Flatiron Internal Conference: Flatiron-wide Algorithms and Mathematics

\[F_\omega(\alpha + m)! \]

Report of Contributions
Optimization landscapes - a gentle multi-disciplinary introduction to optimization

Wednesday, 30 October 2019 09:10 (1 hour)

In this lecture, I will give an introduction to the field of continuous optimization. I will emphasize instances of optimization problems that appear in biology and physics through the concept of optimization landscapes. I will review sampling-based approaches as well as gradient-based methods and focus on concepts rather than derivations of specific algorithms. The lecture is intended to set the stage for the latter focused talks, and will provide links to other topics covered in the FWAM conference.

Presenter: MUELLER, Christian L. (CCM / LMU)
Session Classification: Optimization Introductory Lecture 1
Tutorial: Optimization for Machine Learning

Wednesday, 30 October 2019 10:20 (1 hour)

A 1-hour version of the MLSS Buenos Aires tutorial notes, focusing on parts 1 and 4, available at the links below.

Presenter: HAZAN, Elad (Princeton U)
Session Classification: Optimization Introductory Lecture 2
A practical introduction to adjoint methods

Wednesday, 30 October 2019 11:40 (25 minutes)

Presenter: GREENGARD, Leslie (CCM / NYU)
Session Classification: Optimization Short Talk
Research Applications of Optimization: Data-Driven Spectroscopy

Wednesday, 30 October 2019 12:05 (25 minutes)

Presenter: BEDELL, Megan (CCA)

Session Classification: Optimization Short Talk
Introduction to interpolation, integration and spectral methods

Wednesday, 30 October 2019 14:00 (1 hour)

I overview key concepts and practical methods for efficient and accurate numerical function approximation, integration and differentiation. This is the basis for spectral and other ODE/PDE solvers coming up in the next talk. I will teach concepts such as convergence rate, local/global, adaptivity, rounding error, polynomial and Fourier bases. The focus is on 1D, with pointers to higher-dimensional methods and codes.

Lecture notes (see Lecture I) and codes for demo figures at:
https://github.com/ahbarnett/fwam-numpde

Presenter: BARNETT, Alex (CCM)

Session Classification: Function Approximation and Differential Equations Introductory Lecture
Overview of various methods to solve differential equations

Wednesday, 30 October 2019 15:10 (30 minutes)

We overview various numerical methods to solve ODEs and PDEs.

For source of notes see: https://github.com/ahbarnett/fwam-numpde

Presenter: BURNS, Keaton (MIT / CCA)
Session Classification: Function Approximation and Differential Equations Introductory Lecture
Contribution ID: 13

Type: not specified

PDEs: The long and the short.

Wednesday, 30 October 2019 16:00 (25 minutes)

Presenter: SHELLEY, Michael (CCB)

Session Classification: Function Approximation and Differential Equations Equations Short Talk
Introduction to Integral Equation Methods

Wednesday, 30 October 2019 16:25 (25 minutes)

Presenter: WANG, Jun (CCM)

Session Classification: Function Approximation and Differential Equations Equations Short Talk
Contribution ID: 15

Type: not specified

Wavelets

Wednesday, 30 October 2019 16:50 (25 minutes)

Presenter: ANDÉN, Joakim (CCM)

Session Classification: Function Approximation and Differential Equations Equations Short Talk
Introduction to Markov chain Monte Carlo

Thursday, 31 October 2019 09:00 (45 minutes)

Presenter: FOREMAN-MACKEY, Dan (CCA)
Session Classification: Sampling Introductory Lecture
Scalable Bayesian Inference.

Thursday, 31 October 2019 09:55 (45 minutes)

In this short tutorial, I will review variational inference (VI), a method to approximate posterior probability distributions through optimization. VI became popular as it provides faster convergence than more traditional sampling methods.

This tutorial aims to provide both an introduction and an overview of recent developments. First, I will provide a review of variational inference. Second, I describe some popular advancements such as stochastic variational inference, and variational autoencoders. During the talk, I will establish some connections with mathematical problems in different centers at Flatiron.

Presenter: GABITTO, Mariano (CCB)

Session Classification: Sampling Introductory Lecture
The quantum-ness in quantum Monte Carlo: mathematical and algorithmic implications

Thursday, 31 October 2019 11:00 (40 minutes)

Presenter: Prof. ZHANG, Shiwei (CCQ)
Session Classification: Sampling Short Talk
Hierarchical Modeling and Stellar Velocities

Thursday, 31 October 2019 11:50 (20 minutes)

An introduction to Bayesian hierarchical modeling, with an example from my own research modeling repeated velocity measurements of distant stars in the Milky Way.

