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Outline

Is the Hubbard model superconducting? 

How does superconductivity arise in the presence of a pseudogap?
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Cuprates and the Hubbard Model
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Figure 1 | High-Tc cuprate superconductors. a, Schematic phase diagram. The inset shows the crystal structure of the CuO2 planes, which are of central
relevance to superconductivity and the pseudogap. b, Schematic band dispersion in reciprocal space for cuprates along the high-symmetry cuts, as shown
in blue in c. c, Fermi surface, where the nodal and antinodal momenta and the Fermi angle ✓ are defined.

high Tc and should provide clues of how even higher Tc values can
be achieved.

In this article, we show how ARPES has contributed to
the understanding of the cuprates. We first introduce the
superconducting gap and the pseudogap in the ARPES spectra,
and move on to show the systematic doping and temperature
dependence of the gap functions in momentum space, and present
its interpretation. Finally, in discussing phase competition between
the pseudogap and superconductivity, we pay special attention to
recent results12–14 in understanding the pseudogap due to some
order (the pseudogap order) distinct from superconductivity,
which may be consistent with various symmetry breakings in the
pseudogap state observed by di�erent experimental techniques.
We show evidence for a phase transition into a pseudogap phase
at T ⇤ having broken electronic symmetry that is distinct from
superconductivity. Well below Tc, we discuss how the pseudogap
order is intertwined and entangled with superconductivity, which
suggests multiple phenomenologically distinct ground states with
non-trivial phase boundaries within the superconducting dome.
These results provide us with deeper insights into the cuprate phase
diagram, renewing the foundation for further study towards the
complete understanding of the high-Tc mechanism.

Angle-resolved photoemission spectroscopy (ARPES)
ARPES has been a leading tool to study gap anisotropies discussed
in this article because it directly measures the occupied part
of the single-particle spectral function15 with ever increasing
energy and momentum resolution. The cuprates are well-suited
for the ARPES technique because of their quasi-2D electronic
structure. The Bi2Sr2CaCu2O8+� (Bi2212) and Bi2Sr2�xLaxCuO6+�

(Bi2201) families in particular feature pristine cleaved surfaces
that protect the low-energy bulk electronic structure, owing
to the weak van der Waals forces between the two Bi–O
planes. Over the past two decades, experiments have improved
tremendously (Fig. 2a,c,d), allowingmore precise information about
electronic structure, including the gap functions, to be obtained
(Fig. 2e). One recent development is the use of narrow-bandwidth
ultraviolet lasers as light sources for photoemission14,16–23. The
superior resolution of laser ARPES provides unprecedented access
to the lowest energy excitations near the node, as shown in
Fig. 2d,e. Furthermore, traditional synchrotron-based ARPES

continues to be improved with brighter synchrotrons and more
powerful spectrometers. Synchrotron-based experiments have the
advantage of covering a larger region of momentum space
with photon energy flexibility. When one combines modern
synchrotron and laser-based ARPES experiments, one can gain
deep insights into the nature of energy gaps, as reviewed in
this article.

Superconducting gap
In conventional BCS superconductors, an energy gap �SC opens
below Tc with s-wave symmetry and minimal momentum
dependence. 2�SC is the energy required to break each of the
Cooper pairs of electrons, which form the superconducting
condensate. In contrast, the superconducting gap in the cuprates is
characterized by a strong momentum dependence. Early debates
came to the conclusion that the superconducting gap function
is consistent with an order parameter having dx2�y2 symmetry,
with support from ARPES (ref. 6), penetration depth24, Raman25

and phase-sensitive measurements26. The d-wave symmetry of
the superconducting gap has become an accepted fact when one
constructs theories and interprets experimental results.

On the Fermi surface (Fig. 1c), the gap is the largest at the
antinode—Fermi momentum (kF) on the Brillouin zone boundary
near (⇡, 0), where the Fermi angle ✓ = 0�. The gap size gradually
decreases towards the node along the Fermi surface and becomes
zero at the node—kF in the CuO bond diagonal direction (✓ =45�).
The superconducting gap changes sign across the node (Fig. 2b).
We note that the terminology ‘node’ and ‘antinode’ is still used
above Tc to refer to those particular regions of the Fermi surface.
An ARPES study on Bi2212 by Shen and colleagues6 was one of the
key experiments that clarified the superconducting order parameter
in the cuprates. This study compared energy distribution curves
(EDCs) at two characteristic momenta, the node and the antinode,
above and below Tc to show the anisotropy of the gap. At the
antinode, the opening of a gap below Tc was detected as a leading
edge shift of the EDC to higher binding energy and the emergence of
a sharp quasi-particle peak at�sc ⇠30meV (upper EDCs in Fig. 2a).
In contrast, the spectrum at the node does not show a shift in the
leading edge gap across Tc and the sharpening of the spectrum at
low temperature is predominantly of thermal origin (lower EDCs
in Fig. 2a).
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Figure 1 | High-Tc cuprate superconductors. a, Schematic phase diagram. The inset shows the crystal structure of the CuO2 planes, which are of central
relevance to superconductivity and the pseudogap. b, Schematic band dispersion in reciprocal space for cuprates along the high-symmetry cuts, as shown
in blue in c. c, Fermi surface, where the nodal and antinodal momenta and the Fermi angle ✓ are defined.

high Tc and should provide clues of how even higher Tc values can
be achieved.

In this article, we show how ARPES has contributed to
the understanding of the cuprates. We first introduce the
superconducting gap and the pseudogap in the ARPES spectra,
and move on to show the systematic doping and temperature
dependence of the gap functions in momentum space, and present
its interpretation. Finally, in discussing phase competition between
the pseudogap and superconductivity, we pay special attention to
recent results12–14 in understanding the pseudogap due to some
order (the pseudogap order) distinct from superconductivity,
which may be consistent with various symmetry breakings in the
pseudogap state observed by di�erent experimental techniques.
We show evidence for a phase transition into a pseudogap phase
at T ⇤ having broken electronic symmetry that is distinct from
superconductivity. Well below Tc, we discuss how the pseudogap
order is intertwined and entangled with superconductivity, which
suggests multiple phenomenologically distinct ground states with
non-trivial phase boundaries within the superconducting dome.
These results provide us with deeper insights into the cuprate phase
diagram, renewing the foundation for further study towards the
complete understanding of the high-Tc mechanism.

Angle-resolved photoemission spectroscopy (ARPES)
ARPES has been a leading tool to study gap anisotropies discussed
in this article because it directly measures the occupied part
of the single-particle spectral function15 with ever increasing
energy and momentum resolution. The cuprates are well-suited
for the ARPES technique because of their quasi-2D electronic
structure. The Bi2Sr2CaCu2O8+� (Bi2212) and Bi2Sr2�xLaxCuO6+�

(Bi2201) families in particular feature pristine cleaved surfaces
that protect the low-energy bulk electronic structure, owing
to the weak van der Waals forces between the two Bi–O
planes. Over the past two decades, experiments have improved
tremendously (Fig. 2a,c,d), allowingmore precise information about
electronic structure, including the gap functions, to be obtained
(Fig. 2e). One recent development is the use of narrow-bandwidth
ultraviolet lasers as light sources for photoemission14,16–23. The
superior resolution of laser ARPES provides unprecedented access
to the lowest energy excitations near the node, as shown in
Fig. 2d,e. Furthermore, traditional synchrotron-based ARPES

continues to be improved with brighter synchrotrons and more
powerful spectrometers. Synchrotron-based experiments have the
advantage of covering a larger region of momentum space
with photon energy flexibility. When one combines modern
synchrotron and laser-based ARPES experiments, one can gain
deep insights into the nature of energy gaps, as reviewed in
this article.

Superconducting gap
In conventional BCS superconductors, an energy gap �SC opens
below Tc with s-wave symmetry and minimal momentum
dependence. 2�SC is the energy required to break each of the
Cooper pairs of electrons, which form the superconducting
condensate. In contrast, the superconducting gap in the cuprates is
characterized by a strong momentum dependence. Early debates
came to the conclusion that the superconducting gap function
is consistent with an order parameter having dx2�y2 symmetry,
with support from ARPES (ref. 6), penetration depth24, Raman25

and phase-sensitive measurements26. The d-wave symmetry of
the superconducting gap has become an accepted fact when one
constructs theories and interprets experimental results.

On the Fermi surface (Fig. 1c), the gap is the largest at the
antinode—Fermi momentum (kF) on the Brillouin zone boundary
near (⇡, 0), where the Fermi angle ✓ = 0�. The gap size gradually
decreases towards the node along the Fermi surface and becomes
zero at the node—kF in the CuO bond diagonal direction (✓ =45�).
The superconducting gap changes sign across the node (Fig. 2b).
We note that the terminology ‘node’ and ‘antinode’ is still used
above Tc to refer to those particular regions of the Fermi surface.
An ARPES study on Bi2212 by Shen and colleagues6 was one of the
key experiments that clarified the superconducting order parameter
in the cuprates. This study compared energy distribution curves
(EDCs) at two characteristic momenta, the node and the antinode,
above and below Tc to show the anisotropy of the gap. At the
antinode, the opening of a gap below Tc was detected as a leading
edge shift of the EDC to higher binding energy and the emergence of
a sharp quasi-particle peak at�sc ⇠30meV (upper EDCs in Fig. 2a).
In contrast, the spectrum at the node does not show a shift in the
leading edge gap across Tc and the sharpening of the spectrum at
low temperature is predominantly of thermal origin (lower EDCs
in Fig. 2a).
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Figure 1 | High-Tc cuprate superconductors. a, Schematic phase diagram. The inset shows the crystal structure of the CuO2 planes, which are of central
relevance to superconductivity and the pseudogap. b, Schematic band dispersion in reciprocal space for cuprates along the high-symmetry cuts, as shown
in blue in c. c, Fermi surface, where the nodal and antinodal momenta and the Fermi angle ✓ are defined.

high Tc and should provide clues of how even higher Tc values can
be achieved.

In this article, we show how ARPES has contributed to
the understanding of the cuprates. We first introduce the
superconducting gap and the pseudogap in the ARPES spectra,
and move on to show the systematic doping and temperature
dependence of the gap functions in momentum space, and present
its interpretation. Finally, in discussing phase competition between
the pseudogap and superconductivity, we pay special attention to
recent results12–14 in understanding the pseudogap due to some
order (the pseudogap order) distinct from superconductivity,
which may be consistent with various symmetry breakings in the
pseudogap state observed by di�erent experimental techniques.
We show evidence for a phase transition into a pseudogap phase
at T ⇤ having broken electronic symmetry that is distinct from
superconductivity. Well below Tc, we discuss how the pseudogap
order is intertwined and entangled with superconductivity, which
suggests multiple phenomenologically distinct ground states with
non-trivial phase boundaries within the superconducting dome.
These results provide us with deeper insights into the cuprate phase
diagram, renewing the foundation for further study towards the
complete understanding of the high-Tc mechanism.

Angle-resolved photoemission spectroscopy (ARPES)
ARPES has been a leading tool to study gap anisotropies discussed
in this article because it directly measures the occupied part
of the single-particle spectral function15 with ever increasing
energy and momentum resolution. The cuprates are well-suited
for the ARPES technique because of their quasi-2D electronic
structure. The Bi2Sr2CaCu2O8+� (Bi2212) and Bi2Sr2�xLaxCuO6+�

(Bi2201) families in particular feature pristine cleaved surfaces
that protect the low-energy bulk electronic structure, owing
to the weak van der Waals forces between the two Bi–O
planes. Over the past two decades, experiments have improved
tremendously (Fig. 2a,c,d), allowingmore precise information about
electronic structure, including the gap functions, to be obtained
(Fig. 2e). One recent development is the use of narrow-bandwidth
ultraviolet lasers as light sources for photoemission14,16–23. The
superior resolution of laser ARPES provides unprecedented access
to the lowest energy excitations near the node, as shown in
Fig. 2d,e. Furthermore, traditional synchrotron-based ARPES

continues to be improved with brighter synchrotrons and more
powerful spectrometers. Synchrotron-based experiments have the
advantage of covering a larger region of momentum space
with photon energy flexibility. When one combines modern
synchrotron and laser-based ARPES experiments, one can gain
deep insights into the nature of energy gaps, as reviewed in
this article.

Superconducting gap
In conventional BCS superconductors, an energy gap �SC opens
below Tc with s-wave symmetry and minimal momentum
dependence. 2�SC is the energy required to break each of the
Cooper pairs of electrons, which form the superconducting
condensate. In contrast, the superconducting gap in the cuprates is
characterized by a strong momentum dependence. Early debates
came to the conclusion that the superconducting gap function
is consistent with an order parameter having dx2�y2 symmetry,
with support from ARPES (ref. 6), penetration depth24, Raman25

and phase-sensitive measurements26. The d-wave symmetry of
the superconducting gap has become an accepted fact when one
constructs theories and interprets experimental results.

On the Fermi surface (Fig. 1c), the gap is the largest at the
antinode—Fermi momentum (kF) on the Brillouin zone boundary
near (⇡, 0), where the Fermi angle ✓ = 0�. The gap size gradually
decreases towards the node along the Fermi surface and becomes
zero at the node—kF in the CuO bond diagonal direction (✓ =45�).
The superconducting gap changes sign across the node (Fig. 2b).
We note that the terminology ‘node’ and ‘antinode’ is still used
above Tc to refer to those particular regions of the Fermi surface.
An ARPES study on Bi2212 by Shen and colleagues6 was one of the
key experiments that clarified the superconducting order parameter
in the cuprates. This study compared energy distribution curves
(EDCs) at two characteristic momenta, the node and the antinode,
above and below Tc to show the anisotropy of the gap. At the
antinode, the opening of a gap below Tc was detected as a leading
edge shift of the EDC to higher binding energy and the emergence of
a sharp quasi-particle peak at�sc ⇠30meV (upper EDCs in Fig. 2a).
In contrast, the spectrum at the node does not show a shift in the
leading edge gap across Tc and the sharpening of the spectrum at
low temperature is predominantly of thermal origin (lower EDCs
in Fig. 2a).
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Figure 1 | High-Tc cuprate superconductors. a, Schematic phase diagram. The inset shows the crystal structure of the CuO2 planes, which are of central
relevance to superconductivity and the pseudogap. b, Schematic band dispersion in reciprocal space for cuprates along the high-symmetry cuts, as shown
in blue in c. c, Fermi surface, where the nodal and antinodal momenta and the Fermi angle ✓ are defined.

high Tc and should provide clues of how even higher Tc values can
be achieved.

In this article, we show how ARPES has contributed to
the understanding of the cuprates. We first introduce the
superconducting gap and the pseudogap in the ARPES spectra,
and move on to show the systematic doping and temperature
dependence of the gap functions in momentum space, and present
its interpretation. Finally, in discussing phase competition between
the pseudogap and superconductivity, we pay special attention to
recent results12–14 in understanding the pseudogap due to some
order (the pseudogap order) distinct from superconductivity,
which may be consistent with various symmetry breakings in the
pseudogap state observed by di�erent experimental techniques.
We show evidence for a phase transition into a pseudogap phase
at T ⇤ having broken electronic symmetry that is distinct from
superconductivity. Well below Tc, we discuss how the pseudogap
order is intertwined and entangled with superconductivity, which
suggests multiple phenomenologically distinct ground states with
non-trivial phase boundaries within the superconducting dome.
These results provide us with deeper insights into the cuprate phase
diagram, renewing the foundation for further study towards the
complete understanding of the high-Tc mechanism.

Angle-resolved photoemission spectroscopy (ARPES)
ARPES has been a leading tool to study gap anisotropies discussed
in this article because it directly measures the occupied part
of the single-particle spectral function15 with ever increasing
energy and momentum resolution. The cuprates are well-suited
for the ARPES technique because of their quasi-2D electronic
structure. The Bi2Sr2CaCu2O8+� (Bi2212) and Bi2Sr2�xLaxCuO6+�

(Bi2201) families in particular feature pristine cleaved surfaces
that protect the low-energy bulk electronic structure, owing
to the weak van der Waals forces between the two Bi–O
planes. Over the past two decades, experiments have improved
tremendously (Fig. 2a,c,d), allowingmore precise information about
electronic structure, including the gap functions, to be obtained
(Fig. 2e). One recent development is the use of narrow-bandwidth
ultraviolet lasers as light sources for photoemission14,16–23. The
superior resolution of laser ARPES provides unprecedented access
to the lowest energy excitations near the node, as shown in
Fig. 2d,e. Furthermore, traditional synchrotron-based ARPES

continues to be improved with brighter synchrotrons and more
powerful spectrometers. Synchrotron-based experiments have the
advantage of covering a larger region of momentum space
with photon energy flexibility. When one combines modern
synchrotron and laser-based ARPES experiments, one can gain
deep insights into the nature of energy gaps, as reviewed in
this article.

Superconducting gap
In conventional BCS superconductors, an energy gap �SC opens
below Tc with s-wave symmetry and minimal momentum
dependence. 2�SC is the energy required to break each of the
Cooper pairs of electrons, which form the superconducting
condensate. In contrast, the superconducting gap in the cuprates is
characterized by a strong momentum dependence. Early debates
came to the conclusion that the superconducting gap function
is consistent with an order parameter having dx2�y2 symmetry,
with support from ARPES (ref. 6), penetration depth24, Raman25

and phase-sensitive measurements26. The d-wave symmetry of
the superconducting gap has become an accepted fact when one
constructs theories and interprets experimental results.

On the Fermi surface (Fig. 1c), the gap is the largest at the
antinode—Fermi momentum (kF) on the Brillouin zone boundary
near (⇡, 0), where the Fermi angle ✓ = 0�. The gap size gradually
decreases towards the node along the Fermi surface and becomes
zero at the node—kF in the CuO bond diagonal direction (✓ =45�).
The superconducting gap changes sign across the node (Fig. 2b).
We note that the terminology ‘node’ and ‘antinode’ is still used
above Tc to refer to those particular regions of the Fermi surface.
An ARPES study on Bi2212 by Shen and colleagues6 was one of the
key experiments that clarified the superconducting order parameter
in the cuprates. This study compared energy distribution curves
(EDCs) at two characteristic momenta, the node and the antinode,
above and below Tc to show the anisotropy of the gap. At the
antinode, the opening of a gap below Tc was detected as a leading
edge shift of the EDC to higher binding energy and the emergence of
a sharp quasi-particle peak at�sc ⇠30meV (upper EDCs in Fig. 2a).
In contrast, the spectrum at the node does not show a shift in the
leading edge gap across Tc and the sharpening of the spectrum at
low temperature is predominantly of thermal origin (lower EDCs
in Fig. 2a).
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Figure 1 | High-Tc cuprate superconductors. a, Schematic phase diagram. The inset shows the crystal structure of the CuO2 planes, which are of central
relevance to superconductivity and the pseudogap. b, Schematic band dispersion in reciprocal space for cuprates along the high-symmetry cuts, as shown
in blue in c. c, Fermi surface, where the nodal and antinodal momenta and the Fermi angle ✓ are defined.

high Tc and should provide clues of how even higher Tc values can
be achieved.

In this article, we show how ARPES has contributed to
the understanding of the cuprates. We first introduce the
superconducting gap and the pseudogap in the ARPES spectra,
and move on to show the systematic doping and temperature
dependence of the gap functions in momentum space, and present
its interpretation. Finally, in discussing phase competition between
the pseudogap and superconductivity, we pay special attention to
recent results12–14 in understanding the pseudogap due to some
order (the pseudogap order) distinct from superconductivity,
which may be consistent with various symmetry breakings in the
pseudogap state observed by di�erent experimental techniques.
We show evidence for a phase transition into a pseudogap phase
at T ⇤ having broken electronic symmetry that is distinct from
superconductivity. Well below Tc, we discuss how the pseudogap
order is intertwined and entangled with superconductivity, which
suggests multiple phenomenologically distinct ground states with
non-trivial phase boundaries within the superconducting dome.
These results provide us with deeper insights into the cuprate phase
diagram, renewing the foundation for further study towards the
complete understanding of the high-Tc mechanism.

