

Randomized methods for matrix factorizations

Eftychios Pnevmatikakis, CCM November 1, 2019

 $F_{\omega}(\alpha+m)!$ Conference

Basic Matrix Decompositions

Let $A \in \mathbb{C}^{m \times n}$, $(m \ge n \text{ wlog})$.

SVD Decomposition:

$$A = U\Sigma V^*$$

$$U, V$$
 are unitary matrices $(U^*U = I_m, V^*V = I_n)$, $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_{\min(m,n)})$ with $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_{\min(m,n)} \geq 0$.

Basic Matrix Decompositions

Let $A \in \mathbb{C}^{m \times n}$, $(m \ge n \text{ wlog})$.

SVD Decomposition:

$$A = U\Sigma V^*$$

U, V are unitary matrices $(U^*U = I_m, V^*V = I_n)$, $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_{\min(m,n)})$ with $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_{\min(m,n)} \geq 0$.

QR decomposition:

$$A = QR$$

Q unitary, R upper triangular.

Low rank approximations I

Approximate $A \approx B C \text{ with } r < m, n, \text{ often } r \ll m, n. \text{ Optimal solution}$ given by the truncated SVD $U\Sigma_{(r)}V^*$:

$$||A - U\Sigma_{(r)}V^*|| = \sigma_{r+1}$$

Spectral Norm:
$$||A|| = \max_{\mathbf{x} \neq \mathbf{0}} ||A\mathbf{x}|| / ||\mathbf{x}||$$

$$\|A - U\Sigma_{(r)}V^*\|_F = \left(\sum_{i=r+1}^{\min\{m,n\}} \sigma_i\right)^{1/2}$$
 Frobenius Norm: $\|A\|_F = \left(\sum A_{ij}^2\right)^{1/2}$

Frobenius Norm:
$$\|A\|_F = \left(\sum A_{ij}^2\right)^{1/2}$$

Low rank approximations II

- Find directions of maximal variance (PCA).
- Low dimensional embeddings (Marina's talk).
- High dimensional ill conditioned least squares.
- Nearest neighbors.
- Fast algorithms for PDE's (Manas' talk)
- Faster linear algebra: Ax requires $\mathcal{O}(mn)$ calculations for general dense A, whereas BCx would require only $\mathcal{O}((m+n)r)$.

Low rank approximations III

General (deterministic) approaches are very accurate and well understood but in large dimensions complications arise:

- They generally require $\mathcal{O}(mnr)$ work (exceptions when $A\mathbf{x}$ can be evaluated rapidly with o(mn) work).
- They require $\mathcal{O}(r)$ passes over the data which can be inefficient when A is too large to fit in memory.
- Harder to parallelize.

Randomness can help.

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U \Sigma V^*$.

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U \Sigma V^*$.

• Find unitary $m \times r$ matrix Q such that $A \approx QQ^*A$???? work.

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U \Sigma V^*$.

• Find unitary $m \times r$ matrix Q such that $A \approx QQ^*A$

??? work.

• Form $r \times n$ matrix $B = Q^*A$

 $\mathcal{O}(mnr)$ work.

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U \Sigma V^*$.

• Find unitary $m \times r$ matrix Q such that $A \approx QQ^*A$

??? work.

• Form $r \times n$ matrix $B = Q^*A$

 $\mathcal{O}(mnr)$ work.

• Compute SVD of $B: B = \hat{U}\Sigma V^*$

 $\mathcal{O}(nr^2)$ work.

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U \Sigma V^*$.

- Find unitary $m \times r$ matrix Q such that $A \approx QQ^*A$
- Form $r \times n$ matrix $B = Q^*A$
- Compute SVD of $B: B = \hat{U}\Sigma V^*$
- Set $U = Q\hat{U}$

??? work.

 $\mathcal{O}(mnr)$ work.

 $\mathcal{O}(nr^2)$ work.

 $\mathcal{O}(mr^2)$ work.

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U \Sigma V^*$.

- Find unitary $m \times r$ matrix Q such that $A \approx QQ^*A$
- Form $r \times n$ matrix $B = Q^*A$
- Compute SVD of $B: B = \hat{U}\Sigma V^*$
- Set $U = Q\hat{U}$

??? work.

 $\mathcal{O}(mnr)$ work.

 $\mathcal{O}(nr^2)$ work.

 $\mathcal{O}(mr^2)$ work.

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U \Sigma V^*$.

• Find unitary $m \times r$ matrix Q such that $A \approx QQ^*A$

??? work.

• Form $r \times n$ matrix $B = Q^*A$

 $\mathcal{O}(mnr)$ work.

• Compute SVD of $B: B = \hat{U}\Sigma V^*$

 $\mathcal{O}(nr^2)$ work.

