Pseudogap and Fermi surface topology in doped Mott insulators

Michel Ferrero
Ecole Polytechnique and Collège de France

Quantum Matter: Computation Meets Experiments
Aspen Center for Physics - March 9, 2020

Strongly-correlated materials and pseudogap physics

- Strongly-correlated systems have rich phase diagrams
- Example: cuprate superconductors
- The pseudogap region:
- Nodal / antinodal differentiation
- Loss of spectral weight at the antinode
- Open questions:
- Mechanism of the pseudogap?
- Role of Mott insulator?
- How generic is the pseudogap?
- Good or bad for superconductivity?
- Minimal model: 2D Hubbard model

Collaborators

Ecole Polytechnique
Collège de France
Sun Yat-sen University
Flatiron Institute

Wei Wu

Fedor Simkovic
Riccardo Rossi
Antoine Georges
King's College
Evgeny Kozik
Harvard University
Mathias Scheurer Shubhayu Chatterjee Subir Sachdev

Many discussions with
L. Taillefer,
N. Doiron-Leyraud,
O. Cyr-Choinière, I. Paul, A. Sacuto, ...

Numerical investigation of Hubbard model: Dynamical cluster approximation Diagrammatic Monte Carlo

Dynamical cluster approximation

- Dynamical mean-field theory

- Dynamical cluster approximation (DCA)

In DCA, self-energy is patchwise constant
Civelli, MF, Georges, Gull, Haule, Jarrell, Katsnelson, Kotliar, Lichtenstein, Maier, Millis, Parcollet, Sordi, Tremblay, ...

Diagrammatic Monte Carlo

- Consider the Hubbard model on an infinite lattice at equilibrium (imaginary time)
- Write a perturbation series in U for the physical quantity of interest

$$
\mathcal{A}=\sum_{n=0}^{\infty} a_{n} U^{n} \longleftarrow \begin{aligned}
& \text { e.g. density, double occupation, } \\
& \text { Green's function, } \ldots
\end{aligned}
$$

- From a diagrammatic point of view, e.g.

Only connected diagrams contribute to physical intensive quantities

- The series for \mathcal{A} can have a finite convergence radius (poles in complex plane)
- Stochastic approach: compute a_{n} by Monte Carlo
- Two challenges

1. Fermionic sign problem \rightarrow difficult to get many coefficients
$n(U)$ in the Hubbard atom

$\operatorname{Re} U$
2. Resumming the series \rightarrow analytical structure in complex U plane?

Challenge 1: Compute series coefficients

- Series have natural representation (e.g. connected diagrams)
- Original algorithm (DiagMC): stochastically sample topologies ($\approx 6-7$ orders)
- Sign problem has two origins:
- Integration over internal variables

- Alternating sign between different topologies
- Reduce sign problem: Sum topologies with the same set of internal vertices V
- Direct approach: huge computational effort (factorial number of diagrams)!
- CDet: Can be done in exponential time, 3^{n} or $n^{2} 2^{n}$, using determinants (disconnected diagrams removed recursively)

Other approaches:

A. Taheridehkordi et al., arXiv (2019)
K. Chen and K. Haule, Nat. Comm. (2019)
M. Maček et al., arXiv (2020)
R. Rossi, PRL (2016)
A. Moutenet et al., PRB (2018); Šimkovic and Kozik, PRB (2019)

Challenge 2: Resummation of the series

- Series convergence controlled by structure in complex plane
- How do we evaluate the series beyond its convergence radius?
- Approach 1: Conformal maps, Padé approximants, ...

$\operatorname{Re} U$
- The counter terms can still be computed with determinants: R. Rossi, F. Šimkovic, Renormalized determinant approach (RDet)
M. Ferrero, arXiv (2020)
- Allows to reach much lower temperatures in Hubbard model
R. Profumo et al., PRB (2015)
W. Wu et al., PRB (2017)
F. Šimkovic et al., PRB (2019)
C. Bertrand et al., PRX (2019)

Existence of pseudogaps in the Hubbard model

Half-filled Hubbard model

- Exact solutions in the weak- to intermediate-coupling regime
- Two crossovers:
- High-temperature incoherent \rightarrow Fermi liquid
- Fermi liquid \rightarrow pseudogap (long-range AF correlation)
- Limitation: Resummation becomes very difficult in pseudogap regime despite absence of a true phase transition