Angle-resolved photoemission spectroscopy (ARPES)
ARPES has been a leading tool to study gap anisotropies discussed
in this article because it directly measures the occupied part
of the single-particle spectral function15 with ever increasing
energy and momentum resolution. The cuprates are well-suited
for the ARPES technique because of their quasi-2D electronic
structure. The Bi2Sr2CaCu2O8+� (Bi2212) and Bi2Sr2�xLaxCuO6+�

(Bi2201) families in particular feature pristine cleaved surfaces
that protect the low-energy bulk electronic structure, owing
to the weak van der Waals forces between the two Bi–O
planes. Over the past two decades, experiments have improved
tremendously (Fig. 2a,c,d), allowingmore precise information about
electronic structure, including the gap functions, to be obtained
(Fig. 2e). One recent development is the use of narrow-bandwidth
ultraviolet lasers as light sources for photoemission14,16–23. The
superior resolution of laser ARPES provides unprecedented access
to the lowest energy excitations near the node, as shown in
Fig. 2d,e. Furthermore, traditional synchrotron-based ARPES

continues to be improved with brighter synchrotrons and more
powerful spectrometers. Synchrotron-based experiments have the
advantage of covering a larger region of momentum space
with photon energy flexibility. When one combines modern
synchrotron and laser-based ARPES experiments, one can gain
deep insights into the nature of energy gaps, as reviewed in
this article.

Superconducting gap
In conventional BCS superconductors, an energy gap �SC opens
below Tc with s-wave symmetry and minimal momentum
dependence. 2�SC is the energy required to break each of the
Cooper pairs of electrons, which form the superconducting
condensate. In contrast, the superconducting gap in the cuprates is
characterized by a strong momentum dependence. Early debates
came to the conclusion that the superconducting gap function
is consistent with an order parameter having dx2�y2 symmetry,
with support from ARPES (ref. 6), penetration depth24, Raman25

and phase-sensitive measurements26. The d-wave symmetry of
the superconducting gap has become an accepted fact when one
constructs theories and interprets experimental results.

On the Fermi surface (Fig. 1c), the gap is the largest at the
antinode—Fermi momentum (kF) on the Brillouin zone boundary
near (⇡, 0), where the Fermi angle ✓ = 0�. The gap size gradually
decreases towards the node along the Fermi surface and becomes
zero at the node—kF in the CuO bond diagonal direction (✓ =45�).
The superconducting gap changes sign across the node (Fig. 2b).
We note that the terminology ‘node’ and ‘antinode’ is still used
above Tc to refer to those particular regions of the Fermi surface.
An ARPES study on Bi2212 by Shen and colleagues6 was one of the
key experiments that clarified the superconducting order parameter
in the cuprates. This study compared energy distribution curves
(EDCs) at two characteristic momenta, the node and the antinode,
above and below Tc to show the anisotropy of the gap. At the
antinode, the opening of a gap below Tc was detected as a leading
edge shift of the EDC to higher binding energy and the emergence of
a sharp quasi-particle peak at�sc ⇠30meV (upper EDCs in Fig. 2a).
In contrast, the spectrum at the node does not show a shift in the
leading edge gap across Tc and the sharpening of the spectrum at
low temperature is predominantly of thermal origin (lower EDCs
in Fig. 2a).
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Figure 1 | High-Tc cuprate superconductors. a, Schematic phase diagram. The inset shows the crystal structure of the CuO2 planes, which are of central
relevance to superconductivity and the pseudogap. b, Schematic band dispersion in reciprocal space for cuprates along the high-symmetry cuts, as shown
in blue in c. c, Fermi surface, where the nodal and antinodal momenta and the Fermi angle ✓ are defined.

high Tc and should provide clues of how even higher Tc values can
be achieved.

In this article, we show how ARPES has contributed to
the understanding of the cuprates. We first introduce the
superconducting gap and the pseudogap in the ARPES spectra,
and move on to show the systematic doping and temperature
dependence of the gap functions in momentum space, and present
its interpretation. Finally, in discussing phase competition between
the pseudogap and superconductivity, we pay special attention to
recent results12–14 in understanding the pseudogap due to some
order (the pseudogap order) distinct from superconductivity,
which may be consistent with various symmetry breakings in the
pseudogap state observed by di�erent experimental techniques.
We show evidence for a phase transition into a pseudogap phase
at T ⇤ having broken electronic symmetry that is distinct from
superconductivity. Well below Tc, we discuss how the pseudogap
order is intertwined and entangled with superconductivity, which
suggests multiple phenomenologically distinct ground states with
non-trivial phase boundaries within the superconducting dome.
These results provide us with deeper insights into the cuprate phase
diagram, renewing the foundation for further study towards the
complete understanding of the high-Tc mechanism.

Angle-resolved photoemission spectroscopy (ARPES)
ARPES has been a leading tool to study gap anisotropies discussed
in this article because it directly measures the occupied part
of the single-particle spectral function15 with ever increasing
energy and momentum resolution. The cuprates are well-suited
for the ARPES technique because of their quasi-2D electronic
structure. The Bi2Sr2CaCu2O8+� (Bi2212) and Bi2Sr2�xLaxCuO6+�

(Bi2201) families in particular feature pristine cleaved surfaces
that protect the low-energy bulk electronic structure, owing
to the weak van der Waals forces between the two Bi–O
planes. Over the past two decades, experiments have improved
tremendously (Fig. 2a,c,d), allowingmore precise information about
electronic structure, including the gap functions, to be obtained
(Fig. 2e). One recent development is the use of narrow-bandwidth
ultraviolet lasers as light sources for photoemission14,16–23. The
superior resolution of laser ARPES provides unprecedented access
to the lowest energy excitations near the node, as shown in
Fig. 2d,e. Furthermore, traditional synchrotron-based ARPES

continues to be improved with brighter synchrotrons and more
powerful spectrometers. Synchrotron-based experiments have the
advantage of covering a larger region of momentum space
with photon energy flexibility. When one combines modern
synchrotron and laser-based ARPES experiments, one can gain
deep insights into the nature of energy gaps, as reviewed in
this article.

Superconducting gap
In conventional BCS superconductors, an energy gap �SC opens
below Tc with s-wave symmetry and minimal momentum
dependence. 2�SC is the energy required to break each of the
Cooper pairs of electrons, which form the superconducting
condensate. In contrast, the superconducting gap in the cuprates is
characterized by a strong momentum dependence. Early debates
came to the conclusion that the superconducting gap function
is consistent with an order parameter having dx2�y2 symmetry,
with support from ARPES (ref. 6), penetration depth24, Raman25

and phase-sensitive measurements26. The d-wave symmetry of
the superconducting gap has become an accepted fact when one
constructs theories and interprets experimental results.

On the Fermi surface (Fig. 1c), the gap is the largest at the
antinode—Fermi momentum (kF) on the Brillouin zone boundary
near (⇡, 0), where the Fermi angle ✓ = 0�. The gap size gradually
decreases towards the node along the Fermi surface and becomes
zero at the node—kF in the CuO bond diagonal direction (✓ =45�).
The superconducting gap changes sign across the node (Fig. 2b).
We note that the terminology ‘node’ and ‘antinode’ is still used
above Tc to refer to those particular regions of the Fermi surface.
An ARPES study on Bi2212 by Shen and colleagues6 was one of the
key experiments that clarified the superconducting order parameter
in the cuprates. This study compared energy distribution curves
(EDCs) at two characteristic momenta, the node and the antinode,
above and below Tc to show the anisotropy of the gap. At the
antinode, the opening of a gap below Tc was detected as a leading
edge shift of the EDC to higher binding energy and the emergence of
a sharp quasi-particle peak at�sc ⇠30meV (upper EDCs in Fig. 2a).
In contrast, the spectrum at the node does not show a shift in the
leading edge gap across Tc and the sharpening of the spectrum at
low temperature is predominantly of thermal origin (lower EDCs
in Fig. 2a).
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Figure 1 | High-Tc cuprate superconductors. a, Schematic phase diagram. The inset shows the crystal structure of the CuO2 planes, which are of central
relevance to superconductivity and the pseudogap. b, Schematic band dispersion in reciprocal space for cuprates along the high-symmetry cuts, as shown
in blue in c. c, Fermi surface, where the nodal and antinodal momenta and the Fermi angle ✓ are defined.

high Tc and should provide clues of how even higher Tc values can
be achieved.

In this article, we show how ARPES has contributed to
the understanding of the cuprates. We first introduce the
superconducting gap and the pseudogap in the ARPES spectra,
and move on to show the systematic doping and temperature
dependence of the gap functions in momentum space, and present
its interpretation. Finally, in discussing phase competition between
the pseudogap and superconductivity, we pay special attention to
recent results12–14 in understanding the pseudogap due to some
order (the pseudogap order) distinct from superconductivity,
which may be consistent with various symmetry breakings in the
pseudogap state observed by di�erent experimental techniques.
We show evidence for a phase transition into a pseudogap phase
at T ⇤ having broken electronic symmetry that is distinct from
superconductivity. Well below Tc, we discuss how the pseudogap
order is intertwined and entangled with superconductivity, which
suggests multiple phenomenologically distinct ground states with
non-trivial phase boundaries within the superconducting dome.
These results provide us with deeper insights into the cuprate phase
diagram, renewing the foundation for further study towards the
complete understanding of the high-Tc mechanism.

Angle-resolved photoemission spectroscopy (ARPES)
ARPES has been a leading tool to study gap anisotropies discussed
in this article because it directly measures the occupied part
of the single-particle spectral function15 with ever increasing
energy and momentum resolution. The cuprates are well-suited
for the ARPES technique because of their quasi-2D electronic
structure. The Bi2Sr2CaCu2O8+� (Bi2212) and Bi2Sr2�xLaxCuO6+�

(Bi2201) families in particular feature pristine cleaved surfaces
that protect the low-energy bulk electronic structure, owing
to the weak van der Waals forces between the two Bi–O
planes. Over the past two decades, experiments have improved
tremendously (Fig. 2a,c,d), allowingmore precise information about
electronic structure, including the gap functions, to be obtained
(Fig. 2e). One recent development is the use of narrow-bandwidth
ultraviolet lasers as light sources for photoemission14,16–23. The
superior resolution of laser ARPES provides unprecedented access
to the lowest energy excitations near the node, as shown in
Fig. 2d,e. Furthermore, traditional synchrotron-based ARPES

continues to be improved with brighter synchrotrons and more
powerful spectrometers. Synchrotron-based experiments have the
advantage of covering a larger region of momentum space
with photon energy flexibility. When one combines modern
synchrotron and laser-based ARPES experiments, one can gain
deep insights into the nature of energy gaps, as reviewed in
this article.

Superconducting gap
In conventional BCS superconductors, an energy gap �SC opens
below Tc with s-wave symmetry and minimal momentum
dependence. 2�SC is the energy required to break each of the
Cooper pairs of electrons, which form the superconducting
condensate. In contrast, the superconducting gap in the cuprates is
characterized by a strong momentum dependence. Early debates
came to the conclusion that the superconducting gap function
is consistent with an order parameter having dx2�y2 symmetry,
with support from ARPES (ref. 6), penetration depth24, Raman25

and phase-sensitive measurements26. The d-wave symmetry of
the superconducting gap has become an accepted fact when one
constructs theories and interprets experimental results.

On the Fermi surface (Fig. 1c), the gap is the largest at the
antinode—Fermi momentum (kF) on the Brillouin zone boundary
near (⇡, 0), where the Fermi angle ✓ = 0�. The gap size gradually
decreases towards the node along the Fermi surface and becomes
zero at the node—kF in the CuO bond diagonal direction (✓ =45�).
The superconducting gap changes sign across the node (Fig. 2b).
We note that the terminology ‘node’ and ‘antinode’ is still used
above Tc to refer to those particular regions of the Fermi surface.
An ARPES study on Bi2212 by Shen and colleagues6 was one of the
key experiments that clarified the superconducting order parameter
in the cuprates. This study compared energy distribution curves
(EDCs) at two characteristic momenta, the node and the antinode,
above and below Tc to show the anisotropy of the gap. At the
antinode, the opening of a gap below Tc was detected as a leading
edge shift of the EDC to higher binding energy and the emergence of
a sharp quasi-particle peak at�sc ⇠30meV (upper EDCs in Fig. 2a).
In contrast, the spectrum at the node does not show a shift in the
leading edge gap across Tc and the sharpening of the spectrum at
low temperature is predominantly of thermal origin (lower EDCs
in Fig. 2a).
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Figure 1 | High-Tc cuprate superconductors. a, Schematic phase diagram. The inset shows the crystal structure of the CuO2 planes, which are of central
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high Tc and should provide clues of how even higher Tc values can
be achieved.

In this article, we show how ARPES has contributed to
the understanding of the cuprates. We first introduce the
superconducting gap and the pseudogap in the ARPES spectra,
and move on to show the systematic doping and temperature
dependence of the gap functions in momentum space, and present
its interpretation. Finally, in discussing phase competition between
the pseudogap and superconductivity, we pay special attention to
recent results12–14 in understanding the pseudogap due to some
order (the pseudogap order) distinct from superconductivity,
which may be consistent with various symmetry breakings in the
pseudogap state observed by di�erent experimental techniques.
We show evidence for a phase transition into a pseudogap phase
at T ⇤ having broken electronic symmetry that is distinct from
superconductivity. Well below Tc, we discuss how the pseudogap
order is intertwined and entangled with superconductivity, which
suggests multiple phenomenologically distinct ground states with
non-trivial phase boundaries within the superconducting dome.
These results provide us with deeper insights into the cuprate phase
diagram, renewing the foundation for further study towards the
complete understanding of the high-Tc mechanism.

Angle-resolved photoemission spectroscopy (ARPES)
ARPES has been a leading tool to study gap anisotropies discussed
in this article because it directly measures the occupied part
of the single-particle spectral function15 with ever increasing
energy and momentum resolution. The cuprates are well-suited
for the ARPES technique because of their quasi-2D electronic
structure. The Bi2Sr2CaCu2O8+� (Bi2212) and Bi2Sr2�xLaxCuO6+�

(Bi2201) families in particular feature pristine cleaved surfaces
that protect the low-energy bulk electronic structure, owing
to the weak van der Waals forces between the two Bi–O
planes. Over the past two decades, experiments have improved
tremendously (Fig. 2a,c,d), allowingmore precise information about
electronic structure, including the gap functions, to be obtained
(Fig. 2e). One recent development is the use of narrow-bandwidth
ultraviolet lasers as light sources for photoemission14,16–23. The
superior resolution of laser ARPES provides unprecedented access
to the lowest energy excitations near the node, as shown in
Fig. 2d,e. Furthermore, traditional synchrotron-based ARPES

continues to be improved with brighter synchrotrons and more
powerful spectrometers. Synchrotron-based experiments have the
advantage of covering a larger region of momentum space
with photon energy flexibility. When one combines modern
synchrotron and laser-based ARPES experiments, one can gain
deep insights into the nature of energy gaps, as reviewed in
this article.

Superconducting gap
In conventional BCS superconductors, an energy gap �SC opens
below Tc with s-wave symmetry and minimal momentum
dependence. 2�SC is the energy required to break each of the
Cooper pairs of electrons, which form the superconducting
condensate. In contrast, the superconducting gap in the cuprates is
characterized by a strong momentum dependence. Early debates
came to the conclusion that the superconducting gap function
is consistent with an order parameter having dx2�y2 symmetry,
with support from ARPES (ref. 6), penetration depth24, Raman25

and phase-sensitive measurements26. The d-wave symmetry of
the superconducting gap has become an accepted fact when one
constructs theories and interprets experimental results.

On the Fermi surface (Fig. 1c), the gap is the largest at the
antinode—Fermi momentum (kF) on the Brillouin zone boundary
near (⇡, 0), where the Fermi angle ✓ = 0�. The gap size gradually
decreases towards the node along the Fermi surface and becomes
zero at the node—kF in the CuO bond diagonal direction (✓ =45�).
The superconducting gap changes sign across the node (Fig. 2b).
We note that the terminology ‘node’ and ‘antinode’ is still used
above Tc to refer to those particular regions of the Fermi surface.
An ARPES study on Bi2212 by Shen and colleagues6 was one of the
key experiments that clarified the superconducting order parameter
in the cuprates. This study compared energy distribution curves
(EDCs) at two characteristic momenta, the node and the antinode,
above and below Tc to show the anisotropy of the gap. At the
antinode, the opening of a gap below Tc was detected as a leading
edge shift of the EDC to higher binding energy and the emergence of
a sharp quasi-particle peak at�sc ⇠30meV (upper EDCs in Fig. 2a).
In contrast, the spectrum at the node does not show a shift in the
leading edge gap across Tc and the sharpening of the spectrum at
low temperature is predominantly of thermal origin (lower EDCs
in Fig. 2a).
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Does the Hubbard model have a superconducting state?
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FIG. 11. The momentum distribution n(k) for an 8X8 lat-
tice with U =4 and P=10 at (a) half-filling ((n ) =1.0) and (b)
quarter-filling ( ( n ) =0.S). The dashed curves are the U =0 re-
sults.

significantly enhanced. One can also compare the pair-
correlation functions D with their uncorrelated counter-
parts D. The uncorrelated pair-correlation functions cor-
responding to Dd is

IV. SUMMARY

In this paper we have introduced two algorithms which
use matrix-decomposition methods to remove the nurner-

Dd= g g (—1) + G(l'+5', 1+5)G(l', I), (46)4~
where G(l', l)=(cI c& ). In Fig. 12 we show both D
and D versus ( n ) for a 4 X4 lattice. As in the case of the
d-wave pair-field susceptibility, Dd is enhanced over D
near half-filling. Unfortunately, the fillings where there is
enhancement correspond to the region where the sign
problem is worst for the simulation, so that very low tem-
peratures cannot be reached (except exactly at half-
filling). Hence, the question of whether the attractive in-
teraction ever leads to superconductivity remains open.

FIG. 12. d-wave pair correlation functions as a function of
band-filhng. The solid symbols show the full correlation func-
tions, while the open symbols show the corresponding uncorre-
lated form for which the interaction vertex is removed.

ical instabilities which have plagued simulations of
many-electron systems at very low temperatures, and we
have used these algorithms to study the properties of the
two-dimensional Hubbard model. The first algorithm
gives grand-canonical, finite-temperature results. The
second gives ground-state results for a fixed number of
electrons. Both algorithms can give ground-state results
at half-filling. The grand-canonical algorithm is useful at
all fillings, although sign problems, the biggest remaining
obstacle to simulations of many-electron systems, can
limit the temperatures which can be reached at some
fillings. Away from half-filling the ground-state algo-
rithm appears to have more limited usefulness, since sign
problems may become overwhelming before the ground
state is reached. The main benefit of the ground-state al-
gorithm may lie in problems where the number of parti-
cles must be set precisely, such as in determining energy
gaps. In addition, at very low fillings the ground-state al-
gorithm may be faster than the grand canonical, because
the dimension of the fermion matrix used is the number
of particles rather than the number of sites.
Our numerical results on the single-band Hubbard

model support previous conclusions concerning magnetic
properties. In particular, our results support the ex-
istence of long-range order in the ground state at half-
filling and the absence of long-range order at quarter-
filling. The magnetic susceptibility for a half-fi11ed band
with Ult =4 shows a temperature dependence similar to
that of a two-dimensional antiferromagnet. We have
determined the ground-state energy, and obtained an
upper bound to the spin wave excitation spectrum. At
one-quarter filling, the system appears to be nonmagnetic.
Near half-filling, fluctuations in the sign of the fermion
determinant make it difficult to perform simulations on
large lattices at low temperatures. We have given some
results showing how the average sign of the determinant
varies with filling, temperature, and lattice size. The be-
havior of the d-wave pair-field correlation function is

d-wave pair-field susceptibilty
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Here we use for a local s wave g, (p) = 1 and for a d 2

wave gd(p)=(cosp„—cosp )/2. We have calculated P
by summing the diagrams shown in Fig. 5. The double
line in Fig. 5 is the single-particle Green s function
dressed with the spin-fiuctuation self-energy and the box
is I I. %'e have also calculated P, shown in Fig. 5,
which contains only the dressed single-particle propaga-
tors. Both P and P can be obtained from the Monte
Carlo simulations, and results comparing P and P are
shown in Fig. 6.
As seen in Fig. 6(a), the Coulomb repulsion strongly

suppresses the s-wave pair-field susceptibility. The
enhancement of the d» -wave pair-field susceptibilityx —y
seen in Fig. 6(b) shows that the effective interaction be-
tween the quasiparticles in this channel is attractive.
Here the weak-coupling calculation overestimates P and
P. However, their difference P—P is a factor of 2 smaller
than the Monte Carlo results. This suggests that the
effective interaction is larger than the single spin-
Auctuation exchange result.
A direct approach for obtaining Monte Carlo results

for the irreducible particle-particle interaction involves
calculating the two-particle Green's function
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FIG. 6. P and P vs T for {a) s and {b) d 2 2-wave form
X

factors on an 8X8 lattice at (n ) =0.87. The solid and open
points are the Monte Carlo data for P and P, respectively, ob-
tained using U=4t. The solid and the dotted curves are the
corresponding diagrammatic results for U =4t and U=2t.

