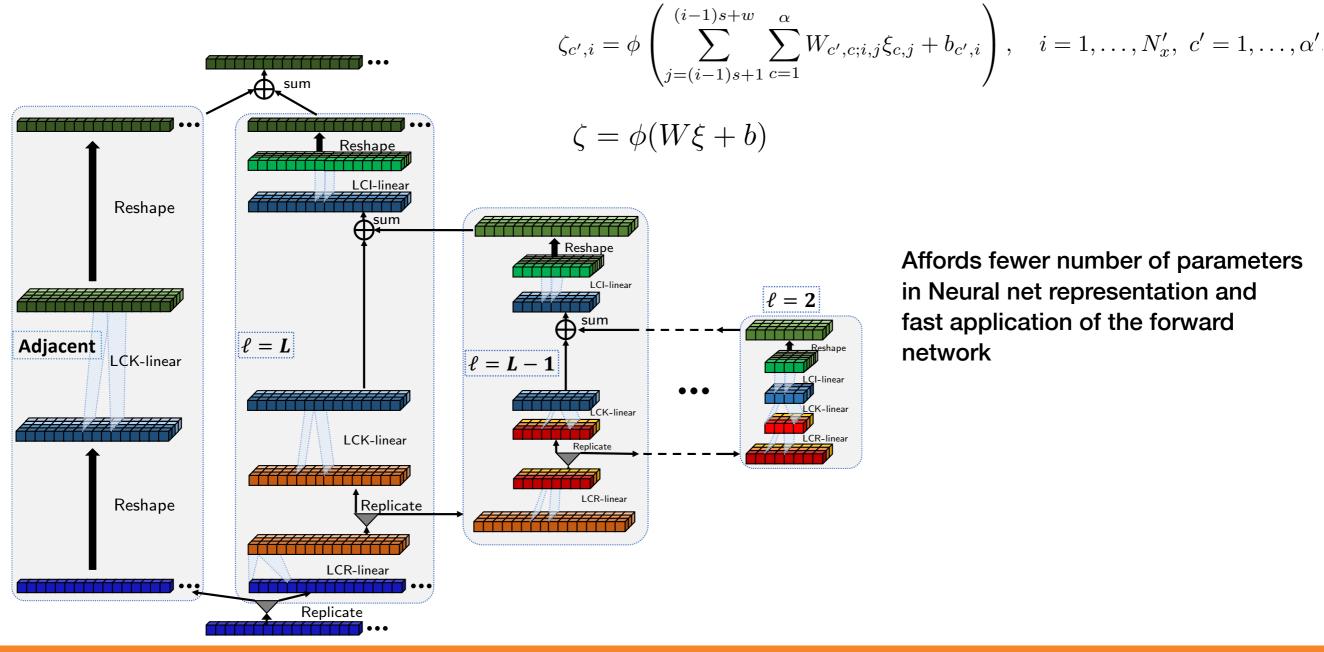
Yuwei Fan^{*}, Jordi Feliu-Fabà[†], Lin Lin[‡], Lexing Ying[§], Leonardo Zepeda-Núñez[¶]

Using \mathcal{H}^2 in layers of locally connected networks

A multiscale neural network based on hierarchical matrices

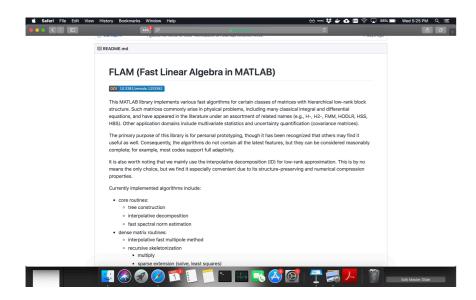
Yuwei Fan, Lin Lin, Lexing Ying, Leonardo Zepeda-Núñez