F. Šimkovic et al., PRL (2020)
A. Kim et al., PRL (2020)
T. Schäfer et al., in preparation (2020)

Pseudogap in hole-doped Hubbard model

- With the diagMC algorithm, converged results for

$$
U=5.6 t \quad t^{\prime}=-0.3 t \quad T=0.2 t \quad \delta \simeq 4 \%
$$

- Top of pseudogap region
- Clear nodal / antinodal differentiation
- Antinode hotter than hotspot \neq weak-coupling

Pseudogap in hole-doped Hubbard model

- We can now reach temperatures that are twice as low

- However, there is only a weak reinforcement of the nodal / antinodal differentation
- Larger value of the interaction U?

obtained from RDet

Origin of the pseudogap

Origin of the pseudogap: fluctuation diagnostics

- Fluctuation analysis
O. Gunnarson, T. Schäfer, et al., PRL (2015)

$$
\Sigma(K)=\sum_{q} \Sigma_{X}^{q}(K)+\frac{U n}{2}
$$

- Distribution of momenta gives info about nature
 of scattering
- Spin, charge and pairing representations
- Charge and pairing featureless
- Spin: Fermi surface scattering at node, commensurate at antinode
- From spin susceptibility: $\xi \simeq 1.5$
- Pseudogap due to short-range, antiferromagnetic correlations

Origin of the pseudogap: pole in self-energy

- Systematic 8-site DCA calculations

$$
\mathcal{H}=\sum_{i j \sigma} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

$$
t^{\prime}>0 \quad t^{\prime}<0
$$

- Asymmetry of pole changes Fermi surface topology

$$
\begin{aligned}
& \operatorname{Re} \Sigma_{K}(\omega=0)=\frac{1}{\pi} \int_{0^{+}}^{\infty} \frac{\operatorname{Im} \Sigma_{K}\left(\omega^{\prime}\right)-\operatorname{Im} \Sigma\left(-\omega^{\prime}\right)}{\omega^{\prime}} d \omega^{\prime} \\
& \tilde{\epsilon}_{(\pi, 0)}=\epsilon_{(\pi, 0)}-\mu+\operatorname{Re} \Sigma_{(\pi, 0)}(\omega=0)
\end{aligned}
$$

renormalized dispersion

Rapid crossover between weak and strong coupling

Entering the strong-coupling regime

- The renormalized dispersion changes very abruptly at $U \simeq 5.5$

Fermi surface topology and pseudogap

Fermi surface topology and pseudogap

- Pole in self-energy \rightarrow Fermi surface strongly modified by interactions
- The pseudogap only exists on hole-like Fermi surfaces!
- Compatible with experimental body on cuprates
S. Benhabib et al, PRL (2015); A. Kaminski et al., PRL (2015)
C.E. Matt et al., PRB (2015); T. Yoshida et al., PRB (2006)
S. Badoux et al., Nature (2016)

$T \rightarrow 0$ extrapolation

Self-energy pole and the van Hove singularity

- Red line: pole at zero energy in the antinodal self-energy
- Can we characterize the red line?

- We observe that maximum scattering when the Hartree-shifted Fermi surface goes through the van Hove singularity

$$
\epsilon\left(K_{\mathrm{vH}}\right)-\mu+\frac{\langle n\rangle}{2} U=0
$$

$$
K_{\mathrm{vH}}=(0, \pi)
$$

- How generic is this result? What role does the van Hove singularity play?

Here the self-energy has a pole at zero energy

Fermi surface topology and pseudogap in other models

- Non-intuitive relationship between pseudogap and Fermi surface topology
- We systematically investigate several models with different fermiologies
W. Wu et al. arXiv (2020)
- Here we show results for triangular lattice with flux
- At low doping, pseudogap only for some fluxes
- The absence of a pseudogap at $\Phi=0$ is not related to frustration (same Heisenberg limit)
- Flux changes \rightarrow van Hove singularity changes

$$
U=1.15 U_{c}^{\mathrm{Mott}}
$$

$$
\Phi=0
$$

$$
\Phi=\frac{3 \pi}{4}
$$

Role of the van Hove singularity?