A(3, 4~1,2)=—( Tc; &(r4)c; t(r3)c; & (rz)c; t (r, ) ) . (13)

Then, Fourier transforming on both the space and imagi-
nary time variables allows us to determine

A(p', k'~p, k)= —5 51, I, Gt(p)Gt(k)

+ &k,I, + ~ , G t (p—')G t (k')—
+ r, + r, x r(p', k'~p, k)G, (p)G„(k), (14)

FIG. 5. Diagrammatic approximation for P . Here the dou-
ble lines denote the single-particle Green's function dressed
with X and the box is I I of Fig. 4. Also illustrated is P which
does not include the particle-particle interaction vertices.

FIG. 7. Diagrammatic representation relating I; {box) and I
{circle). Here the double lines are dressed single-particle propa-
gators. Usually one selects an approximate form for I z and
solves for 1. However, the Monte Carlo calculation gives I
and G so that we will solve this equation to obtain I I.
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FIG. 11. The momentum distribution n(k) for an 8X8 lat-
tice with U =4 and P=10 at (a) half-filling ((n ) =1.0) and (b)
quarter-filling ( ( n ) =0.S). The dashed curves are the U =0 re-
sults.

significantly enhanced. One can also compare the pair-
correlation functions D with their uncorrelated counter-
parts D. The uncorrelated pair-correlation functions cor-
responding to Dd is

IV. SUMMARY

In this paper we have introduced two algorithms which
use matrix-decomposition methods to remove the nurner-

Dd= g g (—1) + G(l'+5', 1+5)G(l', I), (46)4~
where G(l', l)=(cI c& ). In Fig. 12 we show both D
and D versus ( n ) for a 4 X4 lattice. As in the case of the
d-wave pair-field susceptibility, Dd is enhanced over D
near half-filling. Unfortunately, the fillings where there is
enhancement correspond to the region where the sign
problem is worst for the simulation, so that very low tem-
peratures cannot be reached (except exactly at half-
filling). Hence, the question of whether the attractive in-
teraction ever leads to superconductivity remains open.

FIG. 12. d-wave pair correlation functions as a function of
band-filhng. The solid symbols show the full correlation func-
tions, while the open symbols show the corresponding uncorre-
lated form for which the interaction vertex is removed.

ical instabilities which have plagued simulations of
many-electron systems at very low temperatures, and we
have used these algorithms to study the properties of the
two-dimensional Hubbard model. The first algorithm
gives grand-canonical, finite-temperature results. The
second gives ground-state results for a fixed number of
electrons. Both algorithms can give ground-state results
at half-filling. The grand-canonical algorithm is useful at
all fillings, although sign problems, the biggest remaining
obstacle to simulations of many-electron systems, can
limit the temperatures which can be reached at some
fillings. Away from half-filling the ground-state algo-
rithm appears to have more limited usefulness, since sign
problems may become overwhelming before the ground
state is reached. The main benefit of the ground-state al-
gorithm may lie in problems where the number of parti-
cles must be set precisely, such as in determining energy
gaps. In addition, at very low fillings the ground-state al-
gorithm may be faster than the grand canonical, because
the dimension of the fermion matrix used is the number
of particles rather than the number of sites.
Our numerical results on the single-band Hubbard

model support previous conclusions concerning magnetic
properties. In particular, our results support the ex-
istence of long-range order in the ground state at half-
filling and the absence of long-range order at quarter-
filling. The magnetic susceptibility for a half-fi11ed band
with Ult =4 shows a temperature dependence similar to
that of a two-dimensional antiferromagnet. We have
determined the ground-state energy, and obtained an
upper bound to the spin wave excitation spectrum. At
one-quarter filling, the system appears to be nonmagnetic.
Near half-filling, fluctuations in the sign of the fermion
determinant make it difficult to perform simulations on
large lattices at low temperatures. We have given some
results showing how the average sign of the determinant
varies with filling, temperature, and lattice size. The be-
havior of the d-wave pair-field correlation function is
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FIG. 4. Single spin-fluctuation exchange interaction. The
dotted line represents the bare Coulomb repulsion U, and the
dashed lines are the reduced Coulomb repulsion U.
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The approximate I I, Eq. (10), can be compared with
the Monte Carlo data in an indirect way by using it to
compute the pair-field susceptibilities

P.= J dr(Sa(r)a'. (0)), (1 1)
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6 = gg (p)cptc pt .
P

(12)
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Here we use for a local s wave g, (p) = 1 and for a d 2

wave gd(p)=(cosp„—cosp )/2. We have calculated P
by summing the diagrams shown in Fig. 5. The double
line in Fig. 5 is the single-particle Green s function
dressed with the spin-fiuctuation self-energy and the box
is I I. %'e have also calculated P, shown in Fig. 5,
which contains only the dressed single-particle propaga-
tors. Both P and P can be obtained from the Monte
Carlo simulations, and results comparing P and P are
shown in Fig. 6.
As seen in Fig. 6(a), the Coulomb repulsion strongly

suppresses the s-wave pair-field susceptibility. The
enhancement of the d» -wave pair-field susceptibilityx —y
seen in Fig. 6(b) shows that the effective interaction be-
tween the quasiparticles in this channel is attractive.
Here the weak-coupling calculation overestimates P and
P. However, their difference P—P is a factor of 2 smaller
than the Monte Carlo results. This suggests that the
effective interaction is larger than the single spin-
Auctuation exchange result.
A direct approach for obtaining Monte Carlo results

for the irreducible particle-particle interaction involves
calculating the two-particle Green's function
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FIG. 6. P and P vs T for {a) s and {b) d 2 2-wave form
X

factors on an 8X8 lattice at (n ) =0.87. The solid and open
points are the Monte Carlo data for P and P, respectively, ob-
tained using U=4t. The solid and the dotted curves are the
corresponding diagrammatic results for U =4t and U=2t.

A(3, 4~1,2)=—( Tc; &(r4)c; t(r3)c; & (rz)c; t (r, ) ) . (13)

Then, Fourier transforming on both the space and imagi-
nary time variables allows us to determine

A(p', k'~p, k)= —5 51, I, Gt(p)Gt(k)

+ &k,I, + ~ , G t (p—')G t (k')—
+ r, + r, x r(p', k'~p, k)G, (p)G„(k), (14)

FIG. 5. Diagrammatic approximation for P . Here the dou-
ble lines denote the single-particle Green's function dressed
with X and the box is I I of Fig. 4. Also illustrated is P which
does not include the particle-particle interaction vertices.

FIG. 7. Diagrammatic representation relating I; {box) and I
{circle). Here the double lines are dressed single-particle propa-
gators. Usually one selects an approximate form for I z and
solves for 1. However, the Monte Carlo calculation gives I
and G so that we will solve this equation to obtain I I.
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FIG. 11. The momentum distribution n(k) for an 8X8 lat-
tice with U =4 and P=10 at (a) half-filling ((n ) =1.0) and (b)
quarter-filling ( ( n ) =0.S). The dashed curves are the U =0 re-
sults.

significantly enhanced. One can also compare the pair-
correlation functions D with their uncorrelated counter-
parts D. The uncorrelated pair-correlation functions cor-
responding to Dd is

IV. SUMMARY

In this paper we have introduced two algorithms which
use matrix-decomposition methods to remove the nurner-

Dd= g g (—1) + G(l'+5', 1+5)G(l', I), (46)4~
where G(l', l)=(cI c& ). In Fig. 12 we show both D
and D versus ( n ) for a 4 X4 lattice. As in the case of the
d-wave pair-field susceptibility, Dd is enhanced over D
near half-filling. Unfortunately, the fillings where there is
enhancement correspond to the region where the sign
problem is worst for the simulation, so that very low tem-
peratures cannot be reached (except exactly at half-
filling). Hence, the question of whether the attractive in-
teraction ever leads to superconductivity remains open.

FIG. 12. d-wave pair correlation functions as a function of
band-filhng. The solid symbols show the full correlation func-
tions, while the open symbols show the corresponding uncorre-
lated form for which the interaction vertex is removed.

ical instabilities which have plagued simulations of
many-electron systems at very low temperatures, and we
have used these algorithms to study the properties of the
two-dimensional Hubbard model. The first algorithm
gives grand-canonical, finite-temperature results. The
second gives ground-state results for a fixed number of
electrons. Both algorithms can give ground-state results
at half-filling. The grand-canonical algorithm is useful at
all fillings, although sign problems, the biggest remaining
obstacle to simulations of many-electron systems, can
limit the temperatures which can be reached at some
fillings. Away from half-filling the ground-state algo-
rithm appears to have more limited usefulness, since sign
problems may become overwhelming before the ground
state is reached. The main benefit of the ground-state al-
gorithm may lie in problems where the number of parti-
cles must be set precisely, such as in determining energy
gaps. In addition, at very low fillings the ground-state al-
gorithm may be faster than the grand canonical, because
the dimension of the fermion matrix used is the number
of particles rather than the number of sites.
Our numerical results on the single-band Hubbard

model support previous conclusions concerning magnetic
properties. In particular, our results support the ex-
istence of long-range order in the ground state at half-
filling and the absence of long-range order at quarter-
filling. The magnetic susceptibility for a half-fi11ed band
with Ult =4 shows a temperature dependence similar to
that of a two-dimensional antiferromagnet. We have
determined the ground-state energy, and obtained an
upper bound to the spin wave excitation spectrum. At
one-quarter filling, the system appears to be nonmagnetic.
Near half-filling, fluctuations in the sign of the fermion
determinant make it difficult to perform simulations on
large lattices at low temperatures. We have given some
results showing how the average sign of the determinant
varies with filling, temperature, and lattice size. The be-
havior of the d-wave pair-field correlation function is
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Dynamical Cluster Approximation

Ḡ(K, iωn) =
Nc

N ∑
k∈𝒫K

G(k, iωn) =
Nc

N ∑
k∈𝒫K

1
iωn − εk + μ − Σc(K, iωn)

𝒢0(K, iωn) = [Ḡ−1(K, iωn) + Σc(K, iωn)]−1Σc(K, iωn) = 𝒢−1
0 (K, iωn) − G−1

c (K, iωn)

S[ϕ*, ϕ] = − ∫
β

0
dτ∫

β

0
dτ′ ∑

ij,σ

ϕ*iσ(τ)𝒢0,ij,σ(τ − τ′ )ϕjσ(τ) + ∫
β

0
dτ∑

i

Uϕ*i↑(τ)ϕi↑ϕ*i↓(τ)ϕi↓(τ)

Gc,ij,σ(τ − τ′ ) =
1
Z ∫ 𝒟[ϕ*ϕ]ϕiσ(τ)ϕ*jσ(τ′ )e−S[ϕ*,ϕ] Z = ∫ 𝒟[ϕ*ϕ]e−S[ϕ*,ϕ];

(1) Coarse-graining

(2) Cluster exclusion

(3) Quantum Monte Carlo cluster solver

(4) New self-energy

𝒢0(K, iωn) , UGc(K, iωn)

Infinite size lattice

⤻⤻ ⤻
⤻

Cluster embedded in mean-field

DCA self-consistently maps infinite size lattice to 
effective cluster embedded in dynamic  

mean-field that describes the  
remaining lattice degrees  

of freedom

Numerically exact solution of effective cluster 
problem with quantum Monte Carlo

6

DCA and DCA+ 5.5

…

DMFT: Nc=1 Nc=4 Nc=16A Exact:Nc=∞

K

k

Nc=16BNc=8

Fig. 1: Coarse-graining of momentum space: At the heart of the DCA method is a partitioning

of the first Brillouin zone into Nc patches over which the Green’s function is coarse-grained

(averaged) to represent the system by a reduced number of Nc ”cluster” degrees of freedom.

The bulk degrees of freedom not included on the cluster are taken into account as a mean-field.

For Nc = 1, the dynamical mean-field approximation is revovered, while for Nc ! 1, one

obtaines the exact result. For a given cluster size Nc, one can have different locations and

shapes of the coarse-graining patches, as illustrated for Nc =16A and 16B.

degrees of freedom, but instead uses coarse-graining to retain information about the degrees
of freedom not contained on the cluster. In the Appendix, we provide a rigorous derivation of
both the DCA and DCA+ algorithms based on approximations of the grand-potential. In the
following, we give a more physically motivated discussion of these algorithms.

2.1 General formalism

To coarse-grain the degrees of freedom, the Brillouin zone is split into Nc patches of equal size.
As illustrated in Fig. 1, each patch is represented by the cluster momentum K at the center of
the cell and a patch function

�K(k) =

8
<

:
1, if k in patch K.

0, otherwise.
(9)

is used to restrict momentum sums over momenta k inside the Kth patch. There can be different
numbers Nc of patches, with different size and shape. The basic assumption of the DCA then
is that the self-energy is only weakly momentum dependent, so it can be approximated on a
coarse grid of K-points of a finite size cluster

⌃(k, i!n) ' ⌃c(K, i!n) . (10)

Since the self-energy describes energy shift and life-time effects due to the interaction of an
electron with other electrons, the dynamics of which is represented by the Green’s function
G(k, i!n), it is generally a functional of G(k, i!n), i.e. ⌃(k, i!n) = ⌃[G(k, i!n)]. In finite
size methods, the degrees of freedom are reduced to those of a cluster by calculating the self-
energy from the cluster Green’s function, i.e. ⌃c(K, i!n) = ⌃c[Gc(K, i!n)]. In contrast, in the
DCA, all the degrees of freedom of the bulk lattice are retained, by calculating the self-energy

Hettler, Tahvildar-Zadeh, Jarrell, 
Pruschke, Krishnamurthy, PRB ’98 
Maier, Jarrell, Pruschke, Hettler, RMP ‘05
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Quantum cluster theory of superconductivity in the Hubbard model
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Antiferromagnetism and d-wave superconductivity in cuprates: A cluster dynamical
mean-field theory

A. I. Lichtenstein1 and M. I. Katsnelson2
1University of Nijmegen, 6525 ED Nijmegen, The Netherlands

2Institute of Metal Physics, 620219 Ekaterinburg, Russia
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We present an approach to investigate the interplay of antiferromagnetism and d-wave superconductivity in
the two-dimensional Hubbard model within a numerically exact cluster dynamical mean-field approximation.
Self-consistent solutions with two nonzero order parameters exist in a wide range of doping level and tem-
peratures. A linearized equation for the energy spectrum near the Fermi level has been solved. The resulting
d-wave gap has the correct magnitude and k dependence, but some distortion compared to the pure dx2!y2

superconducting order parameter due to the presence of underlying antiferromagnetic ordering.

A microscopic theory of high-temperature superconduct-
ing cuprates !HTSC’s" is still far from the final
understanding.1–3 One of the most important recent experi-
mental achievements was the discovery of the pseudogap
!PG" phenomenon above superconducting transition
temperatures4 and the existence of a sharp 41 meV resonance
below Tc related with some collective antiferromagnetic
excitations.5 Recent neutron-scattering experiments6 provide
insight for the interesting problem on the origin of a conden-
sation energy. Interplay of an antiferromagnetism !AFM"
and d-wave superconductivity (d-SC) in cuprates could be a
natural way of discussing different HTSC phenomena. This
requires a quantitative electronic structure theory including
two different types of the order parameters: AFM and d-SC.
Within such an approach one can in principle analyze the
phase diagram of HTSC compounds and resolve the long-
standing problem of competition between antiferromag-
netism and d-wave superconductivity in cuprates.7,8
A standard theoretical tool for cuprates electronic struc-

ture consists of the two-dimensional !2D" Hubbard model.1
The importance of including the realistic tight-binding spec-
trum obtained from the local-density approximation !LDA"
band structure analyses9 was realized during the last years.
Unfortunately, a most accurate quantum Monte-Carlo
!QMC" simulation of a hole-doped 2D Hubbard model has
difficulty in describing an interesting part of the HTSC phase
diagram near 15% doping at the low temperature due to a
so-called sign problem.10 The perturbation theory of d-SC
!Ref. 11" ignores the vertex corrections in the strong corre-
lation case of HTSC. Great progress in the theory of the
interacting fermions results from the developing of the dy-
namical mean-field theory.12,13 While the antiferromagnetic
phase is easy to incorporate in the single-site dynamical
mean-field theory !DMFT" approach,13 the d-wave supercon-
ductivity requires a cluster generalization of the DMFT. Dif-
ferent cluster-DMFT schemes have been proposed13,14 and
the recent application to the problem of the pseudogap in
HTSC15 has shown the efficiency of the cluster-DMFT ap-
proach. The investigation of a paramagnetic phase for the
two-dimensional Hubbard model can be simplified using a
translational symmetry,14 while the problem of a coexistence
of AFM and d-SC demands a broken-symmetry cluster cal-

culation. It is equivalent to a multiorbital DMFT approach16
and could be solved within the QMC method.17
In this paper we investigate the problem of antiferromag-

netism and d-wave superconductivity in the two-dimensional
Hubbard model using a cluster DMFT scheme.
The minimal cluster which allow us to study both AFM

and d-SC order parameters on an equal footing consists of a
2"2 system in the effective DMFT medium !Fig. 1". We
start with the extended-hopping Hubbard model on the
square lattice:

H##
i j

t i jc i$
$ c j$$#

i
Uini↑ni↓ ,

where t i j is an effective hopping and Ui local Coulomb in-
teractions. We chose nearest-neighbor hopping t#0.25 eV
and the next-nearest hopping t!/t#!0.15 for the model of
La2!xSrxCuO4.9 The total band width is W#2 eV and all
Coulomb parameters set to be U#1.2 eV (U/W#0.6). Let
us introduce the ‘‘supersite’’ as a 2"2 square plaquet. The
numeration of the atoms in the supersite is shown in Fig. 1.
It is useful to introduce the superspinor Ci

$#%ci&
$ ', where

FIG. 1. !a" A schematic representation of an antiferromagnetic d
wave 2"2 periodically repeated cluster; !b" a generic phase dia-
gram of HTSC materials; !c" the calculated values of two order
parameters: local magnetic moment M and d-SC equal time Green
function F01((#0))F(0) for different hole doping !x" at the in-
verse temperature *#60 eV!1 (T#190 K).
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d-Wave Superconductivity in the Hubbard Model
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The superconducting instabilities of the doped repulsive 2D Hubbard model are studied in the inter-
mediate to strong coupling regime with the help of the dynamical cluster approximation. To solve the
effective cluster problem we employ an extended noncrossing approximation, which allows for a transi-
tion to the broken symmetry state. At sufficiently low temperatures we find stable d-wave solutions with
off-diagonal long-range order. The maximal Tc ! 150 K occurs for a doping d ! 20% and the doping
dependence of the transition temperatures agrees well with the generic high-Tc phase diagram.

PACS numbers: 74.20.Mn, 74.25.Dw, 74.25.Jb

Introduction.—The discovery of high-Tc superconduc-
tors has stimulated strong experimental and theoretical in-
terest in the field of strongly correlated electron systems.
After a decade of intensive studies we are still far from
a complete understanding of the rich physics observed in
high-Tc cuprates [1]. Angle resolved photoemission ex-
periments on doped materials show a d-wave anisotropy
of the gap in the superconducting state [2]. In underdoped
materials even in the normal state this pseudogap persists
[2,3], which is believed to cause the unusual non-Fermi-
liquid behavior in the normal state. This emphasizes the
importance of achieving a better understanding of the su-
perconducting phase, i.e., the physical origin of the pairing
mechanism, the nature of the pairing state, and the charac-
ter of low energy excitations.

On a phenomenological basis the d-wave normal state
pseudogap as well as the transition to a superconducting
state with a d-wave order parameter has been described
within theories where short-ranged antiferromagnetic spin
fluctuations mediate pairing in the cuprates [4–6].