Using \mathcal{H} in layers of locally connected networks

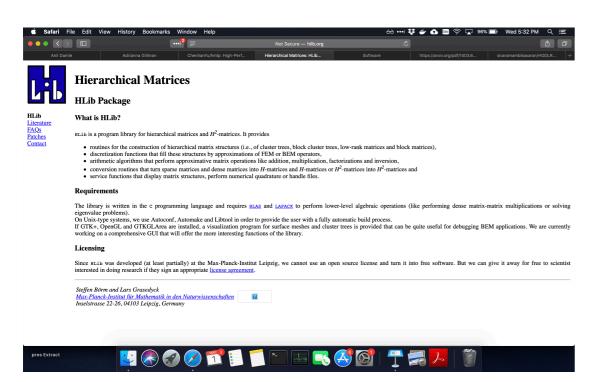


Affords fewer number of parameters in Neural net representation and fast application of the forward network

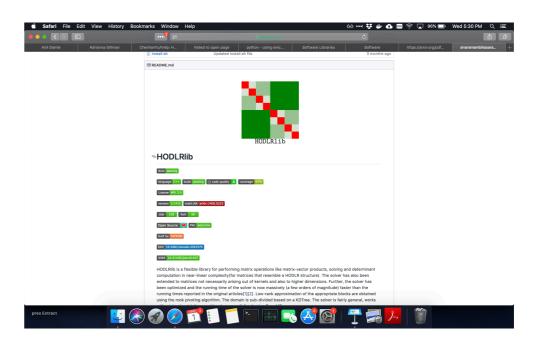
Software



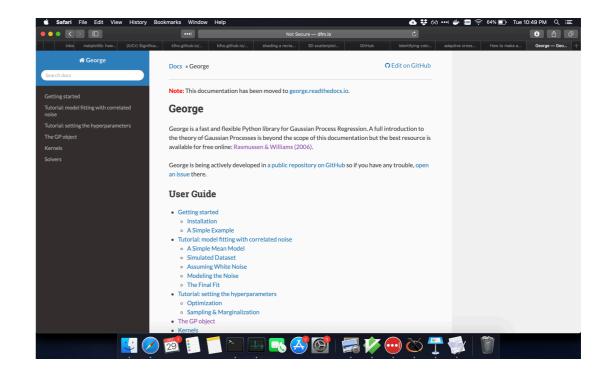
https://github.com/klho/FLAM



http://www.hlib.org

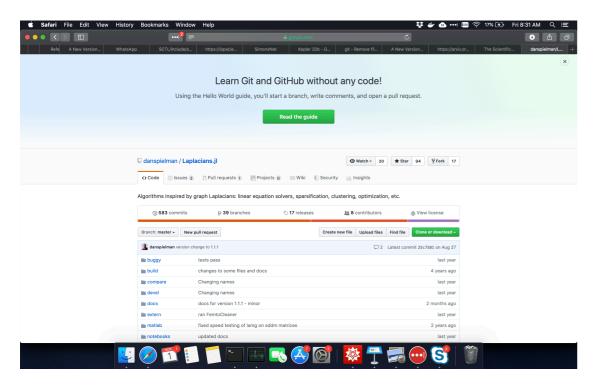


https://github.com/sivaramambikasaran/HODLR

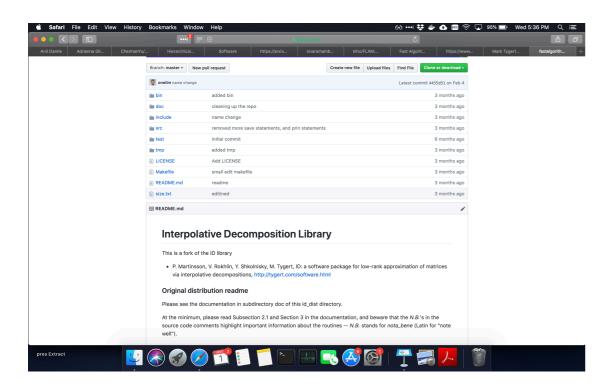


http://dfm.io/george/current/

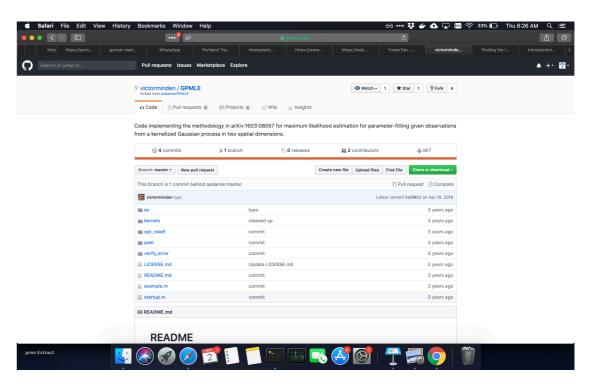
More resources



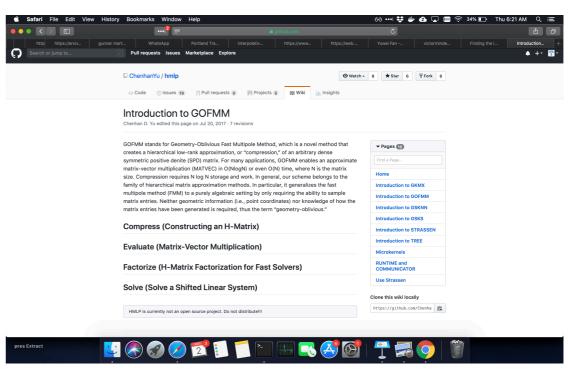
https://github.com/danspielman/Laplacians.jl



https://github.com/fastalgorithms/libid



https://github.com/victorminden/GPMLE



https://github.com/ChenhanYu/hmlp/wiki/ Introduction-to-GOFMM

More resources

- Video lectures by Gunnar https://www.youtube.com/playlist? list=PLPDZ9rclfxyOrlpcu_D1PRcyK-o2iofwW
- Excellent review article on randomized methods for low rank approximations Finding structure with randomness: Probabilistic algorithms for constructing
 approximate matrix decompositions: https://arxiv.org/pdf/0909.4061.pdf
- Some of the illustrations courtesy: Sivaram Ambikasaran, Dan Foreman Mackey, David Hogg, Mike O'Neil, Per-Gunnar Martinsson, Ken Ho, Lesliie Greengard, Lexing Ying, Adrianna Gillman

Even more references

- Ho, Kenneth L., and Leslie Greengard. "A fast direct solver for structured linear systems by recursive skeletonization." SIAM Journal on Scientific Computing 34.5 (2012): A2507-A2532.
