Randomized methods for matrix factorizations

Eftychios Pnevmatikakis, CCM
November 1, 2019

$F_{\omega}(\alpha + m)!$ Conference
Basic Matrix Decompositions

Let $A \in \mathbb{C}^{m \times n}$, ($m \geq n$ wlog).

- SVD Decomposition:

 $$A = U \Sigma V^*$$

 U, V are unitary matrices ($U^* U = I_m, V^* V = I_n$),

 $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_{\min(m,n)})$ with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0$.

Basic Matrix Decompositions

Let $A \in \mathbb{C}^{m \times n}, (m \geq n \text{ wlog}).$

- **SVD Decomposition:**
 \[A = U\Sigma V^* \]
 U, V are unitary matrices ($U^* U = I_m, V^* V = I_n$),
 $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_{\min(m,n)})$ with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0$.

- **QR decomposition:**
 \[A = QR \]
 Q unitary, R upper triangular.
Approximate $A \approx B \ C$ with $r < m, n$, often $r \ll m, n$. Optimal solution given by the truncated SVD $U \Sigma (r) V^*$:

$$\| A - U \Sigma (r) V^* \| = \sigma_{r+1}$$

Spectral Norm: $\| A \| = \max_{x \neq 0} \| Ax \| / \| x \|$

$$\| A - U \Sigma (r) V^* \|_F = \left(\sum_{i=r+1}^{\min\{m,n\}} \sigma_i \right)^{1/2}$$

Frobenius Norm: $\| A \|_F = \left(\sum A_{ij}^2 \right)^{1/2}$
Low rank approximations II

- Find directions of maximal variance (PCA).
- Low dimensional embeddings (Marina’s talk).
- High dimensional ill conditioned least squares.
- Nearest neighbors.
- Fast algorithms for PDE’s (Manas’ talk)
- Faster linear algebra: Ax requires $O(mn)$ calculations for general dense A, whereas BCx would require only $O((m + n)r)$.
Low rank approximations III

General (deterministic) approaches are very accurate and well understood but in large dimensions complications arise:

• They generally require $O(mnr)$ work (exceptions when Ax can be evaluated rapidly with $o(mn)$ work).

• They require $O(r)$ passes over the data which can be inefficient when A is too large to fit in memory.

• Harder to parallelize.

Randomness can help.
A general approach for low rank approximation

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U\Sigma V^*$.

Error depends only on the quality of the range approximation:

$$
\|A - U\Sigma V^*\| = \|A - Q\hat{U}\Sigma V^*\| = \|A - QB\| = \|A - QQ^*A\|.
$$

In practice, we form an approximate $l = r + s$ rank matrix ($s \sim 5 - 10$).
A general approach for low rank approximation

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U\Sigma V^*$.

- Find unitary $m \times r$ matrix Q such that $A \approx QQ^*A$??? work.
A general approach for low rank approximation

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U\Sigma V^*$.

- Find unitary $m \times r$ matrix Q such that $A \approx QQ^*A$??? work.
- Form $r \times n$ matrix $B = Q^*A$ $\mathcal{O}(mnr)$ work.
A general approach for low rank approximation

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U\Sigma V^*$.

- Find unitary $m \times r$ matrix Q such that $A \approx QQ^*A$??? work.
- Form $r \times n$ matrix $B = Q^*A$ $\mathcal{O}(mnr)$ work.
- Compute SVD of B: $B = \hat{U}\Sigma V^*$ $\mathcal{O}(nr^2)$ work.
A general approach for low rank approximation

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U\Sigma V^*$.

- Find unitary $m \times r$ matrix Q such that $A \approx QQ^*A$??? work.
- Form $r \times n$ matrix $B = Q^*A$ $O(mnr)$ work.
- Compute SVD of B: $B = \hat{U}\Sigma V^*$ $O(nr^2)$ work.
- Set $U = Q\hat{U}$ $O(mr^2)$ work.
A general approach for low rank approximation

Given an \(m \times n \) matrix \(A \), compute an approximate rank-\(r \) SVD \(A \approx U\Sigma V^* \).

- Find unitary \(m \times r \) matrix \(Q \) such that \(A \approx QQ^*A \)

- Form \(r \times n \) matrix \(B = Q^*A \)
 \(\mathcal{O}(mnr) \) work.

- Compute SVD of \(B \): \(B = \hat{U}\Sigma V^* \)
 \(\mathcal{O}(nr^2) \) work.

- Set \(U = Q\hat{U} \)
 \(\mathcal{O}(mr^2) \) work.
A general approach for low rank approximation

Given an $m \times n$ matrix A, compute an approximate rank-r SVD $A \approx U\Sigma V^*$.