On a microscopic level it is believed that the Hubbard
model or closely related models like the t-J model should
capture the essential physics of the high-Tc cuprates [7].
However, despite years of intensive studies, these models
remain unsolved except in one or infinite dimensions.

Finite size quantum Monte Carlo (QMC) calculations
for the doped 2D Hubbard model in the intermediate cou-
pling regime with Coulomb repulsion U less than or equal
to the bandwidth W support the idea of a spin fluctu-
ation driven interaction mediating d-wave superconduc-
tivity [4]. But the fermion sign problem limits these
calculations to temperatures too high to observe a pos-
sible Kosterlitz-Thouless transition [4].

These limitations do not apply to approximate many par-
ticle methods like the fluctuation exchange approximation
(FLEX) [8,9]. Results of FLEX calculations for the Hub-
bard model are in agreement with QMC results, i.e., they
show evidence for a superconducting state with d-wave or-
der parameter at moderate doping for sufficiently low tem-
peratures [8,9]. But the FLEX method as an approximation
based on a perturbative expansion in U breaks down in the

strong coupling regime U . W , where W is the bare band-
width. On the other hand, it is believed that a proper de-
scription of the high-Tc cuprates in terms of the one-band
Hubbard model requires U . W , necessary for the experi-
mentally observed Mott-Hubbard insulator at half filling.

Calculations within the dynamical mean field approxi-
mation (DMFA) [10] can be performed in the strong cou-
pling regime and take place in the thermodynamic limit.
But the lack of nonlocal correlations inhibits a transition to
a state with a nonlocal (d-wave) order parameter. The re-
cently developed dynamical cluster approximation (DCA)
[11–13] is a fully causal approach which systematically in-
corporates nonlocal corrections to the DMFA by mapping
the lattice problem onto an embedded periodic cluster of
size Nc. For Nc ! 1 the DCA is equivalent to the DMFA
and by increasing the cluster size Nc the dynamic corre-
lation length can be gradually increased while the DCA
solution remains in the thermodynamic limit.

Using a Nambu-Gorkov representation of the DCA we
observe a transition to a superconducting phase in doped
systems at sufficiently low temperatures. This occurs in
the intermediate to strong coupling regime U . W and
the corresponding order parameter has d-wave symmetry.

Method.—A detailed discussion of the DCA formalism
was given in previous publications [11–13] where it was
shown to systematically restore momentum conservation
at internal diagrammatic vertices which is relinquished by
the DMFA. However, the DCA also has a simple physical
interpretation based on the observation that the self-energy
is only weakly momentum dependent for systems where
the dynamical intersite correlations have only short spatial
range. The corresponding self-energy is a functional of
the interaction U and the Green function propagators. The
latter may be calculated on a coarse grid of Nc ! LD

selected K points only, where L is the linear dimension
of the cluster of K points. Knowledge of the momentum
dependence on a finer grid may be discarded to reduce the
complexity of the problem. To this end the first Brillouin
zone is divided into Nc cells of size "2p#L$D around the
cluster momenta K (see Fig. 1). The Green functions used
to form the self-energy S"K, v$ are coarse grained, or

1524 0031-9007#00#85(7)#1524(4)$15.00 © 2000 The American Physical Society
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FIG. 2. (a) The local density of states (DOS) near the Fermi
energy and the anomalous coarse grained Green functions at the
cluster points (b) K ! !0, 0" and K ! !p, p", (c) K ! !p, 0"
and (d) K ! !0, p" in the superconducting state. The near-
est neighbor hopping integral t ! 0.25 eV, next nearest neigh-
bor hopping integral t0 ! 0, bandwidth W ! 2 eV, the on-site
Coulomb repulsion U ! 3 eV, temperature T ! 137 K, and the
doping d ! 0.19. The anomalous parts of the Green function
(b)– (d) are consistent with a d-wave order parameter.

t0 ! 0, temperature T ! 137 K, and doping d ! 0.19.
The anomalous coarse grained Green function vanishes at
the cluster points !0, 0" and !p , p" but is finite at the points
!p, 0" and !0, p", consistent with a d-wave order parame-
ter. Note that this result is independent of the initialization
of the self-energy, i.e., an additional initial s-wave con-
tribution vanishes in the course of the iteration. Thus a
possible s-wave contribution to the order parameter can be
ruled out.

The finite pair amplitude is also reflected in the local
DOS depicted in Fig. 2a, where we show the lower sub-
band of the full spectrum near the Fermi energy. It displays
the superconducting state pseudogap at zero frequency as
expected for a d-wave order parameter.

Figure 3 shows the DOS near the Fermi energy for
the same parameters as in Fig. 2, fixed temperature T !
137 K, but for various dopings. Obviously, the size of the
superconducting state pseudogap, measured as the peak to
peak distance, as well as the density of states at the Fermi
energy does not depend strongly upon doping. However
the drop in the density of states from the gap edge to the
v ! 0 value first increases, reaches a maximum at about
19% doping, then decreases again.

This behavior originates in the doping dependence
of the anomalous Green function. In the inset we plot
the coarse grained anomalous equal time Green func-
tion Ḡ12!K, t ! 0" ! Nc#N

P
k̃$cK1k̃"c2!K1k̃"#% for

K ! !p, 0". This number as a measure of the super-
conducting gap shows exactly the same behavior as the
density of states.

The anomalous components Ḡ12!K, v" become smaller
with increasing temperature and eventually vanish at a

FIG. 3. Density of states in a narrow region at the Fermi energy
for the same parameters as in Fig. 2 but for various dopings.
The gap size and the density of states at v ! 0 are independent
of doping. Inset: Equal time coarse grained anomalous Green
function Ḡ12!K, t ! 0" at K ! !p, 0".

critical temperature Tc depending on the set of parameters.
The phase diagram is shown in Fig. 4. As a function of
doping, Tc!d" has a maximum Tmax

c & 150 K at d & 19%
and strongly decreases with decreasing or increasing d.
The qualitative behavior of Tc!d" in the calculated T 2 d
region agrees well with the generic phase diagram of the
high-Tc cuprates. Unfortunately, due to the breakdown of
the NCA at very low temperatures we are not able to extend
the phase diagram beyond the region shown in Fig. 4. This
means, in particular, that we cannot predict reliable values
for dc!T ! 0", beyond which superconductivity vanishes.

Another question concerns magnetic phases, especially
antiferromagnetism. There is indeed a region of antifer-
romagnetism around half filling for a 2 3 2 cluster with
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FIG. 4. Temperature-doping phase diagram for the 2D Hub-
bard model via DCA for a Nc ! 4 cluster. The nearest neigh-
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from the finite resolution in temperature. Inset: Transition tem-
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We present an approach to investigate the interplay of antiferromagnetism and d-wave superconductivity in
the two-dimensional Hubbard model within a numerically exact cluster dynamical mean-field approximation.
Self-consistent solutions with two nonzero order parameters exist in a wide range of doping level and tem-
peratures. A linearized equation for the energy spectrum near the Fermi level has been solved. The resulting
d-wave gap has the correct magnitude and k dependence, but some distortion compared to the pure dx2!y2

superconducting order parameter due to the presence of underlying antiferromagnetic ordering.

A microscopic theory of high-temperature superconduct-
ing cuprates !HTSC’s" is still far from the final
understanding.1–3 One of the most important recent experi-
mental achievements was the discovery of the pseudogap
!PG" phenomenon above superconducting transition
temperatures4 and the existence of a sharp 41 meV resonance
below Tc related with some collective antiferromagnetic
excitations.5 Recent neutron-scattering experiments6 provide
insight for the interesting problem on the origin of a conden-
sation energy. Interplay of an antiferromagnetism !AFM"
and d-wave superconductivity (d-SC) in cuprates could be a
natural way of discussing different HTSC phenomena. This
requires a quantitative electronic structure theory including
two different types of the order parameters: AFM and d-SC.
Within such an approach one can in principle analyze the
phase diagram of HTSC compounds and resolve the long-
standing problem of competition between antiferromag-
netism and d-wave superconductivity in cuprates.7,8
A standard theoretical tool for cuprates electronic struc-

ture consists of the two-dimensional !2D" Hubbard model.1
The importance of including the realistic tight-binding spec-
trum obtained from the local-density approximation !LDA"
band structure analyses9 was realized during the last years.
Unfortunately, a most accurate quantum Monte-Carlo
!QMC" simulation of a hole-doped 2D Hubbard model has
difficulty in describing an interesting part of the HTSC phase
diagram near 15% doping at the low temperature due to a
so-called sign problem.10 The perturbation theory of d-SC
!Ref. 11" ignores the vertex corrections in the strong corre-
lation case of HTSC. Great progress in the theory of the
interacting fermions results from the developing of the dy-
namical mean-field theory.12,13 While the antiferromagnetic
phase is easy to incorporate in the single-site dynamical
mean-field theory !DMFT" approach,13 the d-wave supercon-
ductivity requires a cluster generalization of the DMFT. Dif-
ferent cluster-DMFT schemes have been proposed13,14 and
the recent application to the problem of the pseudogap in
HTSC15 has shown the efficiency of the cluster-DMFT ap-
proach. The investigation of a paramagnetic phase for the
two-dimensional Hubbard model can be simplified using a
translational symmetry,14 while the problem of a coexistence
of AFM and d-SC demands a broken-symmetry cluster cal-

culation. It is equivalent to a multiorbital DMFT approach16
and could be solved within the QMC method.17
In this paper we investigate the problem of antiferromag-

netism and d-wave superconductivity in the two-dimensional
Hubbard model using a cluster DMFT scheme.
The minimal cluster which allow us to study both AFM

and d-SC order parameters on an equal footing consists of a
2"2 system in the effective DMFT medium !Fig. 1". We
start with the extended-hopping Hubbard model on the
square lattice:

H##
i j

t i jc i$
$ c j$$#

i
Uini↑ni↓ ,

where t i j is an effective hopping and Ui local Coulomb in-
teractions. We chose nearest-neighbor hopping t#0.25 eV
and the next-nearest hopping t!/t#!0.15 for the model of
La2!xSrxCuO4.9 The total band width is W#2 eV and all
Coulomb parameters set to be U#1.2 eV (U/W#0.6). Let
us introduce the ‘‘supersite’’ as a 2"2 square plaquet. The
numeration of the atoms in the supersite is shown in Fig. 1.
It is useful to introduce the superspinor Ci

$#%ci&
$ ', where

FIG. 1. !a" A schematic representation of an antiferromagnetic d
wave 2"2 periodically repeated cluster; !b" a generic phase dia-
gram of HTSC materials; !c" the calculated values of two order
parameters: local magnetic moment M and d-SC equal time Green
function F01((#0))F(0) for different hole doping !x" at the in-
verse temperature *#60 eV!1 (T#190 K).
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understanding.1–3 One of the most important recent experi-
mental achievements was the discovery of the pseudogap
!PG" phenomenon above superconducting transition
temperatures4 and the existence of a sharp 41 meV resonance
below Tc related with some collective antiferromagnetic
excitations.5 Recent neutron-scattering experiments6 provide
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the recent application to the problem of the pseudogap in
HTSC15 has shown the efficiency of the cluster-DMFT ap-
proach. The investigation of a paramagnetic phase for the
two-dimensional Hubbard model can be simplified using a
translational symmetry,14 while the problem of a coexistence
of AFM and d-SC demands a broken-symmetry cluster cal-

culation. It is equivalent to a multiorbital DMFT approach16
and could be solved within the QMC method.17
In this paper we investigate the problem of antiferromag-

netism and d-wave superconductivity in the two-dimensional
Hubbard model using a cluster DMFT scheme.
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start with the extended-hopping Hubbard model on the
square lattice:
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The superconducting instabilities of the doped repulsive 2D Hubbard model are studied in the inter-
mediate to strong coupling regime with the help of the dynamical cluster approximation. To solve the
effective cluster problem we employ an extended noncrossing approximation, which allows for a transi-
tion to the broken symmetry state. At sufficiently low temperatures we find stable d-wave solutions with
off-diagonal long-range order. The maximal Tc ! 150 K occurs for a doping d ! 20% and the doping
dependence of the transition temperatures agrees well with the generic high-Tc phase diagram.

PACS numbers: 74.20.Mn, 74.25.Dw, 74.25.Jb

Introduction.—The discovery of high-Tc superconduc-
tors has stimulated strong experimental and theoretical in-
terest in the field of strongly correlated electron systems.
After a decade of intensive studies we are still far from
a complete understanding of the rich physics observed in
high-Tc cuprates [1]. Angle resolved photoemission ex-
periments on doped materials show a d-wave anisotropy
of the gap in the superconducting state [2]. In underdoped
materials even in the normal state this pseudogap persists
[2,3], which is believed to cause the unusual non-Fermi-
liquid behavior in the normal state. This emphasizes the
importance of achieving a better understanding of the su-
perconducting phase, i.e., the physical origin of the pairing
mechanism, the nature of the pairing state, and the charac-
ter of low energy excitations.

On a phenomenological basis the d-wave normal state
pseudogap as well as the transition to a superconducting
state with a d-wave order parameter has been described
within theories where short-ranged antiferromagnetic spin
fluctuations mediate pairing in the cuprates [4–6].

On a microscopic level it is believed that the Hubbard
model or closely related models like the t-J model should
capture the essential physics of the high-Tc cuprates [7].
However, despite years of intensive studies, these models
remain unsolved except in one or infinite dimensions.

Finite size quantum Monte Carlo (QMC) calculations
for the doped 2D Hubbard model in the intermediate cou-
pling regime with Coulomb repulsion U less than or equal
to the bandwidth W support the idea of a spin fluctu-
ation driven interaction mediating d-wave superconduc-
tivity [4]. But the fermion sign problem limits these
calculations to temperatures too high to observe a pos-
sible Kosterlitz-Thouless transition [4].

These limitations do not apply to approximate many par-
ticle methods like the fluctuation exchange approximation
(FLEX) [8,9]. Results of FLEX calculations for the Hub-
bard model are in agreement with QMC results, i.e., they
show evidence for a superconducting state with d-wave or-
der parameter at moderate doping for sufficiently low tem-
peratures [8,9]. But the FLEX method as an approximation
based on a perturbative expansion in U breaks down in the

strong coupling regime U . W , where W is the bare band-
width. On the other hand, it is believed that a proper de-
scription of the high-Tc cuprates in terms of the one-band
Hubbard model requires U . W , necessary for the experi-
mentally observed Mott-Hubbard insulator at half filling.

Calculations within the dynamical mean field approxi-
mation (DMFA) [10] can be performed in the strong cou-
pling regime and take place in the thermodynamic limit.
But the lack of nonlocal correlations inhibits a transition to
a state with a nonlocal (d-wave) order parameter. The re-
cently developed dynamical cluster approximation (DCA)
[11–13] is a fully causal approach which systematically in-
corporates nonlocal corrections to the DMFA by mapping
the lattice problem onto an embedded periodic cluster of
size Nc. For Nc ! 1 the DCA is equivalent to the DMFA
and by increasing the cluster size Nc the dynamic corre-
lation length can be gradually increased while the DCA
solution remains in the thermodynamic limit.

Using a Nambu-Gorkov representation of the DCA we
observe a transition to a superconducting phase in doped
systems at sufficiently low temperatures. This occurs in
the intermediate to strong coupling regime U . W and
the corresponding order parameter has d-wave symmetry.

Method.—A detailed discussion of the DCA formalism
was given in previous publications [11–13] where it was
shown to systematically restore momentum conservation
at internal diagrammatic vertices which is relinquished by
the DMFA. However, the DCA also has a simple physical
interpretation based on the observation that the self-energy
is only weakly momentum dependent for systems where
the dynamical intersite correlations have only short spatial
range. The corresponding self-energy is a functional of
the interaction U and the Green function propagators. The
latter may be calculated on a coarse grid of Nc ! LD

selected K points only, where L is the linear dimension
of the cluster of K points. Knowledge of the momentum
dependence on a finer grid may be discarded to reduce the
complexity of the problem. To this end the first Brillouin
zone is divided into Nc cells of size "2p#L$D around the
cluster momenta K (see Fig. 1). The Green functions used
to form the self-energy S"K, v$ are coarse grained, or
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FIG. 2. (a) The local density of states (DOS) near the Fermi
energy and the anomalous coarse grained Green functions at the
cluster points (b) K ! !0, 0" and K ! !p, p", (c) K ! !p, 0"
and (d) K ! !0, p" in the superconducting state. The near-
est neighbor hopping integral t ! 0.25 eV, next nearest neigh-
bor hopping integral t0 ! 0, bandwidth W ! 2 eV, the on-site
Coulomb repulsion U ! 3 eV, temperature T ! 137 K, and the
doping d ! 0.19. The anomalous parts of the Green function
(b)– (d) are consistent with a d-wave order parameter.

t0 ! 0, temperature T ! 137 K, and doping d ! 0.19.
The anomalous coarse grained Green function vanishes at
the cluster points !0, 0" and !p , p" but is finite at the points
!p, 0" and !0, p", consistent with a d-wave order parame-
ter. Note that this result is independent of the initialization
of the self-energy, i.e., an additional initial s-wave con-
tribution vanishes in the course of the iteration. Thus a
possible s-wave contribution to the order parameter can be
ruled out.

The finite pair amplitude is also reflected in the local
DOS depicted in Fig. 2a, where we show the lower sub-
band of the full spectrum near the Fermi energy. It displays
the superconducting state pseudogap at zero frequency as
expected for a d-wave order parameter.

Figure 3 shows the DOS near the Fermi energy for
the same parameters as in Fig. 2, fixed temperature T !
137 K, but for various dopings. Obviously, the size of the
superconducting state pseudogap, measured as the peak to
peak distance, as well as the density of states at the Fermi
energy does not depend strongly upon doping. However
the drop in the density of states from the gap edge to the
v ! 0 value first increases, reaches a maximum at about
19% doping, then decreases again.

This behavior originates in the doping dependence
of the anomalous Green function. In the inset we plot
the coarse grained anomalous equal time Green func-
tion Ḡ12!K, t ! 0" ! Nc#N

P
k̃$cK1k̃"c2!K1k̃"#% for

K ! !p, 0". This number as a measure of the super-
conducting gap shows exactly the same behavior as the
density of states.

The anomalous components Ḡ12!K, v" become smaller
with increasing temperature and eventually vanish at a

FIG. 3. Density of states in a narrow region at the Fermi energy
for the same parameters as in Fig. 2 but for various dopings.
The gap size and the density of states at v ! 0 are independent
of doping. Inset: Equal time coarse grained anomalous Green
function Ḡ12!K, t ! 0" at K ! !p, 0".

critical temperature Tc depending on the set of parameters.
The phase diagram is shown in Fig. 4. As a function of
doping, Tc!d" has a maximum Tmax

c & 150 K at d & 19%
and strongly decreases with decreasing or increasing d.
The qualitative behavior of Tc!d" in the calculated T 2 d
region agrees well with the generic phase diagram of the
high-Tc cuprates. Unfortunately, due to the breakdown of
the NCA at very low temperatures we are not able to extend
the phase diagram beyond the region shown in Fig. 4. This
means, in particular, that we cannot predict reliable values
for dc!T ! 0", beyond which superconductivity vanishes.

Another question concerns magnetic phases, especially
antiferromagnetism. There is indeed a region of antifer-
romagnetism around half filling for a 2 3 2 cluster with
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FIG. 4. Temperature-doping phase diagram for the 2D Hub-
bard model via DCA for a Nc ! 4 cluster. The nearest neigh-
bor hopping t ! 0.25 eV, next nearest neighbor hopping t0 ! 0,
and the Coulomb repulsion U ! 3 eV. The error bars result
from the finite resolution in temperature. Inset: Transition tem-
perature Tc!t0" for fixed doping d ! 0.18 as a function of the
next nearest neighbor hopping amplitude t0.
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Fig. 5 – The temperature-doping phase diagram of the 2D Hubbard model calculated with QMC and
DCA for Nc = 4, U = 2. TN and Tc were calculated from the divergences of the antiferromagnetic
and d-wave susceptibilities, respectively. T ∗ was calculated from the peak of the bulk magnetic
susceptibility.

the order of J , so magnetically mediated pairing is possible. For Nc = 4 and δ = 0.05, the
d-wave pair-field susceptibility diverges at Tc ≈ 0.021, with an exponent which is less than
one, indicating that the fluctuations beyond DMFA which suppress the antiferromagnetism
are also responsible for pairing.