- Yu, Chenhan D., et al. "Geometry-oblivious FMM for compressing dense SPD matrices." *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*. ACM, 2017.
- Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W., & O'Neil, M. (2016). Fast direct methods for Gaussian processes. *IEEE transactions on pattern analysis and machine intelligence*, 38(2), 252-265.
- Gillman, A., Young, P. M., & Martinsson, P. G. (2012). A direct solver with O (N) complexity for integral equations on one-dimensional domains. *Frontiers of Mathematics in China*, 7(2), 217-247.
- Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2), 217-288.
- Greengard, L., & Rokhlin, V. (1991). On the numerical solution of two-point boundary value problems. Communications on Pure and Applied Mathematics, 44(4), 419-452.
- Fan, Y., Lin, L., Ying, L., & Zepeda-Núnez, L. (2018). A multiscale neural network based on hierarchical matrices. arXiv preprint arXiv:1807.01883.
- Minden, V., Damle, A., Ho, K. L., & Ying, L. (2017). Fast spatial gaussian process maximum likelihood estimation via skeletonization factorizations. Multiscale Modeling & Simulation, 15(4), 1584-1611.
- Martinsson, P. G., Rokhlin, V., Shkolnisky, Y., & Tygert, M. (2008). ID: A software package for low-rank approximation of matrices via interpolative decompositions, Version 0.2.
- Corona, E., Martinsson, P. G., & Zorin, D. (2015). An O (N) direct solver for integral equations on the plane. *Applied and Computational Harmonic Analysis*, 38(2), 284-317.
- Gimbutas, Z., & Rokhlin, V. (2003). A generalized fast multipole method for nonoscillatory kernels. SIAM Journal on Scientific Computing, 24(3), 796-817.

Not an exhaustive list

Thank you!

Questions?