Presenter: CUNNINGHAM, Emily (CCA)
Session Classification: Sampling Short Talk
Introduction to Deep Learning

Thursday, 31 October 2019 14:00 (45 minutes)

A Deep Learning 101 to get familiar with machine/deep learning principles, neural networks, back-propagation, convolution nets and representation learning.

Presenter: CONTARDO, Gabriella (CCA)
Session Classification: Deep Learning Introductory Lecture
Introduction to Deep Learning

Thursday, 31 October 2019 14:55 (45 minutes)

We will introduce state of the art deep learning methods and showcase some of its applications to astrophysical challenges.

Presenter: HO, Shirley (CCA)

Session Classification: Deep Learning Introductory Lecture
Deep Generative Modeling for Statistical and Quantum Physics

Thursday, 31 October 2019 16:25 (25 minutes)

Presenter: CARLEO, Giuseppe (CCQ)
Session Classification: Deep Learning Short Talks
Although traditional artificial neural networks were inspired by the brain they resemble biological neural networks only superficially. Successful machine learning algorithms like backpropagation violate fundamental biophysical observations suggesting that the brain employs other algorithms to analyze high-dimensional datasets streamed by our sensory organs. We have been developing neuroscience-based machine learning by deriving algorithms and neural networks from objective functions based on the principle of similarity preservation. Similarity-based neural networks rely exclusively on biologically plausible local learning rules and solve important unsupervised learning tasks such as dimensionality reduction, clustering and manifold learning. In addition, to modeling biological networks, similarity-based algorithms are competitive for Big Data applications. For further information please see http://www.offconvex.org/2018/12/03/MityaNN2/

Presenter: CHKLOVSKI, Mitya (CCB)

Session Classification: Deep Learning Short Talks
Uncertainty Estimation with Neural Networks

Thursday, 31 October 2019 16:00 (25 minutes)

Presenter: LEVASSEUR, Laurence (CCA / U. de Montreal)

Session Classification: Deep Learning Short Talks
In this talk, I will discuss what hierarchically structured matrices are, where they occur in practice, and present algorithms for factorizing these structured matrices. I will demonstrate how the factorization enables subsequent matrix operations (applying the matrix, computing its inverse, and its determinant) in linear CPU time.

Presenter: RACHH, Manas (CCM)

Session Classification: Dimension Reduction and Factorization Introductory Lecture
Randomized linear algebra and matrix approximation

Friday, 1 November 2019 09:15 (25 minutes)

The goal of this talk is to show how probabilistic methods can be used to accelerate standard matrix factorizations (e.g. SVD) with provable characteristics in terms of speed and accuracy.

Presenter: PNEVMATIKAKIS, Eftychios (CCM)

Session Classification: Dimension Reduction and Factorization Short Talk
Spectral Clustering and Dimensionality Reduction

Friday, 1 November 2019 09:40 (25 minutes)

Presenter: SPIVAK, Marina (CCM)

Session Classification: Dimension Reduction and Factorization Short Talk
Clustering in low dimensions

Friday, 1 November 2019 10:05 (25 minutes)

I will focus on clustering data points in low dimensions (mostly 2d) and provide an overview of some popular clustering algorithms.

The accompanying live notebook is linked from my homepage: https://users.flatironinstitute.org/~magland

Presenter: MAGLAND, Jeremy (CCM)
Session Classification: Dimension Reduction and Factorization Short Talk
The why and how of nonnegative matrix factorization

Friday, 1 November 2019 11:35 (25 minutes)

Nonnegative matrix factorization (NMF) has become a widely used tool for the analysis of high-dimensional data as it automatically extracts sparse and meaningful features from a set of nonnegative data vectors. I first illustrate this property of NMF on some applications. Then I address the problem of solving NMF, which is NP-hard in general, and review some standard NMF algorithms. Finally, I briefly describe an online NMF algorithm, which scales up gracefully to large data sets.

Presenter: FRIEDRICH, Johannes (CCB)

Session Classification: Dimension Reduction and Factorization Short Talk
Introduction to Tensor Network Methods

Friday, 1 November 2019 12:00 (20 minutes)

Tensor network methods are a family of variational algorithms used to simulate many body quantum systems in a variety of situations. With some brief motivation from physics, I’ll explain why anyone would want to use these methods, why it is that they are so effective for certain classes of problems, and some extensions to other fields like machine learning.

Presenter: HYATT, Katharine (CCQ)
Session Classification: Dimension Reduction and Factorization Short Talk