The phase diagram of the system is shown in fig. 5. We are determining the phase bound-
aries by the instability of the paramagnetic phase (divergence of the corresponding suscep-
tibility). Therefore, the overlap of d-wave superconducting and antiferromagnetic phase for
dopings δ < 0.05 does not indicate a coexistence of these phases. It merely states that if the
phase with higher transition temperature is suppressed (e.g., due to impurity effects or long-
range interactions not included here) a phase transition at the lower transition temperature
might happen from the paramagnetic state.

We also include T ∗, the pseudogap temperature fixed by the peak bulk susceptibility. At
low temperatures, it serves as a boundary separating the observed Fermi-liquid and non-Fermi-
liquid behavior. For T < T ∗ and δ < 0.2 the self-energy shows non-Fermi-liquid character for
the parts of the Fermi surface closest to k = (π, 0) whereas the low-temperature self-energy
is Fermi-liquid–like for δ >∼ 0.2. The d-wave transition temperature is maximum at δ ≈ 0.05.
The superconductivity persists to large doping, with Tc dropping very slowly. In contrast to
experimental findings, the pairing instability (preceded by an AF instability) persists down
to very low doping. One possible reason for this is that the model remains very compressible
down to very low doping δ ∼ 0.025. This could be due to the lack of long-ranged dynamical
spin correlations or stripe formation which could become more relevant as Nc increases or
when multiple Hubbard planes are coupled together. The effect of such additional non-local
corrections (Nc > 4) is presently unknown. However, we believe that a finite mean-field
coupling between Hubbard planes will stabilize the character of the phase diagram presented
here as Nc increases. A finite interplane coupling will also invalidate the Mermin-Wagner
theorem, preventing a vanishing TN for the AF phase as Nc increases. Such work is currently
in progress.
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tions in model systems.
PACS. 74.20.-z – Theories and models of superconducting state.

Abstract. – The Dynamical Cluster Approximation (DCA) is used to study non-local cor-
rections to the dynamical mean-field phase diagram of the two-dimensional Hubbard model.
Regions of antiferromagnetic, d-wave superconducting, pseudo-gapped non-Fermi liquid, and
Fermi liquid behaviors are found, in rough agreement with the generic phase diagram of the
cuprates. The non-local fluctuations beyond the mean field both suppress the antiferromag-
netism and mediate the superconductivity.

Introduction. – The rich phenomenology of high-Tc superconductors [1] has stimulated
strong experimental and theoretical interest in the field of strongly correlated electron systems.
Common to all high-Tc systems is the presence of antiferromagnetic ordering in undoped
samples in proximity to a superconducting phase with a d-wave order parameter and the
normal state pseudogap dominating the physics in underdoped samples. A successful theory
must describe all these fundamental features at the same time.

The 2D Hubbard model in the intermediate coupling regime or closely related models
like the t-J model are believed to capture the essential physics of the high-Tc cuprates [2].
The antiferromagnetic phase of the cuprates is well understood. In the strong-coupling limit
U ! W , where U is the Coulomb repulsion and W the bare bandwidth, the undoped Hub-
bard model reduces to the Heisenberg model, which has been proven to describe the low-
energy spin fluctuations of the cuprate parent compounds. However, off half-filling there is no
complete understanding of the superconducting phase or the normal-state pseudogap in the
intermediate-coupling 2D Hubbard model.

Finite-size quantum Monte Carlo (QMC) calculations for the doped 2D Hubbard model
in the intermediate coupling regime with U ∼ W support the idea of a spin fluctuation driven
interaction mediating d-wave superconductivity [3]. However, the fermion sign problem and
the fact that the number of degrees of freedom grows rapidly with the lattice size limit these
c© EDP Sciences
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superconducting order parameter due to the presence of underlying antiferromagnetic ordering.

A microscopic theory of high-temperature superconduct-
ing cuprates !HTSC’s" is still far from the final
understanding.1–3 One of the most important recent experi-
mental achievements was the discovery of the pseudogap
!PG" phenomenon above superconducting transition
temperatures4 and the existence of a sharp 41 meV resonance
below Tc related with some collective antiferromagnetic
excitations.5 Recent neutron-scattering experiments6 provide
insight for the interesting problem on the origin of a conden-
sation energy. Interplay of an antiferromagnetism !AFM"
and d-wave superconductivity (d-SC) in cuprates could be a
natural way of discussing different HTSC phenomena. This
requires a quantitative electronic structure theory including
two different types of the order parameters: AFM and d-SC.
Within such an approach one can in principle analyze the
phase diagram of HTSC compounds and resolve the long-
standing problem of competition between antiferromag-
netism and d-wave superconductivity in cuprates.7,8
A standard theoretical tool for cuprates electronic struc-

ture consists of the two-dimensional !2D" Hubbard model.1
The importance of including the realistic tight-binding spec-
trum obtained from the local-density approximation !LDA"
band structure analyses9 was realized during the last years.
Unfortunately, a most accurate quantum Monte-Carlo
!QMC" simulation of a hole-doped 2D Hubbard model has
difficulty in describing an interesting part of the HTSC phase
diagram near 15% doping at the low temperature due to a
so-called sign problem.10 The perturbation theory of d-SC
!Ref. 11" ignores the vertex corrections in the strong corre-
lation case of HTSC. Great progress in the theory of the
interacting fermions results from the developing of the dy-
namical mean-field theory.12,13 While the antiferromagnetic
phase is easy to incorporate in the single-site dynamical
mean-field theory !DMFT" approach,13 the d-wave supercon-
ductivity requires a cluster generalization of the DMFT. Dif-
ferent cluster-DMFT schemes have been proposed13,14 and
the recent application to the problem of the pseudogap in
HTSC15 has shown the efficiency of the cluster-DMFT ap-
proach. The investigation of a paramagnetic phase for the
two-dimensional Hubbard model can be simplified using a
translational symmetry,14 while the problem of a coexistence
of AFM and d-SC demands a broken-symmetry cluster cal-

culation. It is equivalent to a multiorbital DMFT approach16
and could be solved within the QMC method.17
In this paper we investigate the problem of antiferromag-

netism and d-wave superconductivity in the two-dimensional
Hubbard model using a cluster DMFT scheme.
The minimal cluster which allow us to study both AFM

and d-SC order parameters on an equal footing consists of a
2"2 system in the effective DMFT medium !Fig. 1". We
start with the extended-hopping Hubbard model on the
square lattice:
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where t i j is an effective hopping and Ui local Coulomb in-
teractions. We chose nearest-neighbor hopping t#0.25 eV
and the next-nearest hopping t!/t#!0.15 for the model of
La2!xSrxCuO4.9 The total band width is W#2 eV and all
Coulomb parameters set to be U#1.2 eV (U/W#0.6). Let
us introduce the ‘‘supersite’’ as a 2"2 square plaquet. The
numeration of the atoms in the supersite is shown in Fig. 1.
It is useful to introduce the superspinor Ci
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FIG. 1. !a" A schematic representation of an antiferromagnetic d
wave 2"2 periodically repeated cluster; !b" a generic phase dia-
gram of HTSC materials; !c" the calculated values of two order
parameters: local magnetic moment M and d-SC equal time Green
function F01((#0))F(0) for different hole doping !x" at the in-
verse temperature *#60 eV!1 (T#190 K).
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We present an approach to investigate the interplay of antiferromagnetism and d-wave superconductivity in
the two-dimensional Hubbard model within a numerically exact cluster dynamical mean-field approximation.
Self-consistent solutions with two nonzero order parameters exist in a wide range of doping level and tem-
peratures. A linearized equation for the energy spectrum near the Fermi level has been solved. The resulting
d-wave gap has the correct magnitude and k dependence, but some distortion compared to the pure dx2!y2

superconducting order parameter due to the presence of underlying antiferromagnetic ordering.
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understanding.1–3 One of the most important recent experi-
mental achievements was the discovery of the pseudogap
!PG" phenomenon above superconducting transition
temperatures4 and the existence of a sharp 41 meV resonance
below Tc related with some collective antiferromagnetic
excitations.5 Recent neutron-scattering experiments6 provide
insight for the interesting problem on the origin of a conden-
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The superconducting instabilities of the doped repulsive 2D Hubbard model are studied in the inter-
mediate to strong coupling regime with the help of the dynamical cluster approximation. To solve the
effective cluster problem we employ an extended noncrossing approximation, which allows for a transi-
tion to the broken symmetry state. At sufficiently low temperatures we find stable d-wave solutions with
off-diagonal long-range order. The maximal Tc ! 150 K occurs for a doping d ! 20% and the doping
dependence of the transition temperatures agrees well with the generic high-Tc phase diagram.
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Introduction.—The discovery of high-Tc superconduc-
tors has stimulated strong experimental and theoretical in-
terest in the field of strongly correlated electron systems.
After a decade of intensive studies we are still far from
a complete understanding of the rich physics observed in
high-Tc cuprates [1]. Angle resolved photoemission ex-
periments on doped materials show a d-wave anisotropy
of the gap in the superconducting state [2]. In underdoped
materials even in the normal state this pseudogap persists
[2,3], which is believed to cause the unusual non-Fermi-
liquid behavior in the normal state. This emphasizes the
importance of achieving a better understanding of the su-
perconducting phase, i.e., the physical origin of the pairing
mechanism, the nature of the pairing state, and the charac-
ter of low energy excitations.

On a phenomenological basis the d-wave normal state
pseudogap as well as the transition to a superconducting
state with a d-wave order parameter has been described
within theories where short-ranged antiferromagnetic spin
fluctuations mediate pairing in the cuprates [4–6].

On a microscopic level it is believed that the Hubbard
model or closely related models like the t-J model should
capture the essential physics of the high-Tc cuprates [7].
However, despite years of intensive studies, these models
remain unsolved except in one or infinite dimensions.

Finite size quantum Monte Carlo (QMC) calculations
for the doped 2D Hubbard model in the intermediate cou-
pling regime with Coulomb repulsion U less than or equal
to the bandwidth W support the idea of a spin fluctu-
ation driven interaction mediating d-wave superconduc-
tivity [4]. But the fermion sign problem limits these
calculations to temperatures too high to observe a pos-
sible Kosterlitz-Thouless transition [4].

These limitations do not apply to approximate many par-
ticle methods like the fluctuation exchange approximation
(FLEX) [8,9]. Results of FLEX calculations for the Hub-
bard model are in agreement with QMC results, i.e., they
show evidence for a superconducting state with d-wave or-
der parameter at moderate doping for sufficiently low tem-
peratures [8,9]. But the FLEX method as an approximation
based on a perturbative expansion in U breaks down in the

strong coupling regime U . W , where W is the bare band-
width. On the other hand, it is believed that a proper de-
scription of the high-Tc cuprates in terms of the one-band
Hubbard model requires U . W , necessary for the experi-
mentally observed Mott-Hubbard insulator at half filling.

Calculations within the dynamical mean field approxi-
mation (DMFA) [10] can be performed in the strong cou-
pling regime and take place in the thermodynamic limit.
But the lack of nonlocal correlations inhibits a transition to
a state with a nonlocal (d-wave) order parameter. The re-
cently developed dynamical cluster approximation (DCA)
[11–13] is a fully causal approach which systematically in-
corporates nonlocal corrections to the DMFA by mapping
the lattice problem onto an embedded periodic cluster of
size Nc. For Nc ! 1 the DCA is equivalent to the DMFA
and by increasing the cluster size Nc the dynamic corre-
lation length can be gradually increased while the DCA
solution remains in the thermodynamic limit.

Using a Nambu-Gorkov representation of the DCA we
observe a transition to a superconducting phase in doped
systems at sufficiently low temperatures. This occurs in
the intermediate to strong coupling regime U . W and
the corresponding order parameter has d-wave symmetry.

Method.—A detailed discussion of the DCA formalism
was given in previous publications [11–13] where it was
shown to systematically restore momentum conservation
at internal diagrammatic vertices which is relinquished by
the DMFA. However, the DCA also has a simple physical
interpretation based on the observation that the self-energy
is only weakly momentum dependent for systems where
the dynamical intersite correlations have only short spatial
range. The corresponding self-energy is a functional of
the interaction U and the Green function propagators. The
latter may be calculated on a coarse grid of Nc ! LD

selected K points only, where L is the linear dimension
of the cluster of K points. Knowledge of the momentum
dependence on a finer grid may be discarded to reduce the
complexity of the problem. To this end the first Brillouin
zone is divided into Nc cells of size "2p#L$D around the
cluster momenta K (see Fig. 1). The Green functions used
to form the self-energy S"K, v$ are coarse grained, or
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FIG. 2. (a) The local density of states (DOS) near the Fermi
energy and the anomalous coarse grained Green functions at the
cluster points (b) K ! !0, 0" and K ! !p, p", (c) K ! !p, 0"
and (d) K ! !0, p" in the superconducting state. The near-
est neighbor hopping integral t ! 0.25 eV, next nearest neigh-
bor hopping integral t0 ! 0, bandwidth W ! 2 eV, the on-site
Coulomb repulsion U ! 3 eV, temperature T ! 137 K, and the
doping d ! 0.19. The anomalous parts of the Green function
(b)– (d) are consistent with a d-wave order parameter.

t0 ! 0, temperature T ! 137 K, and doping d ! 0.19.
The anomalous coarse grained Green function vanishes at
the cluster points !0, 0" and !p , p" but is finite at the points
!p, 0" and !0, p", consistent with a d-wave order parame-
ter. Note that this result is independent of the initialization
of the self-energy, i.e., an additional initial s-wave con-
tribution vanishes in the course of the iteration. Thus a
possible s-wave contribution to the order parameter can be
ruled out.

The finite pair amplitude is also reflected in the local
DOS depicted in Fig. 2a, where we show the lower sub-
band of the full spectrum near the Fermi energy. It displays
the superconducting state pseudogap at zero frequency as
expected for a d-wave order parameter.

Figure 3 shows the DOS near the Fermi energy for
the same parameters as in Fig. 2, fixed temperature T !
137 K, but for various dopings. Obviously, the size of the
superconducting state pseudogap, measured as the peak to
peak distance, as well as the density of states at the Fermi
energy does not depend strongly upon doping. However
the drop in the density of states from the gap edge to the
v ! 0 value first increases, reaches a maximum at about
19% doping, then decreases again.

This behavior originates in the doping dependence
of the anomalous Green function. In the inset we plot
the coarse grained anomalous equal time Green func-
tion Ḡ12!K, t ! 0" ! Nc#N

P
k̃$cK1k̃"c2!K1k̃"#% for

K ! !p, 0". This number as a measure of the super-
conducting gap shows exactly the same behavior as the
density of states.

The anomalous components Ḡ12!K, v" become smaller
with increasing temperature and eventually vanish at a

FIG. 3. Density of states in a narrow region at the Fermi energy
for the same parameters as in Fig. 2 but for various dopings.
The gap size and the density of states at v ! 0 are independent
of doping. Inset: Equal time coarse grained anomalous Green
function Ḡ12!K, t ! 0" at K ! !p, 0".

critical temperature Tc depending on the set of parameters.
The phase diagram is shown in Fig. 4. As a function of
doping, Tc!d" has a maximum Tmax

c & 150 K at d & 19%
and strongly decreases with decreasing or increasing d.
The qualitative behavior of Tc!d" in the calculated T 2 d
region agrees well with the generic phase diagram of the
high-Tc cuprates. Unfortunately, due to the breakdown of
the NCA at very low temperatures we are not able to extend
the phase diagram beyond the region shown in Fig. 4. This
means, in particular, that we cannot predict reliable values
for dc!T ! 0", beyond which superconductivity vanishes.

Another question concerns magnetic phases, especially
antiferromagnetism. There is indeed a region of antifer-
romagnetism around half filling for a 2 3 2 cluster with
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FIG. 4. Temperature-doping phase diagram for the 2D Hub-
bard model via DCA for a Nc ! 4 cluster. The nearest neigh-
bor hopping t ! 0.25 eV, next nearest neighbor hopping t0 ! 0,
and the Coulomb repulsion U ! 3 eV. The error bars result
from the finite resolution in temperature. Inset: Transition tem-
perature Tc!t0" for fixed doping d ! 0.18 as a function of the
next nearest neighbor hopping amplitude t0.
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Fig. 5 – The temperature-doping phase diagram of the 2D Hubbard model calculated with QMC and
DCA for Nc = 4, U = 2. TN and Tc were calculated from the divergences of the antiferromagnetic
and d-wave susceptibilities, respectively. T ∗ was calculated from the peak of the bulk magnetic
susceptibility.

the order of J , so magnetically mediated pairing is possible. For Nc = 4 and δ = 0.05, the
d-wave pair-field susceptibility diverges at Tc ≈ 0.021, with an exponent which is less than
one, indicating that the fluctuations beyond DMFA which suppress the antiferromagnetism
are also responsible for pairing.

The phase diagram of the system is shown in fig. 5. We are determining the phase bound-
aries by the instability of the paramagnetic phase (divergence of the corresponding suscep-
tibility). Therefore, the overlap of d-wave superconducting and antiferromagnetic phase for
dopings δ < 0.05 does not indicate a coexistence of these phases. It merely states that if the
phase with higher transition temperature is suppressed (e.g., due to impurity effects or long-
range interactions not included here) a phase transition at the lower transition temperature
might happen from the paramagnetic state.

We also include T ∗, the pseudogap temperature fixed by the peak bulk susceptibility. At
low temperatures, it serves as a boundary separating the observed Fermi-liquid and non-Fermi-
liquid behavior. For T < T ∗ and δ < 0.2 the self-energy shows non-Fermi-liquid character for
the parts of the Fermi surface closest to k = (π, 0) whereas the low-temperature self-energy
is Fermi-liquid–like for δ >∼ 0.2. The d-wave transition temperature is maximum at δ ≈ 0.05.
The superconductivity persists to large doping, with Tc dropping very slowly. In contrast to
experimental findings, the pairing instability (preceded by an AF instability) persists down
to very low doping. One possible reason for this is that the model remains very compressible
down to very low doping δ ∼ 0.025. This could be due to the lack of long-ranged dynamical
spin correlations or stripe formation which could become more relevant as Nc increases or
when multiple Hubbard planes are coupled together. The effect of such additional non-local
corrections (Nc > 4) is presently unknown. However, we believe that a finite mean-field
coupling between Hubbard planes will stabilize the character of the phase diagram presented
here as Nc increases. A finite interplane coupling will also invalidate the Mermin-Wagner
theorem, preventing a vanishing TN for the AF phase as Nc increases. Such work is currently
in progress.
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Abstract. – The Dynamical Cluster Approximation (DCA) is used to study non-local cor-
rections to the dynamical mean-field phase diagram of the two-dimensional Hubbard model.
Regions of antiferromagnetic, d-wave superconducting, pseudo-gapped non-Fermi liquid, and
Fermi liquid behaviors are found, in rough agreement with the generic phase diagram of the
cuprates. The non-local fluctuations beyond the mean field both suppress the antiferromag-
netism and mediate the superconductivity.

Introduction. – The rich phenomenology of high-Tc superconductors [1] has stimulated
strong experimental and theoretical interest in the field of strongly correlated electron systems.
Common to all high-Tc systems is the presence of antiferromagnetic ordering in undoped
samples in proximity to a superconducting phase with a d-wave order parameter and the
normal state pseudogap dominating the physics in underdoped samples. A successful theory
must describe all these fundamental features at the same time.

The 2D Hubbard model in the intermediate coupling regime or closely related models
like the t-J model are believed to capture the essential physics of the high-Tc cuprates [2].
The antiferromagnetic phase of the cuprates is well understood. In the strong-coupling limit
U ! W , where U is the Coulomb repulsion and W the bare bandwidth, the undoped Hub-
bard model reduces to the Heisenberg model, which has been proven to describe the low-
energy spin fluctuations of the cuprate parent compounds. However, off half-filling there is no
complete understanding of the superconducting phase or the normal-state pseudogap in the
intermediate-coupling 2D Hubbard model.