• Set $U = Q\hat{U}$

 $\mathcal{O}(mr^2)$ work.

Error depends only on the quality of the range approximation:

$$||A - U\Sigma V^*|| = ||A - Q\hat{U}\Sigma V^*|| = ||A - QB|| = ||A - QQ^*A||.$$

In practice, we form an approximate l = r + s rank matrix ($s \sim 5 - 10$).

Given an $m \times n$ matrix A and a non-negative integer q, find an $m \times l$ orthonormal matrix Q whose range approximates the range of A.

1 Draw a suitable random $n \times I$ matrix Ω .

Given an $m \times n$ matrix A and a non-negative integer q, find an $m \times l$ orthonormal matrix Q whose range approximates the range of A.

- **1** Draw a suitable random $n \times l$ matrix Ω .
- ② Form the matrix $Y = (AA^*)^q A\Omega$.

Given an $m \times n$ matrix A and a non-negative integer q, find an $m \times l$ orthonormal matrix Q whose range approximates the range of A.

- **1** Draw a suitable random $n \times l$ matrix Ω .
- ② Form the matrix $Y = (AA^*)^q A\Omega$.
- **3** Compute the QR factorization of Y: Y = QR.

Given an $m \times n$ matrix A and a non-negative integer q, find an $m \times l$ orthonormal matrix Q whose range approximates the range of A.

- **1** Draw a suitable random $n \times l$ matrix Ω .
- ② Form the matrix $Y = (AA^*)^q A\Omega$.
- **3** Compute the QR factorization of Y: Y = QR.

Given an $m \times n$ matrix A and a non-negative integer q, find an $m \times l$ orthonormal matrix Q whose range approximates the range of A.

- **1** Draw a suitable random $n \times l$ matrix Ω .
- **2** Form the matrix $Y = (AA^*)^q A\Omega$.
- **3** Compute the QR factorization of Y: Y = QR.

If $rank(A) \le I$ then $A = QQ^*A$ with probability 1. Suitable random matrices include:

- Gaussian random matrix. $(\mathcal{O}(mnl))$ for computing $A\Omega$ for general A).
- Subsampled random Fourier transform (SRFT) matrices ($\mathcal{O}(mn\log(l))$) for computing $A\Omega$ for general A).

Full algorithm

- **1** Draw a suitable random $n \times r$ matrix Ω
- **2** Form the matrix $Y = (AA^*)^q A\Omega$
- **6** Compute the QR factorization of Y: Y = QR
- 4 Form $r \times n$ matrix $B = Q^*A$
- **6** Compute SVD of $B: B = \hat{U}\Sigma V^*$
- 6 Set $U = Q\hat{U}$

 $\mathcal{O}(nr)$ work.

 $(2q+1)T_{\mathrm{mult}}$ work.

 $\mathcal{O}(mr^2)$ work.

 $\mathcal{O}(mnr)$ work.

 $\mathcal{O}(nr^2)$ work.

 $\mathcal{O}(mr^2)$ work.

Full algorithm

- **1** Draw a suitable random $n \times r$ matrix Ω
- **2** Form the matrix $Y = (AA^*)^q A\Omega$
- **6** Compute the QR factorization of Y: Y = QR
- 4 Form $r \times n$ matrix $B = Q^*A$
- **5** Compute SVD of *B*: $B = \hat{U}\Sigma V^*$

 $\mathcal{O}(nr)$ work.

 $(2q+1)T_{\text{mult}}$ work.

 $\mathcal{O}(mr^2)$ work.

 $\mathcal{O}(mnr)$ work.

 $\mathcal{O}(nr^2)$ work.

 $\mathcal{O}(mr^2)$ work.

- Overall work may still be $\mathcal{O}(mnr)$ but can be faster.
- Requires (2q + 2) passes over the matrix A. It is possible to perform this task with just one pass.

A numerical example

Performance guarantees

For Gaussian matrices and q power iterations:

$$\mathbb{E}\|A - U\Sigma V^*\| \leq \left[1 + \sqrt{\frac{r}{s-1}} + \frac{e\sqrt{r+s}}{s}\sqrt{\min\{m,n\} - r}\right]^{1/(2q+1)}\sigma_{r+1}$$

- Concentration of measure phenomena ensures error is close to expected value with very high probability.
- Power iteration becomes important for slowly decaying spectra.
- Can drop error to $\sim \sigma_{r+1}$ with $q \sim \log(\min\{m, n\})$. $(q^{1/\log(q)} = e)$
- Similar results for SRFT matrices.

Eigendecomposition of symmetric matrices

For A symmetric/Hermitian:

- 1 Find Q such that $A \approx QQ^*A$
- 3 Calculate $B = V \Lambda V^*$.
- 4 Set U = QV. Then $A \approx U \Lambda U^*$.