- On the square two-dimensional Hubbard model we found that the pseudogap is maximum when

$$
\epsilon\left(K_{\mathrm{vH}}\right)-\mu+\frac{\langle n\rangle}{2} U=0
$$

- The same relation holds for the triangular lattice
- Also true for square lattice with asymmetric hopping

$$
\epsilon_{k}=-2 t\left(\cos \left(k_{x}\right)+\cos \left(k_{y}\right)\right)-4 t^{\prime \prime \prime} \cos \left(2 k_{x}\right) \cos \left(k_{y}\right)
$$

- Change in fermiology \rightarrow shift the vHs away \rightarrow turn off the pseudogap
- Even though we are clearly in the strong-coupling regime, the van Hove singularity is a key player in the construction of the pseudogap

Conclusions and perspective

A recipe for the pseudogap

- The pseudogap is sensitive to the fermiology of the non-interacting system
- The sum of 3 ingredients seems to be necessary for the onset of a pseudogap:
- (Short-range) antiferromagnetic correlations
- A van Hove singularity
- The Fermi surface defined by $\epsilon(k)-\mu+\frac{\langle n\rangle}{2} U=0$ must be close to the vHs
- Not weak-coupling physics!
- Short correlation length

- No pseudogap if no van Hove singularity
- Having fine k-resolution is essential to make further progress

Diagrammatic Monte Carlo: future developments

- Recent efforts:
- Broken-symmetry phases:
e.g. AF order in 3D half-filled Hubbard model
- Better starting points for perturbation series:
e.g. AF-ordered starting point in 2D half-filled Hubbard model

largest interaction value with standard CDet

Many other approaches to the Hubbard model

- Important progress in computational approaches
- Bottom-to-top: DMRG, PEPS, MERA, METTS, ... S.R. White, PRL (1992); U. Schollwöck, RMP (2005); F. Verstraete and J. I. Cirac (2004); E.M. Stoudenmire and S.R. White, NJP (2010), ...
- Top-to-bottom: DMFT and extensions (cluster DMFT, DГА, dual fermions, bosons, TRILEX), quantum Monte Carlo (diagMC, CDet, DQMC), ... A. Georges et al., RMP (1996); T. Maier et al., RMP (2005); N. V. Prokof'ev and B. V. Svistunov, PRL (2007); R. Blankelbacer, D. Scalapino and R.L. Sugar, PRD (1981); A. Toschi et al., PRB (2007); A.N. Rubtsov, PRB (2008); T. Ayral, O. Parcollet, PRB (2015, 2016); R. Rossi, PRL (2017), ...
- Agreement in non-trivial regimes
- There are efforts to compare approaches / make them complementary!
- Benchmarks (e.g. J.P.F. LeBlanc et al., PRX (2015); T. Schäfer et al., in preparation)
- Shake hands between methods

Putting Modern Many-Body Computations to the Test:
a Multi-Messenger, Multi-Method Study of the Half-Filled Two-Dimensional Hubbard Model at Weak Coupling

T. Schäfer ${ }^{a, b},{ }^{*}$ N. Wentzell ${ }^{c}$, F. Šimkovic IV $^{a, b}$, Y.-Y. $\mathrm{He}^{c, d}$,
C. Hille ${ }^{e}$, M. Klett ${ }^{e}$, C. J. Eckhardt ${ }^{f, g}$, B. Arzhang ${ }^{h}$, V. Harkov ${ }^{i}$,
F.-M. Le Régent ${ }^{b}$, A. Kirsch ${ }^{b}$, Y. Wang ${ }^{j}$, A. Kim ${ }^{k}$, E. Kozik ${ }^{k}$, E. A. Stepanov ${ }^{i}$,
A. Kauch f, S. Andergassen ${ }^{e}$, P. Hansmann ${ }^{l}$, Y. M. Vilk ${ }^{j}$, J. LeBlanc ${ }^{h}$,
S. Zhang $^{c, d}$, A.-M. Tremblay ${ }^{j}$, M. Ferrero ${ }^{a, b}$, O. Parcollet c, and A. Georges ${ }^{a, b, c, m}$

Test parameters

- 2D unfrustrated square lattice
- Half-filled
- $\mathrm{U}=2 \mathrm{t}$

Thomas Schäfer
Ecole Polytechnique
\rightarrow MPI Stuttgart

Observables (as function of T)

- Coherence temperature $T_{Q P}$
- "Pseudogap" temperature T*
- Magnetic susceptibility χ
- Magnetic correlation length ξ
- Double occupancy D

Putting many-body methods to the test

Numerically exact techniques

- Diagrammatic Monte Carlo (CDet)
- Lattice quantum Monte Carlo (DQMC)

(Dynamical) mean field theory

- Mean field theory (MFT)
- Dynamical mean field theory (DMFT)

$$
\mathcal{H}=-t \sum_{\langle i j\rangle \sigma} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

Extensions of DMFT

Cluster extensions

- Dynamical cluster approximation (DCA)
- cellular DMFT (cDMFT)

Diagrammatic extensions

- Dynamical vertex approximation (DГА)
- Dual fermion (DF)
- Dual boson (DB)
- Triply irreducible local expansion (TRILEX)

Thank you for your attention!