Finite-size quantum Monte Carlo (QMC) calculations for the doped 2D Hubbard model
in the intermediate coupling regime with U ∼ W support the idea of a spin fluctuation driven
interaction mediating d-wave superconductivity [3]. However, the fermion sign problem and
the fact that the number of degrees of freedom grows rapidly with the lattice size limit these
c© EDP Sciences
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The cluster size dependence of superconductivity in the conventional two-dimensional Hubbard model,
commonly believed to describe high-temperature superconductors, is systematically studied using the
dynamical cluster approximation and quantum Monte Carlo simulations as a cluster solver. Because of the
nonlocality of the d-wave superconducting order parameter, the results on small clusters show large size
and geometry effects. In large enough clusters, the results are independent of the cluster size and display a
finite temperature instability to d-wave superconductivity.
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Despite years of active research, the understanding of
pairing in the high-temperature ‘‘cuprate’’ superconductors
(HTSC) remains one of the most important outstanding
problems in condensed matter physics. While conventional
superconductors are well described by the BCS theory, the
pairing mechanism in HTSC is believed to be of entirely
different nature. Strong electronic correlations play a cru-
cial role in HTSC, not only for superconductivity but also
for their unusual normal state behavior. Hence, models
describing itinerant correlated electrons, in particular, the
two-dimensional (2D) Hubbard model and its strong-
coupling limit, the 2D t-J model, were proposed to capture
the essential physics of the CuO planes in HTSC [1,2].
Despite the fact that these models are among the mostly
studied models in condensed matter physics, the question
of whether they contain enough ingredients to describe
HTSC remains an unsolved problem.

Many different techniques, from analytic to numerical,
have been applied to study superconductivity in these
models. The Mermin-Wagner theorem [3] and the rigorous
results in Ref. [4] preclude dx2!y2 superconducting long-
range order at finite temperatures in the 2D models.
Superconductivity may, however, exist—as in the attrac-
tive Hubbard model—as topological order at finite tem-
peratures below the Kosterlitz-Thouless (KT) transition
temperature [5]. Recent renormalization group studies in-
dicate that the ground state of the doped weak-coupling 2D
Hubbard model is superconducting with a dx2!y2 -wave
order parameter [6]. The possibility of dx2!y2 -wave pairing
in the 2D Hubbard and t-J models was also indicated in a
number of numerical studies of finite system size [for a
review, see [7] ]. Only recent numerical calculations for the
t-J model provided evidence for pairing at T " 0 in rela-
tively large systems for physically relevant values of J=t
[8]. Quantum Monte Carlo (QMC) simulations are also
employed to search for such a transition [9]. These studies
indicate an enhancement of the pairing correlations in the
dx2!y2 channel with decreasing temperature. Unfortunately
the Fermion sign problem limits these studies to tempera-

tures too high to study a possible KT transition. Another
difficulty of these methods arises from their strong finite-
size effects, often ruling out the reliable extraction of low-
energy scales. In fact, a reliable finite-size scaling has only
recently been achieved in the negative-U model [10],
where the relevant temperature scales are much higher.
The available results for the positive-U model so far
have thus been inconclusive, and a treatment within a
nonperturbative scheme that goes beyond the conventional
finite-size techniques is clearly necessary to resolve the
controversy as to whether there exists finite temperature
superconductivity in these models.

In this Letter we use the dynamical cluster approxima-
tion (DCA) [11] [for a review, see [12] ] to explore the
superconducting instability in the 2D Hubbard model

H " !t
X

hiji;!
cyi!cj! #U

X
i
ni"ni#; (1)

where c$y%i! (creates) destroys an electron with spin! on site
i, ni! is the corresponding number operator, t the hopping
amplitude between nearest neighbors h. . .i, and U the on-
site Coulomb repulsion. In the DCA we take advantage of
the short length scale of spin correlations in optimally
doped HTSC [13] to map the original lattice model onto
a periodic cluster of size Nc " Lc & Lc embedded in a
self-consistent host. Thus, correlations up to a range " &
Lc are treated accurately, while the physics on longer
length scales is described at the mean-field level. By
increasing the cluster size, it thus allows us to systemati-
cally interpolate between the single-site dynamical mean-
field result and the exact result while remaining in the
thermodynamic limit. We solve the cluster problem using
QMC simulations [14].

We present results of large cluster calculations—up to
26 sites—that indicate that the 2D Hubbard model has a
superconducting instability at a finite temperature. This
conclusion is reached due to several factors: simulations
on small clusters, where d-wave order is topologically
allowed, show large finite-size and geometry effects lead-
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We use cluster dynamical mean-field theory to study the simplest models of correlated electrons, the Hub-
bard model and the t-J model. We use a plaquette embedded in a medium as a reference frame to compute and
interpret the physical properties of these models. We study various observables such as electronic lifetimes, one
electron spectra, optical conductivities, superconducting stiffness, and the spin response in both the normal and
the superconducting state in terms of correlation functions of the embedded cluster. We find that the shortest
electron lifetime occurs near optimal doping where the superconducting critical temperature is maximal. A
second critical doping connected to the change of topology of the Fermi surface is also identified. The
mean-field theory provides a simple physical picture of three doping regimes, the underdoped, the overdoped,
and the optimally doped regime, in terms of the physics of the quantum plaquette impurity model. We compare
the plaquette dynamical mean-field theory results with earlier resonating valence bond mean-field theories,
noting the improved description of the momentum space anisotropy of the normal state properties and the
doping dependence of the coefficient of the linear temperature dependence of the superfluid density in the
superconducting state.
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I. INTRODUCTION

The origin and the nature of superconductivity in strongly
correlated materials is one of the greatest challenges in mod-
ern condensed matter theory. It received renewed attention
with the discovery of the high temperature superconductivity
in copper oxide based materials. While these materials have
been studied intensively over the past decades, there is still
no consensus as to what are the essential physical ingredients
responsible for the high temperature superconductivity phe-
nomena and how it should be modeled.1–14

Anderson proposed that the high temperature supercon-
ductivity phenomena was intimately connected with the
proximity to a parent Mott-insulating state.15,16 Developing
precise connections between the proximity to a Mott insula-
tor and high temperature superconductivity has proven to be
a difficult problem. Suggestive conclusions have been
reached using slave boson methods,17,18 variational wave
functions,19,20 and gauge theory techniques.2 However, lack
of theoretical tools has made difficult to prove that simple
models are sufficient to explain the phenomena surrounding
cuprates. For example, it is still strongly debated whether the
existence of superconductivity with a high critical tempera-
ture and a pseudogap is a genuine property of the models
studied, or an artifact of the approximations employed to
solve the model.

Over the past decade, significant progress in the field of
correlated electrons has been achieved through the develop-
ment of dynamical mean-field theory.21,22 In its single site
version, this method describes lattice models in terms of
a single site impurity problem embedded in a medium.
The method has been very successful in describing and
even predicting numerous properties of a large number of
materials.23–31 Cluster extensions of this method, cluster dy-
namical mean-field theory !CDMFT" !for reviews, see Refs.
23 and 32", have been proposed and are currently a subject of
intensive investigations.

In this paper, we apply the cluster dynamical mean-field
approach to construct a mean-field theory of the simplest
models of strongly correlated materials, the one band Hub-
bard and t-J models, using a 2"2 cluster, namely, the
plaquette as the basic mean-field reference frame.

There are several motivations for constructing a mean-
field theory based on a plaquette embedded in a dynamical
bath of conduction electrons: !a" A plaquette embedded in a
self-consistent medium can describe the physics of singlet
formation, which is very important in the t-J and Hubbard
models. There are two roads of singlet formation, the Kondo
effect, in which a spin can form a singlet with a bath of
conduction electrons, and the superexchange mechanism,
which locks two spins on a bond in a singlet state. !b" A
plaquette in a medium is a minimal unit to describe d-wave
superconductivity and antiferromagnetism on the same foot-
ing, given that their order parameters !as well as that of other
forms of order competing with superconductivity" naturally
fit on a plaquette.

From a methodological perspective, mean-field theory al-
lows one to study the physical properties of different phases
as a function of control parameters, whether they are stable
or metastable. For example, we will study the evolution of
the superconducting state, together with the underlying nor-
mal state, which appears as a metastable phase below TC.
From a theoretical perspective, metastable states are only
defined within a mean-field theory, but they are of clear
physical relevance. Furthermore, comparison response or
correlation functions in both the normal and the supercon-
ducting state give important clues as to the mechanism of
superconductivity.

A clear understanding of the evolution of well defined
mean-field phases of the simplified model is an important
step toward constructing the phase diagram of realistic
Hamiltonians. Even if a phase is not realized as the thermo-
dynamically stable phase in a mean-field treatment of a
simplified Hamiltonian, it could be stabilized by adding
additional longer range terms in the Hamiltonian without sig-
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The sign of the anomalous components chosen by the system
is !#0

an =−!0#
an . Within C-DMFT, this is precisely the nearest-

neighbor self-energy and its lattice analog !using the original
C-DMFT periodization69" takes the form !k= 1

2 !cos kx

−cos ky"!0#
an .

The anomalous self-energy !#0
an is plotted in Fig. 19. The

upper part of the figure shows the CTQMC results within
C-DMFT, while the lower part shows the NCA results within
EDCA. In both cases, the function is monotonically decreas-
ing with imaginary frequency and is largest at optimal dop-
ing. Furthermore, at the low values of the Matsubara fre-
quency, the anomalous self-energy exhibits a fast upturn and
sublinear frequency behavior that becomes less pronounced
as the doping is reduced. This trend is likely due to the
reduction of density of states in the pseudogap region.

The anomalous self-energy obeys a spectral representa-
tion

!k
an!i"n" = !k
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#

Im !k
an!""
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The infinite frequency value of the self-energy vanishes in
the Hubbard model but is nonzero in the t-J model, and is
related to the order parameter of the system Fq!%=0"
through the following exact relation:

!k
an!$" = −

3
!1 + &"2&

q
Jk−qFq!% = 0" , !41"

where Fq!%=0"= 'cq↑c−q↓(.
Notice that simpler mean-field theories of the t-J model

such as the slave boson mean-field theory88 assume only the
static, frequency independent anomalous self-energy. Other
approaches based on the equation of motion for the Hubbard

operators89 capture a frequency dependent order parameter
but neglect the static infinite frequency component. A similar
analysis of the pairing interaction has recently been carried
out for the ladders in Ref. 90.

The existence of a finite value of the anomalous self-
energy of the t-J model at infinite frequency should be inter-
preted as the existence of a nonzero value for anomalous
self-energy in the Hubbard model at a scale of the order U.

The value of the anomalous self-energy at zero frequency
and low temperature, and the gap !defined as the distance
between the positive and negative energy peaks in the tun-
neling density of states divided by 2" are similar in all ver-
sions of the cluster DMFT. For the parameters used in our
study !J / t=0.3, near optimal doping", the anomalous self-
energy is of the order of unity at low temperature !see the
upper panel of Fig. 19".

On the other hand, TC, the superconducting order param-
eter, and the value of anomalous !an!$" are more sensitive
quantities and differ between the various cluster schemes.
The schemes with higher TC !extended versions of CDMFT"
show slower decrease of the anomalous self-energy, larger
infinite frequency component of the anomalous self-energy,
and larger value of the superconducting order parameter. In
C-DMFT, the maximum value of the order parameter is
around 0.02 !see Fig. 20", which is approximately eight
times smaller than the maximum achieved in EDCA. Conse-
quently, the static pairing in C-DMFT is very small, while it
reaches almost 1 /3 in extended versions of the cluster
DMFT !both in EDCA and in EC-DMFT", i.e., the magni-
tude of the anomalous self-energy at infinity as compared to
the value at zero shown in Fig. 19.

From the anomalous Green’s function, we can extract the
order parameter, i.e., the anomalous Green’s function at
equal time F#0!%=0". The order parameter versus doping as
obtained by the CTQMC and C-DMFT is shown in Fig. 20.
It has a domelike shape and tracks the value of the critical
temperature, just like in BCS theory. In the same figure, we
also display critical temperature TC at optimal doping. Due
to a critical slowing down in the region of transition, many
DMFT iterations are needed to determine the critical tem-
perature.

The temperature dependence of the related quantity, the
anomalous self-energy at infinity, computed with NCA is
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FIG. 20. !Color online" Order
parameter in C-DMFT computed
with CTQMC at T=0.5Tcmax. The
critical temperature !in units of t"
for a few doping values is also
displayed.
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Proximity to a Mott insulating phase is likely to be an important physical ingredient of a theory that aims to
describe high-temperature superconductivity in the cuprates. Quantum cluster methods are well suited to
describe the Mott phase. Hence, as a step toward a quantitative theory of the competition between antiferro-
magnetism and d-wave superconductivity in the cuprates, we use cellular dynamical mean-field theory to
compute zero-temperature properties of the two-dimensional square lattice Hubbard model. The d-wave order
parameter is found to scale like the superexchange coupling J for on-site interaction U comparable to or larger
than the bandwidth. The order parameter also assumes a dome shape as a function of doping, while, by
contrast, the gap in the single-particle density of states decreases monotonically with increasing doping. In the
presence of a finite second neighbor hopping t!, the zero-temperature phase diagram displays the electron-hole
asymmetric competition between antiferromagnetism and superconductivity that is observed experimentally in
the cuprates. Adding realistic third neighbor hopping t" improves the overall agreement with the experimental
phase diagram. Since band parameters can vary depending on the specific cuprate considered, the sensitivity of
the theoretical phase diagram to band parameters challenges the commonly held assumption that the doping vs
Tc /Tc

max phase diagram of the cuprates is universal. The calculated angle-resolved photoemission spectrum
displays the observed electron-hole asymmetry. The tendency to homogeneous coexistence of the supercon-
ducting and antiferromagnetic order parameters is stronger than observed in most experiments but consistent
with many theoretical results and with experiments in some layered high-temperature superconductors. Clearly,
our calculations reproduce important features of d-wave superconductivity in the cuprates that would otherwise
be considered anomalous from the point of view of the standard Bardeen–Cooper–Schrieffer approach. At
strong coupling, d-wave superconductivity and antiferromagnetism naturally appear as two equally important
competing instabilities of the normal phase of the same underlying Hamiltonian.
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I. INTRODUCTION

Superconductivity in the cuprates and in the layered or-
ganics of the BEDT family is highly anomalous, i.e., it dis-
plays a number of properties that cannot be explained by the
Bardeen–Cooper–Schrieffer !BCS" theory modified for
d-wave symmetry. For example, in the cuprates, supercon-
ductivity emerges upon doping an antiferromagnetic Mott
insulator. Moreover, in the so-called underdoped region near
the insulator, experiments show that the gap in the single-
particle density of states decreases upon doping while
Tc /Tc

max or the order parameter increases, which is in sharp
contrast with expectations from standard BCS theory.1 In the
organics, antiferromagnetism and superconductivity are
separated by a first-order transition and a Mott transition
separates the corresponding states with no order. For both the
organics and the cuprates, there is much evidence from ap-
proximate solutions that the essential low-energy physics is
described by the one-band Hubbard model for the appropri-
ate lattice, band structure, interaction, and dopings.2–4

Theoretically understanding anomalous superconductivity
in a quantitative manner is still a challenge. An important
step toward this goal is to obtain accurate solutions of the

Hubbard model. Despite the apparent simplicity of the
model, it is extremely difficult to solve in the relevant regime
where neither the potential !U" nor the kinetic energy !8t"
dominate. In recent years, a number of numerical methods
have shed light on this problem. In this paper, we will de-
scribe the results obtained from the cellular dynamical mean-
field theory5 !CDMFT" for d-wave superconductivity and its
competition with antiferromagnetism in the cuprates. The
corresponding study in the organics has been published.6,7

The results will be compared with other quantum cluster
methods,8–10 mean-field theories, slave boson, and with
variational approaches.

Our choice of method is motivated by the following con-
siderations. Since anomalous superconductivity appears near
antiferromagnetic Mott insulating phases, it is important to
use approaches that correctly treat these phases. CDMFT is a
generalization of the dynamical mean-field theory
!DMFT".11,12 The latter method describes the Mott insulator-
metal transition of the Hubbard model exactly in the limit of
infinite dimensions. DMFT is, by construction, a local theory
that maps the full interacting many-body lattice problem
onto a single-site embedded in a self-consistent bath. Unfor-
tunately, the local nature of the spatial correlations inherent
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have checked that in the coexistence region, even if we start
the iterations with a fully converged antiferromagnetic solu-
tion, the final solution is the same as the one exhibited in Fig.
3.

From Fig. 3, we observe that antiferromagnetism occurs
over a narrower range of dopings as U increases since J then
decreases !the trend would be opposite at weak coupling".
There is a homogeneous coexistence of antiferromagnetism
and d-wave superconductivity near half-filling in all cases.
That phase can be called a superconducting antiferromagnet
or an antiferromagnetic superconductor. d-wave supercon-
ductivity exists by itself at large electron or hole doping. The
transition from a homogeneous coexistence phase to pure
d-wave superconductivity is second order, except for large
values of U=12t on the electron-doped side. Qualitatively, it
seems that U=8t gives a better agreement with the experi-
mental phase diagram of the cuprates since, in that case,
superconductivity appears alone over a broader range of dop-
ings on the hole than on the electron-doped side. Also, the
value of the maximum d-wave order parameter is larger on
the hole- than on the electron-doped side, showing that com-
petition with antiferromagnetism can reverse the trend ob-
served as a function of t! in Fig. 2. Choosing a value of U on
the electron-doped side43,44 that is smaller than the value of
U for the hole-doped side would also help in making the
tendency for d-wave superconductivity smaller on the
electron-doped side, as observed experimentally. The asym-
metry in the maximum value of the d-wave order parameter
for hole and electron doping is also observed for U=6t, but
in that case the antiferromagnetism occurs over a doping
range that is unreasonably large compared to the experiment.
For U=8t, optimal doping occurs around 15% in the hole-
doped case. U=8t is also consistent with the value necessary
to explain details of the spin wave spectrum obtained by
neutron measurements at half-filling.45,46 All these qualitative
trends agree with the experimental phase diagram except for
the following: antiferromagnetism extends over a broader
range of dopings on the hole-doped side than experimentally
observed !see, however, the next section" and there is a
strong tendency for homogeneous coexistence of the two or-
der parameters, even though the d-wave order parameter is
suppressed by the presence of antiferromagnetic order. While
the suppression of d-wave superconductivity by antiferro-
magnetism is appreciable, the reverse effect is almost
negligible.47 This is also observed in mean-field studies.48

Homogeneous coexistence of antiferromagnetism and
d-wave superconductivity is not generic in the cuprates. Nev-
ertheless, it has been observed recently in ordered layered
compounds49 and in the electron-doped cuprate PrCeCuO.50

Although such coexistence is not observed in compounds
such as YBa2Cu3O7−x !YBCO", it appears in La2CuO4.11 at
zero field and in La1.9Sr0.1CuO4 under applied magnetic
field.51 The agreement of the latter field-dependent
experiments52 with the theoretical predictions53 reveals the
proximity of single-phase d-wave superconductivity with ho-
mogeneous coexistence of antiferromagnetism and d-wave
superconductivity. Other La2−xSrxCuO4 !LSCO"
compounds54,55 reveal the proximity of antiferromagnetism
and d-wave superconductivity through the application of a
magnetic field. Muon spin rotation studies as a function of
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FIG. 3. !Color online" Superconducting !red circles" and antifer-
romagnetic !blue squares" order parameters for t!=−0.3t and, from
top to bottom, the three values U=6t, U=8t, and U=12t. The am-
plitude of the superconducting order parameter is multiplied by a
factor of 10 to be on a scale comparable to the antiferromagnetic
one.
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We use cluster dynamical mean-field theory to study the simplest models of correlated electrons, the Hub-
bard model and the t-J model. We use a plaquette embedded in a medium as a reference frame to compute and
interpret the physical properties of these models. We study various observables such as electronic lifetimes, one
electron spectra, optical conductivities, superconducting stiffness, and the spin response in both the normal and
the superconducting state in terms of correlation functions of the embedded cluster. We find that the shortest
electron lifetime occurs near optimal doping where the superconducting critical temperature is maximal. A
second critical doping connected to the change of topology of the Fermi surface is also identified. The
mean-field theory provides a simple physical picture of three doping regimes, the underdoped, the overdoped,
and the optimally doped regime, in terms of the physics of the quantum plaquette impurity model. We compare
the plaquette dynamical mean-field theory results with earlier resonating valence bond mean-field theories,
noting the improved description of the momentum space anisotropy of the normal state properties and the
doping dependence of the coefficient of the linear temperature dependence of the superfluid density in the
superconducting state.
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I. INTRODUCTION

The origin and the nature of superconductivity in strongly
correlated materials is one of the greatest challenges in mod-
ern condensed matter theory. It received renewed attention
with the discovery of the high temperature superconductivity
in copper oxide based materials. While these materials have
been studied intensively over the past decades, there is still
no consensus as to what are the essential physical ingredients
responsible for the high temperature superconductivity phe-
nomena and how it should be modeled.1–14

Anderson proposed that the high temperature supercon-
ductivity phenomena was intimately connected with the
proximity to a parent Mott-insulating state.15,16 Developing
precise connections between the proximity to a Mott insula-
tor and high temperature superconductivity has proven to be
a difficult problem. Suggestive conclusions have been
reached using slave boson methods,17,18 variational wave
functions,19,20 and gauge theory techniques.2 However, lack
of theoretical tools has made difficult to prove that simple
models are sufficient to explain the phenomena surrounding
cuprates. For example, it is still strongly debated whether the
existence of superconductivity with a high critical tempera-
ture and a pseudogap is a genuine property of the models
studied, or an artifact of the approximations employed to
solve the model.