- Find unitary $m \times r$ matrix Q such that $A \approx QQ^*A$
- Form $r \times n$ matrix $B = Q^*A$
- Compute SVD of B: $B = \hat{U}\Sigma V^*$
- Set $U = Q\hat{U}$

Error depends only on the quality of the range approximation:

$$\left\| A - U\Sigma V^* \right\| = \left\| A - Q\hat{U}\Sigma V^* \right\| = \left\| A - QB \right\| = \left\| A - QQ^*A \right\|.$$

In practice, we form an approximate $l = r + s$ rank matrix ($s \sim 5 - 10$).
Randomized range finding

Given an $m \times n$ matrix A and a non-negative integer q, find an $m \times l$ orthonormal matrix Q whose range approximates the range of A.

1. Draw a suitable random $n \times l$ matrix Ω.

2. Form the matrix $Y = (AA^*)^q A \Omega$.

3. Compute the QR factorization of Y: $Y = QR$.

If $\text{rank}(A) \leq l$ then $A = QQ^*$ with probability 1. Suitable random matrices include:

- Gaussian random matrix. ($O(mnl)$ for computing $A \Omega$ for general A).
- Subsampled random Fourier transform (SRFT) matrices ($O(mnl \log(l))$ for computing $A \Omega$ for general A).
Randomized range finding

Given an $m \times n$ matrix A and a non-negative integer q, find an $m \times l$ orthonormal matrix Q whose range approximates the range of A.

1. Draw a suitable random $n \times l$ matrix Ω.
2. Form the matrix $Y = (AA^*)^q A\Omega$.
Randomized range finding

Given an $m \times n$ matrix A and a non-negative integer q, find an $m \times l$ orthonormal matrix Q whose range approximates the range of A.

1. Draw a suitable random $n \times l$ matrix Ω.
2. Form the matrix $Y = (AA^*)^q A\Omega$.
3. Compute the QR factorization of Y: $Y = QR$.
Randomized range finding

Given an $m \times n$ matrix A and a non-negative integer q, find an $m \times l$ orthonormal matrix Q whose range approximates the range of A.

1. Draw a suitable random $n \times l$ matrix Ω.
2. Form the matrix $Y = (AA^*)^q A\Omega$.
3. Compute the QR factorization of Y: $Y = QR$.
Randomized range finding

Given an \(m \times n \) matrix \(A \) and a non-negative integer \(q \), find an \(m \times l \) orthonormal matrix \(Q \) whose range approximates the range of \(A \).

1. Draw a suitable random \(n \times l \) matrix \(\Omega \).
2. Form the matrix \(Y = (AA^*)^qA\Omega \).
3. Compute the QR factorization of \(Y \): \(Y = QR \).

If \(\text{rank}(A) \leq l \) then \(A = QQ^*A \) with probability 1. Suitable random matrices include:

- Gaussian random matrix. (\(\mathcal{O}(mnl) \) for computing \(A\Omega \) for general \(A \)).
- Subsampled random Fourier transform (SRFT) matrices (\(\mathcal{O}(mn \log(l)) \) for computing \(A\Omega \) for general \(A \)).
Full algorithm

1. Draw a suitable random $n \times r$ matrix Ω \hspace{1cm} $O(nr)$ work.
2. Form the matrix $Y = (AA^*)^q A \Omega$ \hspace{1cm} $(2q + 1)T_{\text{mult}}$ work.
3. Compute the QR factorization of Y: $Y = QR$ \hspace{1cm} $O(mr^2)$ work.
4. Form $r \times n$ matrix $B = Q^* A$ \hspace{1cm} $O(mnr)$ work.
5. Compute SVD of B: $B = \hat{U}\Sigma V^*$ \hspace{1cm} $O(nr^2)$ work.
6. Set $U = Q \hat{U}$ \hspace{1cm} $O(mr^2)$ work.
Full algorithm

1. Draw a suitable random $n \times r$ matrix Ω \hspace{1cm} $O(nr)$ work.
2. Form the matrix $Y = (AA^*)^q A \Omega$ \hspace{1cm} $(2q + 1) T_{\text{mult}}$ work.
3. Compute the QR factorization of Y: $Y = QR$ \hspace{1cm} $O(mr^2)$ work.
4. Form $r \times n$ matrix $B = Q^* A$ \hspace{1cm} $O(mnr)$ work.
5. Compute SVD of B: $B = \hat{U} \Sigma V^*$ \hspace{1cm} $O(nr^2)$ work.
6. Set $U = Q \hat{U}$ \hspace{1cm} $O(mr^2)$ work.

- Overall work may still be $O(mnr)$ but can be faster.
- Requires $(2q + 2)$ passes over the matrix A. It is possible to perform this task with just one pass.
A numerical example

$n = 1024$

$n = 2048$

$n = 4096$

Acceleration factor

k

SRFT speedup

Gauss speedup

Full SVD
Performance guarantees

• For Gaussian matrices and q power iterations:

$$\mathbb{E}\|A - U\Sigma V^*\| \leq \left[1 + \sqrt{\frac{r}{s-1}} + \frac{e\sqrt{r+s}}{s} \sqrt{\min\{m,n\} - r} \right]^{1/(2q+1)} \sigma_{r+1}$$

• Concentration of measure phenomena ensures error is close to expected value with very high probability.

• Power iteration becomes important for slowly decaying spectra.