Supplementary slides:
 Pseudogap and Fermi surface topology

Pseudogap and Fermi surface topology

Blue arrow: location of the Lifshitz transition in non-interacting system

DCA 8 sites calculations

Insights from low-energy effective theory

- We compare results with effective $\operatorname{SU(2)}$ gauge field theory
- Describes electrons in environment with fluctuating AF order
- Decomposition of electron fields:

- Treated at mean-field level

Sachdev, Metlitski, Qi, Xu, PRB (2009) M.S. Scheurer et al., PNAS (2017)
W. Wu, A. Georges, MF, PRX (2017)

Introduces local SU(2) gauge invariance

- $\operatorname{SU}(2)$ symmetry broken while other symmetries are preserved
 \rightarrow Topological order

DCA

- Good agreement with DCA
- Self-energy pole consequence of short-range AF correlations in PG region

solid/dashed: different values of t^{\prime}

Self-energy versus flux in the triangular lattice

Supplementary slides:
 Diagrammatic Monte Carlo

The "chemical potential" shift

- Tuning the shift can lead to much better series

$\operatorname{Im} \Sigma\left(i \omega_{n}\right)$

- This static shift is easily implemented within CDet
- Often, a good choice for α is to take a value such that \tilde{G}_{0} is the static mean-field solution of the problem

Renormalized determinant approach (RDet)

- Can the idea be generalized?

$$
\hat{G}_{0}=\frac{1}{i \omega_{n}+\mu-\epsilon_{k}-\alpha-\Delta_{k}(i \omega)} \quad \xrightarrow{\tilde{G}_{0}}=\xrightarrow{\hat{G}_{0}}-\xrightarrow[U]{\hat{G}_{0}} \sim_{U}^{\Delta} \tilde{G}_{0}
$$

- Counter terms:

R. Rossi, F. Šimkovic,
M. Ferrero, arXiv (2020)

Renormalized determinant approach (RDet)

- Can the counter terms still be computed with determinants? Yes! R. Rossi, F. Šimkovic,
M. Ferrero, arXiv (2020)
- What should one put for $\Delta_{k}\left(i \omega_{n}\right)$?

$$
\hat{G}_{0}=\frac{1}{i \omega_{n}+\mu-\epsilon_{k}-\alpha-\Delta_{k}(i \omega)}
$$

- A hybridization function with a gap

$$
\Delta\left(U^{2}\right) \leftarrow \frac{\tilde{\Delta} U^{2}}{i \omega_{n}} \quad \text { We explored several values for } \tilde{\Delta}
$$

- Local DMFT self-energy

$$
\Delta\left(U^{2}\right) \leftarrow \Sigma_{\mathrm{loc}}^{\mathrm{DMFT}}
$$

- Observables: density, double occupancy, Green functions, self-energies, etc.

Half-filled Hubbard model

- Crossover documented by many observables

- Limitation: Resummation becomes very hard in incoherent regime despite absence of a true phase transition

(a)	$T_{\text {chi }}^{*} \quad T_{\text {pot }}^{\text {max }}$ map $T_{\text {sp }}^{*}, T_{\text {kin }}^{*}$				
${ }^{\text {d } / d T}$		+	+		+
$d \varepsilon_{\mathrm{pot}} / d T$]		-	+	$\stackrel{\circ}{0}$	+
$\chi_{\chi \text { spi }}^{\text {uni }} / d T$		${ }^{5}$	-	雨	+
$d \varepsilon_{\text {kin }} / d T$	+	+	+		

F. Šimkovic et al., PRL (2020)
A. Kim et al., PRL (2020)

Freedom of non-interacting propagator

- Series convergence controlled by structure in complex plane
- How do we evaluate the series beyond its convergence radius?
- Approach 1: Conformal maps, Padé approximants, Integral approximants, ...

- Approach 2: Generate new series with freedom in the starting point of the perturbation theory

$$
G_{0}=\frac{1}{i \omega_{n}+\mu-\epsilon_{k}} \rightarrow \tilde{G}_{0}=\frac{1}{i \omega_{n}+\mu-\epsilon_{k}-\alpha}
$$

$\operatorname{Re} U$
R. Profumo et al., PRB (2015)
W. Wu et al., PRB (2017)
F. Šimkovic et al., PRB (2019)
C. Bertrand et al., PRX (2019)