Over the past decade, significant progress in the field of
correlated electrons has been achieved through the develop-
ment of dynamical mean-field theory.21,22 In its single site
version, this method describes lattice models in terms of
a single site impurity problem embedded in a medium.
The method has been very successful in describing and
even predicting numerous properties of a large number of
materials.23–31 Cluster extensions of this method, cluster dy-
namical mean-field theory !CDMFT" !for reviews, see Refs.
23 and 32", have been proposed and are currently a subject of
intensive investigations.

In this paper, we apply the cluster dynamical mean-field
approach to construct a mean-field theory of the simplest
models of strongly correlated materials, the one band Hub-
bard and t-J models, using a 2"2 cluster, namely, the
plaquette as the basic mean-field reference frame.

There are several motivations for constructing a mean-
field theory based on a plaquette embedded in a dynamical
bath of conduction electrons: !a" A plaquette embedded in a
self-consistent medium can describe the physics of singlet
formation, which is very important in the t-J and Hubbard
models. There are two roads of singlet formation, the Kondo
effect, in which a spin can form a singlet with a bath of
conduction electrons, and the superexchange mechanism,
which locks two spins on a bond in a singlet state. !b" A
plaquette in a medium is a minimal unit to describe d-wave
superconductivity and antiferromagnetism on the same foot-
ing, given that their order parameters !as well as that of other
forms of order competing with superconductivity" naturally
fit on a plaquette.

From a methodological perspective, mean-field theory al-
lows one to study the physical properties of different phases
as a function of control parameters, whether they are stable
or metastable. For example, we will study the evolution of
the superconducting state, together with the underlying nor-
mal state, which appears as a metastable phase below TC.
From a theoretical perspective, metastable states are only
defined within a mean-field theory, but they are of clear
physical relevance. Furthermore, comparison response or
correlation functions in both the normal and the supercon-
ducting state give important clues as to the mechanism of
superconductivity.

A clear understanding of the evolution of well defined
mean-field phases of the simplified model is an important
step toward constructing the phase diagram of realistic
Hamiltonians. Even if a phase is not realized as the thermo-
dynamically stable phase in a mean-field treatment of a
simplified Hamiltonian, it could be stabilized by adding
additional longer range terms in the Hamiltonian without sig-
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The sign of the anomalous components chosen by the system
is !#0

an =−!0#
an . Within C-DMFT, this is precisely the nearest-

neighbor self-energy and its lattice analog !using the original
C-DMFT periodization69" takes the form !k= 1

2 !cos kx

−cos ky"!0#
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The anomalous self-energy !#0
an is plotted in Fig. 19. The

upper part of the figure shows the CTQMC results within
C-DMFT, while the lower part shows the NCA results within
EDCA. In both cases, the function is monotonically decreas-
ing with imaginary frequency and is largest at optimal dop-
ing. Furthermore, at the low values of the Matsubara fre-
quency, the anomalous self-energy exhibits a fast upturn and
sublinear frequency behavior that becomes less pronounced
as the doping is reduced. This trend is likely due to the
reduction of density of states in the pseudogap region.

The anomalous self-energy obeys a spectral representa-
tion
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The infinite frequency value of the self-energy vanishes in
the Hubbard model but is nonzero in the t-J model, and is
related to the order parameter of the system Fq!%=0"
through the following exact relation:
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where Fq!%=0"= 'cq↑c−q↓(.
Notice that simpler mean-field theories of the t-J model

such as the slave boson mean-field theory88 assume only the
static, frequency independent anomalous self-energy. Other
approaches based on the equation of motion for the Hubbard

operators89 capture a frequency dependent order parameter
but neglect the static infinite frequency component. A similar
analysis of the pairing interaction has recently been carried
out for the ladders in Ref. 90.

The existence of a finite value of the anomalous self-
energy of the t-J model at infinite frequency should be inter-
preted as the existence of a nonzero value for anomalous
self-energy in the Hubbard model at a scale of the order U.

The value of the anomalous self-energy at zero frequency
and low temperature, and the gap !defined as the distance
between the positive and negative energy peaks in the tun-
neling density of states divided by 2" are similar in all ver-
sions of the cluster DMFT. For the parameters used in our
study !J / t=0.3, near optimal doping", the anomalous self-
energy is of the order of unity at low temperature !see the
upper panel of Fig. 19".

On the other hand, TC, the superconducting order param-
eter, and the value of anomalous !an!$" are more sensitive
quantities and differ between the various cluster schemes.
The schemes with higher TC !extended versions of CDMFT"
show slower decrease of the anomalous self-energy, larger
infinite frequency component of the anomalous self-energy,
and larger value of the superconducting order parameter. In
C-DMFT, the maximum value of the order parameter is
around 0.02 !see Fig. 20", which is approximately eight
times smaller than the maximum achieved in EDCA. Conse-
quently, the static pairing in C-DMFT is very small, while it
reaches almost 1 /3 in extended versions of the cluster
DMFT !both in EDCA and in EC-DMFT", i.e., the magni-
tude of the anomalous self-energy at infinity as compared to
the value at zero shown in Fig. 19.

From the anomalous Green’s function, we can extract the
order parameter, i.e., the anomalous Green’s function at
equal time F#0!%=0". The order parameter versus doping as
obtained by the CTQMC and C-DMFT is shown in Fig. 20.
It has a domelike shape and tracks the value of the critical
temperature, just like in BCS theory. In the same figure, we
also display critical temperature TC at optimal doping. Due
to a critical slowing down in the region of transition, many
DMFT iterations are needed to determine the critical tem-
perature.

The temperature dependence of the related quantity, the
anomalous self-energy at infinity, computed with NCA is
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FIG. 20. !Color online" Order
parameter in C-DMFT computed
with CTQMC at T=0.5Tcmax. The
critical temperature !in units of t"
for a few doping values is also
displayed.
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Proximity to a Mott insulating phase is likely to be an important physical ingredient of a theory that aims to
describe high-temperature superconductivity in the cuprates. Quantum cluster methods are well suited to
describe the Mott phase. Hence, as a step toward a quantitative theory of the competition between antiferro-
magnetism and d-wave superconductivity in the cuprates, we use cellular dynamical mean-field theory to
compute zero-temperature properties of the two-dimensional square lattice Hubbard model. The d-wave order
parameter is found to scale like the superexchange coupling J for on-site interaction U comparable to or larger
than the bandwidth. The order parameter also assumes a dome shape as a function of doping, while, by
contrast, the gap in the single-particle density of states decreases monotonically with increasing doping. In the
presence of a finite second neighbor hopping t!, the zero-temperature phase diagram displays the electron-hole
asymmetric competition between antiferromagnetism and superconductivity that is observed experimentally in
the cuprates. Adding realistic third neighbor hopping t" improves the overall agreement with the experimental
phase diagram. Since band parameters can vary depending on the specific cuprate considered, the sensitivity of
the theoretical phase diagram to band parameters challenges the commonly held assumption that the doping vs
Tc /Tc

max phase diagram of the cuprates is universal. The calculated angle-resolved photoemission spectrum
displays the observed electron-hole asymmetry. The tendency to homogeneous coexistence of the supercon-
ducting and antiferromagnetic order parameters is stronger than observed in most experiments but consistent
with many theoretical results and with experiments in some layered high-temperature superconductors. Clearly,
our calculations reproduce important features of d-wave superconductivity in the cuprates that would otherwise
be considered anomalous from the point of view of the standard Bardeen–Cooper–Schrieffer approach. At
strong coupling, d-wave superconductivity and antiferromagnetism naturally appear as two equally important
competing instabilities of the normal phase of the same underlying Hamiltonian.
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I. INTRODUCTION

Superconductivity in the cuprates and in the layered or-
ganics of the BEDT family is highly anomalous, i.e., it dis-
plays a number of properties that cannot be explained by the
Bardeen–Cooper–Schrieffer !BCS" theory modified for
d-wave symmetry. For example, in the cuprates, supercon-
ductivity emerges upon doping an antiferromagnetic Mott
insulator. Moreover, in the so-called underdoped region near
the insulator, experiments show that the gap in the single-
particle density of states decreases upon doping while
Tc /Tc

max or the order parameter increases, which is in sharp
contrast with expectations from standard BCS theory.1 In the
organics, antiferromagnetism and superconductivity are
separated by a first-order transition and a Mott transition
separates the corresponding states with no order. For both the
organics and the cuprates, there is much evidence from ap-
proximate solutions that the essential low-energy physics is
described by the one-band Hubbard model for the appropri-
ate lattice, band structure, interaction, and dopings.2–4

Theoretically understanding anomalous superconductivity
in a quantitative manner is still a challenge. An important
step toward this goal is to obtain accurate solutions of the

Hubbard model. Despite the apparent simplicity of the
model, it is extremely difficult to solve in the relevant regime
where neither the potential !U" nor the kinetic energy !8t"
dominate. In recent years, a number of numerical methods
have shed light on this problem. In this paper, we will de-
scribe the results obtained from the cellular dynamical mean-
field theory5 !CDMFT" for d-wave superconductivity and its
competition with antiferromagnetism in the cuprates. The
corresponding study in the organics has been published.6,7

The results will be compared with other quantum cluster
methods,8–10 mean-field theories, slave boson, and with
variational approaches.

Our choice of method is motivated by the following con-
siderations. Since anomalous superconductivity appears near
antiferromagnetic Mott insulating phases, it is important to
use approaches that correctly treat these phases. CDMFT is a
generalization of the dynamical mean-field theory
!DMFT".11,12 The latter method describes the Mott insulator-
metal transition of the Hubbard model exactly in the limit of
infinite dimensions. DMFT is, by construction, a local theory
that maps the full interacting many-body lattice problem
onto a single-site embedded in a self-consistent bath. Unfor-
tunately, the local nature of the spatial correlations inherent
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have checked that in the coexistence region, even if we start
the iterations with a fully converged antiferromagnetic solu-
tion, the final solution is the same as the one exhibited in Fig.
3.

From Fig. 3, we observe that antiferromagnetism occurs
over a narrower range of dopings as U increases since J then
decreases !the trend would be opposite at weak coupling".
There is a homogeneous coexistence of antiferromagnetism
and d-wave superconductivity near half-filling in all cases.
That phase can be called a superconducting antiferromagnet
or an antiferromagnetic superconductor. d-wave supercon-
ductivity exists by itself at large electron or hole doping. The
transition from a homogeneous coexistence phase to pure
d-wave superconductivity is second order, except for large
values of U=12t on the electron-doped side. Qualitatively, it
seems that U=8t gives a better agreement with the experi-
mental phase diagram of the cuprates since, in that case,
superconductivity appears alone over a broader range of dop-
ings on the hole than on the electron-doped side. Also, the
value of the maximum d-wave order parameter is larger on
the hole- than on the electron-doped side, showing that com-
petition with antiferromagnetism can reverse the trend ob-
served as a function of t! in Fig. 2. Choosing a value of U on
the electron-doped side43,44 that is smaller than the value of
U for the hole-doped side would also help in making the
tendency for d-wave superconductivity smaller on the
electron-doped side, as observed experimentally. The asym-
metry in the maximum value of the d-wave order parameter
for hole and electron doping is also observed for U=6t, but
in that case the antiferromagnetism occurs over a doping
range that is unreasonably large compared to the experiment.
For U=8t, optimal doping occurs around 15% in the hole-
doped case. U=8t is also consistent with the value necessary
to explain details of the spin wave spectrum obtained by
neutron measurements at half-filling.45,46 All these qualitative
trends agree with the experimental phase diagram except for
the following: antiferromagnetism extends over a broader
range of dopings on the hole-doped side than experimentally
observed !see, however, the next section" and there is a
strong tendency for homogeneous coexistence of the two or-
der parameters, even though the d-wave order parameter is
suppressed by the presence of antiferromagnetic order. While
the suppression of d-wave superconductivity by antiferro-
magnetism is appreciable, the reverse effect is almost
negligible.47 This is also observed in mean-field studies.48

Homogeneous coexistence of antiferromagnetism and
d-wave superconductivity is not generic in the cuprates. Nev-
ertheless, it has been observed recently in ordered layered
compounds49 and in the electron-doped cuprate PrCeCuO.50

Although such coexistence is not observed in compounds
such as YBa2Cu3O7−x !YBCO", it appears in La2CuO4.11 at
zero field and in La1.9Sr0.1CuO4 under applied magnetic
field.51 The agreement of the latter field-dependent
experiments52 with the theoretical predictions53 reveals the
proximity of single-phase d-wave superconductivity with ho-
mogeneous coexistence of antiferromagnetism and d-wave
superconductivity. Other La2−xSrxCuO4 !LSCO"
compounds54,55 reveal the proximity of antiferromagnetism
and d-wave superconductivity through the application of a
magnetic field. Muon spin rotation studies as a function of
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FIG. 3. !Color online" Superconducting !red circles" and antifer-
romagnetic !blue squares" order parameters for t!=−0.3t and, from
top to bottom, the three values U=6t, U=8t, and U=12t. The am-
plitude of the superconducting order parameter is multiplied by a
factor of 10 to be on a scale comparable to the antiferromagnetic
one.
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to conventional situations where the onset of superconduc-
tivity increases the gap.

Our analysis builds on previous dynamical mean field
results. In pioneering papers Lichtenstein and Katsnelson
[20] and Maier et al. [21] showed that the N ¼ 4 cluster
dynamical mean field approximation yielded dx2"y2 super-

conductivity while subsequent studies of Maier and col-
laborators [7] on clusters with N as large as 26 provided
convincing evidence that the superconductivity found in
the small cluster calculations is not an artifact, but rather
is a property of the infinite cluster size limit, i.e., of the
Hubbard model. However, the studies of Ref. [7] were
restricted to a modest interaction, U ¼ 4t, too small to
give a pseudogap, and to relatively high temperatures, so
that the superconducting state was not constructed and
transition temperature was inferred from studies of the
pair susceptibility. Very recently Yang and collaborators
[22] analyzed the pairing susceptibility for higher interac-
tion strengths where a pseudogap occurred, but still did not
construct the superconducting state.

The pioneering work of Huscroft et al. [23] showed the
existence of a normal-state pseudogap in the dynamical
mean field approximation and many authors (using mainly
N ¼ 4 approximations) have studied its properties [24–42]
and several groups (still within the 4-site approximation)
have studied the interplay of superconductivity and the
pseudogap [32,43–47]. A key finding of the 4-site work,
in contrast to the larger-cluster studies of Ref. [22] is that
superconductivity persists all the way to the Mott insulat-
ing boundary, leaving open the question whether it is the
pseudogap per se, or simply Mott physics, which sup-
presses the superconductivity.

More recent developments [18] have enabled researchers
to access clusters large enough to obtain a reasonable picture
of the N ! 1 limit [15,22,48–52]. It has been found [15]
that in the dynamical cluster approximation (DCA) clusters
of size N > 4 the Mott transition is multistaged, with the
fully gapped Mott insulating state being separated from
the Fermi liquid state by an intermediate phase, in which
regions of momentum space near the ð0;!Þ=ð!; 0Þ point are
gapped and regions of momentum space near (% !=2,
%!=2) are not. By contrast, in most of the N ¼ 2, 4 calcu-
lations reported to date there is at half filling no intermediate
phase separating the insulator and the Fermi liquid [35,36],
while if the insulator is destroyed by doping an intermediate
phase with a suppressed, but nonzero, density of states is
found [35,36,42]. In this Letter we extend the new method-
ology to examine the properties of the superconducting state
at N large enough to properly represent the pseudogap.

The right-hand panel of Fig. 1 shows the phase diagram
determined from a comprehensive survey of parameter
space for the N ¼ 8 dynamical cluster approximation,
which previous work [15] shows adequately represents
the N ! 1 normal state physics of the model. Studies of
selected U and doping values in the computationally much
more expensive N ¼ 16 site cluster confirm (lower left

panel) that the physics found for N ¼ 8 is generic. The
scan of the phase diagram is conducted at temperature
T ¼ t=40 but checks of selected interaction and doping
values at our lowest accessible temperature T ¼ t=60 (see
also Ref. [53]) indicate that lower temperatures do not
bring significant changes (see Supplemental Material).
dx2"y2-symmetry superconductivity, with a typical tran-

sition temperature &t=40 ' 100 K (using a t ' 0:3 eV
representative of the CuO2 superconductors) occurs in a
band of interaction strength and density, vanishing if inter-
action or doping is tuned too far away from the insulating
state but separated from the Mott insulator by a region of
pseudogapped but nonsuperconducting states. This result,
previously inferred from extrapolation of the pairing
susceptibility [22] at high temperature, is here confirmed.
The onset of the normal state pseudogap (dashed line)
corresponds to the maximum in the superconducting order
parameter (see Supplemental Material [16]) and to the
maximum in transition temperature (see below). The inset
of Fig. 2, Supplemental Material [16], shows that the
superconducting region remains separated from the pseu-
dogap even as T ! 0.
The upper left panel shows that the situation is different

in the N ¼ 4 approximation. In this case, superconductiv-
ity extends all the way to the boundary of the Mott phase,
as has previously been found [45–47,54]. We believe that
the difference arises because in the 8- and 16-site cluster
approximations the pseudogap leads at T ¼ 0 to a com-
plete suppression of the density of states in the momentum
region (0, !) important for superconductivity; in the 4-site
approximations the pseudogap produces a density of states

FIG. 1 (color online). Superconducting phase diagram of the
two-dimensional Hubbard model in the plane of interaction
strength U and carrier concentration x computed using the 8-site
(right panel), the 4-site (left upper panel), and 16-site (left lower
panel) DCA dynamical mean field approximation at temperature
T ¼ t=40 with t0=t ¼ 0. Dashed line: location of the normal state
pseudogap onset. Circles and shading (red online) indicate the
superconducting region; squares (black online) and no shading the
nonsuperconducting Fermi liquid; diamonds and lighter shading
(blue online) the nonsuperconducting pseudogap region; triangles
and heavy solid line (dark green online) theMott insulating region
at n ¼ 1 and U >Uc. Open circles (light green online) denote
the points analyzed in Fig. 2. ‘‘Cross’’ and ‘‘plus’’ symbols in the
lower left panel denote points determined by Yang et al. [22] to
be nonsuperconducting and superconducting, respectively.
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Recently developed numerical methods have enabled the explicit construction of the superconducting

state of the Hubbard model of strongly correlated electrons in parameter regimes where the model also

exhibits a pseudogap and a Mott insulating phase. dx2!y2 symmetry superconductivity is found to occur

in proximity to the Mott insulator, but separated from it by a pseudogapped nonsuperconducting phase.

The superconducting transition temperature and order parameter amplitude are found to be maximal at

the onset of the normal-state pseudogap. The emergence of superconductivity from the normal state

pseudogap leads to a decrease in the excitation gap. All of these features are consistent with the observed

behavior of the copper-oxide superconductors.
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Layered perovskite-based copper oxide compounds dis-
play three remarkable properties: d-wave superconductiv-
ity with unprecedentedly high transition temperatures [1],
a nontrivial (‘‘Mott’’) insulating state [2], and non-Fermi-
liquid physics, most notably a ‘‘pseudogap’’ regime in
which the density of states is strongly suppressed in
some parts of the Brillouin zone but not in others [3].
P.W. Anderson [2] argued that these three classes of
phenomena have a common origin as strong-correlation
effects understandable in terms of the two-dimensional
repulsive Hubbard model, a minimal model of interacting
electrons on a lattice with Hamiltonian

H ¼
X

p;!