Eigendecomposition of symmetric matrices

For A symmetric/Hermitian:

- Find Q such that $A \approx QQ^*A$
- **6** Calculate $B = V \Lambda V^*$.
- 4 Set U = QV. Then $A \approx U \Lambda U^*$.

For A symmetric PSD (Nyström method):

- Find Q such that $A \approx QQ^*A$
- ② Form $B_1 = AQ$ and $B = Q^*B_1$
- 3 Calculate Cholesky decomposition $B = C^*C$
- 4 Form $F = B_1 C^{-1}$
- **6** Compute SVD $F = U\Sigma V^*$ and set $\Lambda = \Sigma^2$. Then $A \approx U\Lambda U^*$.

• Objective: Given $A \in \mathbb{R}^{m \times n}$ and target rank r, find non-negative matrices $B \in \mathbb{R}^{m \times r}$ $C \in \mathbb{R}^{r \times n}$ that solve

$$\min_{B,C>0} \|A - BC\|_F$$

• Objective: Given $A \in \mathbb{R}^{m \times n}$ and target rank r, find non-negative matrices $B \in \mathbb{R}^{m \times r}$ $C \in \mathbb{R}^{r \times n}$ that solve

$$\min_{B,C>0} \|A - BC\|_F$$

Algorithms typically operate in an alternate fashion (Johannes' talk):

$$B_{k+1} = f(A, B_k, C_k)$$

 $C_{k+1} = g(A, B_{k+1}, C_k)$

• Objective: Given $A \in \mathbb{R}^{m \times n}$ and target rank r, find non-negative matrices $B \in \mathbb{R}^{m \times r}$ $C \in \mathbb{R}^{r \times n}$ that solve

$$\min_{B,C>0} \|A - BC\|_F$$

Algorithms typically operate in an alternate fashion (Johannes' talk):

$$B_{k+1} = f(A, B_k, C_k)$$

 $C_{k+1} = g(A, B_{k+1}, C_k)$

• Approximate $A \approx Q_l Q_l^* A$ and $A^* \approx Q_r Q_r^* A^*$ $(Q_l \in \mathbb{R}^{m \times (r+s)}, Q_r \in \mathbb{R}^{n \times (r+s)})$

• Objective: Given $A \in \mathbb{R}^{m \times n}$ and target rank r, find non-negative matrices $B \in \mathbb{R}^{m \times r}$ $C \in \mathbb{R}^{r \times n}$ that solve

$$\min_{B,C>0} \|A - BC\|_F$$

Algorithms typically operate in an alternate fashion (Johannes' talk):

$$B_{k+1} = f(A, B_k, C_k)$$

 $C_{k+1} = g(A, B_{k+1}, C_k)$

- Approximate $A \approx Q_l Q_l^* A$ and $A^* \approx Q_r Q_r^* A^*$ $(Q_l \in \mathbb{R}^{m \times (r+s)}, Q_r \in \mathbb{R}^{n \times (r+s)})$
- Proceed in with the same iterative scheme (but in lower dim space):

$$B_{k+1} = f(AQ_r, B_k, C_k Q_r)$$

$$C_{k+1} = g(Q_l^* A, Q_l^* B_{k+1}, C_k)$$

Application to calcium imaging dendritic data

Instead of operating with a $512^2 \times 5000$ matrix operate with two much smaller matrices $512^2 \times r$, $5000 \times r$ with $r \sim 100$. 10-100x speedup per iteration (similar convergence characteristics).

References

- Halko, N., Martinsson, P. G., and Tropp, J. A. (2011). Finding structure
 with randomness: Probabilistic algorithms for constructing approximate
 matrix decompositions. SIAM review, 53(2), 217-288. (material covered
 here)
- Woodruff, D. P. (2014). Sketching as a tool for numerical linear algebra.
 Foundations and Trends in Theoretical Computer Science, 10(1?2),
 1-157. (Matrix sketching not covered)
- Tepper, M., and Sapiro, G. (2016). Compressed nonnegative matrix factorization is fast and accurate. IEEE Transactions on Signal Processing, 64(9), 2269-2283. (NMF application)

One pass algorithms

It is possible to perform this task with a single pass (important when matrix does not fit in memory). Assume A is symmetric $n \times n$

- \bullet Generate random matrix Ω
- **2** Compute $Y = A\Omega$
- **3** Find orthonormal Q such that $Y \approx QQ^*Y$.
- 4 Solve $Q^*Y = T(Q^*\Omega)$ with respect to T.
- **6** Perform eigenvalue decomposition: $T = \hat{U}D\hat{U}^*$.
- **6** Form $U = Q\hat{U}$
- **7** Then $A ≈ UDU^*$.