• Can drop error to $\sim \sigma_{r+1}$ with $q \sim \log(\min\{m, n\})$. ($q^{1/\log(q)} = e$)

• Similar results for SRFT matrices.
Eigendecomposition of symmetric matrices

For A symmetric/Hermitian:

1. Find Q such that $A \approx QQ^* A$
2. Form $B = Q^* AQ$
3. Calculate $B = V \Lambda V^*$.
4. Set $U = QV$. Then $A \approx U \Lambda U^*$.
Eigendecomposition of symmetric matrices

For A symmetric/Hermitian:

1. Find Q such that $A \approx QQ^* A$
2. Form $B = Q^* A Q$
3. Calculate $B = V \Lambda V^*$.
4. Set $U = Q V$. Then $A \approx U \Lambda U^*$.

For A symmetric PSD (Nyström method):

1. Find Q such that $A \approx QQ^* A$
2. Form $B_1 = AQ$ and $B = Q^* B_1$
3. Calculate Cholesky decomposition $B = C^* C$
4. Form $F = B_1 C^{-1}$
5. Compute SVD $F = U \Sigma V^*$ and set $\Lambda = \Sigma^2$. Then $A \approx U \Lambda U^*$.
Application to high dimensional NMF

- Objective: Given $A \in \mathbb{R}^{m \times n}$ and target rank r, find non-negative matrices $B \in \mathbb{R}^{m \times r}$, $C \in \mathbb{R}^{r \times n}$ that solve

$$\min_{B,C \geq 0} \|A - BC\|_F$$
Application to high dimensional NMF

- Objective: Given $A \in \mathbb{R}^{m \times n}$ and target rank r, find non-negative matrices $B \in \mathbb{R}^{m \times r}$, $C \in \mathbb{R}^{r \times n}$ that solve

$$\min_{B, C \geq 0} \|A - BC\|_F$$

- Algorithms typically operate in an alternate fashion (Johannes’ talk):

$$B_{k+1} = f(A, B_k, C_k)$$
$$C_{k+1} = g(A, B_{k+1}, C_k)$$
Application to high dimensional NMF

• Objective: Given \(A \in \mathbb{R}^{m \times n} \) and target rank \(r \), find non-negative matrices \(B \in \mathbb{R}^{m \times r} \) \(C \in \mathbb{R}^{r \times n} \) that solve

\[
\min_{B, C \geq 0} \| A - BC \|_F
\]

• Algorithms typically operate in an alternate fashion (Johannes’ talk):

\[
B_{k+1} = f(A, B_k, C_k)
\]
\[
C_{k+1} = g(A, B_{k+1}, C_k)
\]

• Approximate \(A \approx Q_l Q_l^* A \) and \(A^* \approx Q_r Q_r^* A^* \)

\(Q_l \in \mathbb{R}^{m \times (r+s)} \), \(Q_r \in \mathbb{R}^{n \times (r+s)} \)
Application to high dimensional NMF

- **Objective:** Given \(A \in \mathbb{R}^{m \times n} \) and target rank \(r \), find non-negative matrices \(B \in \mathbb{R}^{m \times r} \) \(C \in \mathbb{R}^{r \times n} \) that solve

\[
\min_{B, C \geq 0} \|A - BC\|_F
\]

- Algorithms typically operate in an alternate fashion (Johannes’ talk):

\[
B_{k+1} = f(A, B_k, C_k)
\]
\[
C_{k+1} = g(A, B_{k+1}, C_k)
\]

- Approximate \(A \approx Q_l Q_l^* A \) and \(A^* \approx Q_r Q_r^* A^* \)

\((Q_l \in \mathbb{R}^{m \times (r+s)}, Q_r \in \mathbb{R}^{n \times (r+s)})\)

- Proceed in with the same iterative scheme (but in lower dim space):

\[
B_{k+1} = f(AQ_r, B_k, C_k Q_r)
\]
\[
C_{k+1} = g(Q_l^* A, Q_l^* B_{k+1}, C_k)
\]
Application to calcium imaging dendritic data

Instead of operating with a $512^2 \times 5000$ matrix operate with two much smaller matrices $512^2 \times r$, $5000 \times r$ with $r \sim 100$. 10-100x speedup per iteration (similar convergence characteristics).
References

• Tepper, M., and Sapiro, G. (2016). Compressed nonnegative matrix factorization is fast and accurate. IEEE Transactions on Signal Processing, 64(9), 2269-2283. (NMF application)
One pass algorithms

It is possible to perform this task with a single pass (important when matrix does not fit in memory). Assume A is symmetric $n \times n$

1. Generate random matrix Ω
2. Compute $Y = A\Omega$
3. Find orthonormal Q such that $Y \approx QQ^*Y$.
4. Solve $Q^*Y = T(Q^*\Omega)$ with respect to T.
5. Perform eigenvalue decomposition: $T = \hat{U}D\hat{U}^*$.
6. Form $U = Q\hat{U}$
7. Then $A \approx UDU^*$.