ð"p !#Þcyp;!cp;! þU
X

i

ni;"ni;#; (1)

where "p ¼ !2tðcospx þ cospyÞ þ 4t0 cospx cospy an
electron dispersion and U > 0 a local interaction which
disfavors double occupancy of a site.

In the years since Anderson’s paper, the interplay of the
pseudogap and superconductivity and the relation of both
to the Hubbard model have been of central interest to
condensed matter physicists. The existence of d-wave
superconductivity in the Hubbard model has been demon-
strated by perturbative analytic calculations [4] (later
improved by renormalization group methods [5,6]) and
by numerics [7,8]. The issue of the pseudogap has been
more controversial. It has been variously argued that the
pseudogap is a signature of unusual superconducting
fluctuations [9–11], of a competing nonsuperconducting
phase or regime [3,12], or of physics not contained in
the Hubbard model [13]. Theoretical determination of the
interplay of the pseudogap and superconductivity in the
Hubbard model is important in helping resolve this con-
troversy, and will provide insight into the pseudogap phe-
nomenon and into strongly correlated superconductivity

more generally, but this requires access to intermediate
or strong couplings for which perturbation theory is
inadequate.
The development of cluster dynamical mean field theory

[14] has provided important nonperturbative information
about the Hubbard model. Dynamical mean field theory
approximates the electron self-energy in terms of a finite
number of auxiliary functions determined from the solu-
tion of an N-site quantum impurity model and becomes
exact as N tends to infinity. In this Letter we use dynamical
mean field methods to determine the interplay of super-
conductivity and the pseudogap in the Hubbard model.
This is challenging because the theory of the supercon-
ducting state involves both normal (N) and anomalous (A)
components of the Green’s function G and self-energy !,
leading to a doubling of the size of all matrices involved in
the calculation, and hence to at least an eightfold increase
in computational burden, which is further increased by the
need to reach very low temperatures.
We have constructed the superconducting state and

studied its interplay with the pseudogap using clusters of
N ¼ 4, 8, 16 sites, a size range found in previous work [15]
to be large enough to distinguish generic N ! 1 behavior
from that specific to particular clusters. Specifics of our
methods are given in the Supplemental Material [16]; here
we briefly note that a key aspect of our study is the use of
recently developed ‘‘submatrix update’’ numerical tech-
niques [17–19] which enable access to couplings strong
enough to produce a pseudogap at temperatures low
enough to construct the superconducting state for cluster
size N large enough to reasonably represent the N ! 1
limit. Our key results are that the pseudogap and super-
conductivity are competing phases and that, remarkably,
the onset of superconductivity within the pseudogap phase
leads to a decrease in the excitation gap, in sharp contrast
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Strongly correlated superconductivity: A plaquette dynamical mean-field theory study
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We use cluster dynamical mean-field theory to study the simplest models of correlated electrons, the Hub-
bard model and the t-J model. We use a plaquette embedded in a medium as a reference frame to compute and
interpret the physical properties of these models. We study various observables such as electronic lifetimes, one
electron spectra, optical conductivities, superconducting stiffness, and the spin response in both the normal and
the superconducting state in terms of correlation functions of the embedded cluster. We find that the shortest
electron lifetime occurs near optimal doping where the superconducting critical temperature is maximal. A
second critical doping connected to the change of topology of the Fermi surface is also identified. The
mean-field theory provides a simple physical picture of three doping regimes, the underdoped, the overdoped,
and the optimally doped regime, in terms of the physics of the quantum plaquette impurity model. We compare
the plaquette dynamical mean-field theory results with earlier resonating valence bond mean-field theories,
noting the improved description of the momentum space anisotropy of the normal state properties and the
doping dependence of the coefficient of the linear temperature dependence of the superfluid density in the
superconducting state.

DOI: 10.1103/PhysRevB.76.104509 PACS number!s": 71.27.!a, 71.30.!h

I. INTRODUCTION

The origin and the nature of superconductivity in strongly
correlated materials is one of the greatest challenges in mod-
ern condensed matter theory. It received renewed attention
with the discovery of the high temperature superconductivity
in copper oxide based materials. While these materials have
been studied intensively over the past decades, there is still
no consensus as to what are the essential physical ingredients
responsible for the high temperature superconductivity phe-
nomena and how it should be modeled.1–14

Anderson proposed that the high temperature supercon-
ductivity phenomena was intimately connected with the
proximity to a parent Mott-insulating state.15,16 Developing
precise connections between the proximity to a Mott insula-
tor and high temperature superconductivity has proven to be
a difficult problem. Suggestive conclusions have been
reached using slave boson methods,17,18 variational wave
functions,19,20 and gauge theory techniques.2 However, lack
of theoretical tools has made difficult to prove that simple
models are sufficient to explain the phenomena surrounding
cuprates. For example, it is still strongly debated whether the
existence of superconductivity with a high critical tempera-
ture and a pseudogap is a genuine property of the models
studied, or an artifact of the approximations employed to
solve the model.

Over the past decade, significant progress in the field of
correlated electrons has been achieved through the develop-
ment of dynamical mean-field theory.21,22 In its single site
version, this method describes lattice models in terms of
a single site impurity problem embedded in a medium.
The method has been very successful in describing and
even predicting numerous properties of a large number of
materials.23–31 Cluster extensions of this method, cluster dy-
namical mean-field theory !CDMFT" !for reviews, see Refs.
23 and 32", have been proposed and are currently a subject of
intensive investigations.

In this paper, we apply the cluster dynamical mean-field
approach to construct a mean-field theory of the simplest
models of strongly correlated materials, the one band Hub-
bard and t-J models, using a 2"2 cluster, namely, the
plaquette as the basic mean-field reference frame.

There are several motivations for constructing a mean-
field theory based on a plaquette embedded in a dynamical
bath of conduction electrons: !a" A plaquette embedded in a
self-consistent medium can describe the physics of singlet
formation, which is very important in the t-J and Hubbard
models. There are two roads of singlet formation, the Kondo
effect, in which a spin can form a singlet with a bath of
conduction electrons, and the superexchange mechanism,
which locks two spins on a bond in a singlet state. !b" A
plaquette in a medium is a minimal unit to describe d-wave
superconductivity and antiferromagnetism on the same foot-
ing, given that their order parameters !as well as that of other
forms of order competing with superconductivity" naturally
fit on a plaquette.

From a methodological perspective, mean-field theory al-
lows one to study the physical properties of different phases
as a function of control parameters, whether they are stable
or metastable. For example, we will study the evolution of
the superconducting state, together with the underlying nor-
mal state, which appears as a metastable phase below TC.
From a theoretical perspective, metastable states are only
defined within a mean-field theory, but they are of clear
physical relevance. Furthermore, comparison response or
correlation functions in both the normal and the supercon-
ducting state give important clues as to the mechanism of
superconductivity.

A clear understanding of the evolution of well defined
mean-field phases of the simplified model is an important
step toward constructing the phase diagram of realistic
Hamiltonians. Even if a phase is not realized as the thermo-
dynamically stable phase in a mean-field treatment of a
simplified Hamiltonian, it could be stabilized by adding
additional longer range terms in the Hamiltonian without sig-
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!! K!i"" = #!K↑!i"" !K
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and the corresponding Green’s function is

G! K!i"" = #GK↑!i"" FK!i""
FK

† !i"" − G−K↓!− i"" $ . !40"

The sign of the anomalous components chosen by the system
is !#0

an =−!0#
an . Within C-DMFT, this is precisely the nearest-

neighbor self-energy and its lattice analog !using the original
C-DMFT periodization69" takes the form !k= 1

2 !cos kx

−cos ky"!0#
an .

The anomalous self-energy !#0
an is plotted in Fig. 19. The

upper part of the figure shows the CTQMC results within
C-DMFT, while the lower part shows the NCA results within
EDCA. In both cases, the function is monotonically decreas-
ing with imaginary frequency and is largest at optimal dop-
ing. Furthermore, at the low values of the Matsubara fre-
quency, the anomalous self-energy exhibits a fast upturn and
sublinear frequency behavior that becomes less pronounced
as the doping is reduced. This trend is likely due to the
reduction of density of states in the pseudogap region.

The anomalous self-energy obeys a spectral representa-
tion

!k
an!i"n" = !k

an!$" −% d"

#

Im !k
an!""

i"n − "
.

The infinite frequency value of the self-energy vanishes in
the Hubbard model but is nonzero in the t-J model, and is
related to the order parameter of the system Fq!%=0"
through the following exact relation:

!k
an!$" = −

3
!1 + &"2&

q
Jk−qFq!% = 0" , !41"

where Fq!%=0"= 'cq↑c−q↓(.
Notice that simpler mean-field theories of the t-J model

such as the slave boson mean-field theory88 assume only the
static, frequency independent anomalous self-energy. Other
approaches based on the equation of motion for the Hubbard

operators89 capture a frequency dependent order parameter
but neglect the static infinite frequency component. A similar
analysis of the pairing interaction has recently been carried
out for the ladders in Ref. 90.

The existence of a finite value of the anomalous self-
energy of the t-J model at infinite frequency should be inter-
preted as the existence of a nonzero value for anomalous
self-energy in the Hubbard model at a scale of the order U.

The value of the anomalous self-energy at zero frequency
and low temperature, and the gap !defined as the distance
between the positive and negative energy peaks in the tun-
neling density of states divided by 2" are similar in all ver-
sions of the cluster DMFT. For the parameters used in our
study !J / t=0.3, near optimal doping", the anomalous self-
energy is of the order of unity at low temperature !see the
upper panel of Fig. 19".

On the other hand, TC, the superconducting order param-
eter, and the value of anomalous !an!$" are more sensitive
quantities and differ between the various cluster schemes.
The schemes with higher TC !extended versions of CDMFT"
show slower decrease of the anomalous self-energy, larger
infinite frequency component of the anomalous self-energy,
and larger value of the superconducting order parameter. In
C-DMFT, the maximum value of the order parameter is
around 0.02 !see Fig. 20", which is approximately eight
times smaller than the maximum achieved in EDCA. Conse-
quently, the static pairing in C-DMFT is very small, while it
reaches almost 1 /3 in extended versions of the cluster
DMFT !both in EDCA and in EC-DMFT", i.e., the magni-
tude of the anomalous self-energy at infinity as compared to
the value at zero shown in Fig. 19.

From the anomalous Green’s function, we can extract the
order parameter, i.e., the anomalous Green’s function at
equal time F#0!%=0". The order parameter versus doping as
obtained by the CTQMC and C-DMFT is shown in Fig. 20.
It has a domelike shape and tracks the value of the critical
temperature, just like in BCS theory. In the same figure, we
also display critical temperature TC at optimal doping. Due
to a critical slowing down in the region of transition, many
DMFT iterations are needed to determine the critical tem-
perature.

The temperature dependence of the related quantity, the
anomalous self-energy at infinity, computed with NCA is
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FIG. 20. !Color online" Order
parameter in C-DMFT computed
with CTQMC at T=0.5Tcmax. The
critical temperature !in units of t"
for a few doping values is also
displayed.
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Proximity to a Mott insulating phase is likely to be an important physical ingredient of a theory that aims to
describe high-temperature superconductivity in the cuprates. Quantum cluster methods are well suited to
describe the Mott phase. Hence, as a step toward a quantitative theory of the competition between antiferro-
magnetism and d-wave superconductivity in the cuprates, we use cellular dynamical mean-field theory to
compute zero-temperature properties of the two-dimensional square lattice Hubbard model. The d-wave order
parameter is found to scale like the superexchange coupling J for on-site interaction U comparable to or larger
than the bandwidth. The order parameter also assumes a dome shape as a function of doping, while, by
contrast, the gap in the single-particle density of states decreases monotonically with increasing doping. In the
presence of a finite second neighbor hopping t!, the zero-temperature phase diagram displays the electron-hole
asymmetric competition between antiferromagnetism and superconductivity that is observed experimentally in
the cuprates. Adding realistic third neighbor hopping t" improves the overall agreement with the experimental
phase diagram. Since band parameters can vary depending on the specific cuprate considered, the sensitivity of
the theoretical phase diagram to band parameters challenges the commonly held assumption that the doping vs
Tc /Tc

max phase diagram of the cuprates is universal. The calculated angle-resolved photoemission spectrum
displays the observed electron-hole asymmetry. The tendency to homogeneous coexistence of the supercon-
ducting and antiferromagnetic order parameters is stronger than observed in most experiments but consistent
with many theoretical results and with experiments in some layered high-temperature superconductors. Clearly,
our calculations reproduce important features of d-wave superconductivity in the cuprates that would otherwise
be considered anomalous from the point of view of the standard Bardeen–Cooper–Schrieffer approach. At
strong coupling, d-wave superconductivity and antiferromagnetism naturally appear as two equally important
competing instabilities of the normal phase of the same underlying Hamiltonian.
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I. INTRODUCTION

Superconductivity in the cuprates and in the layered or-
ganics of the BEDT family is highly anomalous, i.e., it dis-
plays a number of properties that cannot be explained by the
Bardeen–Cooper–Schrieffer !BCS" theory modified for
d-wave symmetry. For example, in the cuprates, supercon-
ductivity emerges upon doping an antiferromagnetic Mott
insulator. Moreover, in the so-called underdoped region near
the insulator, experiments show that the gap in the single-
particle density of states decreases upon doping while
Tc /Tc

max or the order parameter increases, which is in sharp
contrast with expectations from standard BCS theory.1 In the
organics, antiferromagnetism and superconductivity are
separated by a first-order transition and a Mott transition
separates the corresponding states with no order. For both the
organics and the cuprates, there is much evidence from ap-
proximate solutions that the essential low-energy physics is
described by the one-band Hubbard model for the appropri-
ate lattice, band structure, interaction, and dopings.2–4

Theoretically understanding anomalous superconductivity
in a quantitative manner is still a challenge. An important
step toward this goal is to obtain accurate solutions of the

Hubbard model. Despite the apparent simplicity of the
model, it is extremely difficult to solve in the relevant regime
where neither the potential !U" nor the kinetic energy !8t"
dominate. In recent years, a number of numerical methods
have shed light on this problem. In this paper, we will de-
scribe the results obtained from the cellular dynamical mean-
field theory5 !CDMFT" for d-wave superconductivity and its
competition with antiferromagnetism in the cuprates. The
corresponding study in the organics has been published.6,7

The results will be compared with other quantum cluster
methods,8–10 mean-field theories, slave boson, and with
variational approaches.

Our choice of method is motivated by the following con-
siderations. Since anomalous superconductivity appears near
antiferromagnetic Mott insulating phases, it is important to
use approaches that correctly treat these phases. CDMFT is a
generalization of the dynamical mean-field theory
!DMFT".11,12 The latter method describes the Mott insulator-
metal transition of the Hubbard model exactly in the limit of
infinite dimensions. DMFT is, by construction, a local theory
that maps the full interacting many-body lattice problem
onto a single-site embedded in a self-consistent bath. Unfor-
tunately, the local nature of the spatial correlations inherent
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have checked that in the coexistence region, even if we start
the iterations with a fully converged antiferromagnetic solu-
tion, the final solution is the same as the one exhibited in Fig.
3.

From Fig. 3, we observe that antiferromagnetism occurs
over a narrower range of dopings as U increases since J then
decreases !the trend would be opposite at weak coupling".
There is a homogeneous coexistence of antiferromagnetism
and d-wave superconductivity near half-filling in all cases.
That phase can be called a superconducting antiferromagnet
or an antiferromagnetic superconductor. d-wave supercon-
ductivity exists by itself at large electron or hole doping. The
transition from a homogeneous coexistence phase to pure
d-wave superconductivity is second order, except for large
values of U=12t on the electron-doped side. Qualitatively, it
seems that U=8t gives a better agreement with the experi-
mental phase diagram of the cuprates since, in that case,
superconductivity appears alone over a broader range of dop-
ings on the hole than on the electron-doped side. Also, the
value of the maximum d-wave order parameter is larger on
the hole- than on the electron-doped side, showing that com-
petition with antiferromagnetism can reverse the trend ob-
served as a function of t! in Fig. 2. Choosing a value of U on
the electron-doped side43,44 that is smaller than the value of
U for the hole-doped side would also help in making the
tendency for d-wave superconductivity smaller on the
electron-doped side, as observed experimentally. The asym-
metry in the maximum value of the d-wave order parameter
for hole and electron doping is also observed for U=6t, but
in that case the antiferromagnetism occurs over a doping
range that is unreasonably large compared to the experiment.
For U=8t, optimal doping occurs around 15% in the hole-
doped case. U=8t is also consistent with the value necessary
to explain details of the spin wave spectrum obtained by
neutron measurements at half-filling.45,46 All these qualitative
trends agree with the experimental phase diagram except for
the following: antiferromagnetism extends over a broader
range of dopings on the hole-doped side than experimentally
observed !see, however, the next section" and there is a
strong tendency for homogeneous coexistence of the two or-
der parameters, even though the d-wave order parameter is
suppressed by the presence of antiferromagnetic order. While
the suppression of d-wave superconductivity by antiferro-
magnetism is appreciable, the reverse effect is almost
negligible.47 This is also observed in mean-field studies.48

Homogeneous coexistence of antiferromagnetism and
d-wave superconductivity is not generic in the cuprates. Nev-
ertheless, it has been observed recently in ordered layered
compounds49 and in the electron-doped cuprate PrCeCuO.50

Although such coexistence is not observed in compounds
such as YBa2Cu3O7−x !YBCO", it appears in La2CuO4.11 at
zero field and in La1.9Sr0.1CuO4 under applied magnetic
field.51 The agreement of the latter field-dependent
experiments52 with the theoretical predictions53 reveals the
proximity of single-phase d-wave superconductivity with ho-
mogeneous coexistence of antiferromagnetism and d-wave
superconductivity. Other La2−xSrxCuO4 !LSCO"
compounds54,55 reveal the proximity of antiferromagnetism
and d-wave superconductivity through the application of a
magnetic field. Muon spin rotation studies as a function of
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FIG. 3. !Color online" Superconducting !red circles" and antifer-
romagnetic !blue squares" order parameters for t!=−0.3t and, from
top to bottom, the three values U=6t, U=8t, and U=12t. The am-
plitude of the superconducting order parameter is multiplied by a
factor of 10 to be on a scale comparable to the antiferromagnetic
one.
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to conventional situations where the onset of superconduc-
tivity increases the gap.

Our analysis builds on previous dynamical mean field
results. In pioneering papers Lichtenstein and Katsnelson
[20] and Maier et al. [21] showed that the N ¼ 4 cluster
dynamical mean field approximation yielded dx2"y2 super-

conductivity while subsequent studies of Maier and col-
laborators [7] on clusters with N as large as 26 provided
convincing evidence that the superconductivity found in
the small cluster calculations is not an artifact, but rather
is a property of the infinite cluster size limit, i.e., of the
Hubbard model. However, the studies of Ref. [7] were
restricted to a modest interaction, U ¼ 4t, too small to
give a pseudogap, and to relatively high temperatures, so
that the superconducting state was not constructed and
transition temperature was inferred from studies of the
pair susceptibility. Very recently Yang and collaborators
[22] analyzed the pairing susceptibility for higher interac-
tion strengths where a pseudogap occurred, but still did not
construct the superconducting state.

The pioneering work of Huscroft et al. [23] showed the
existence of a normal-state pseudogap in the dynamical
mean field approximation and many authors (using mainly
N ¼ 4 approximations) have studied its properties [24–42]
and several groups (still within the 4-site approximation)
have studied the interplay of superconductivity and the
pseudogap [32,43–47]. A key finding of the 4-site work,
in contrast to the larger-cluster studies of Ref. [22] is that
superconductivity persists all the way to the Mott insulat-
ing boundary, leaving open the question whether it is the
pseudogap per se, or simply Mott physics, which sup-
presses the superconductivity.

More recent developments [18] have enabled researchers
to access clusters large enough to obtain a reasonable picture
of the N ! 1 limit [15,22,48–52]. It has been found [15]
that in the dynamical cluster approximation (DCA) clusters
of size N > 4 the Mott transition is multistaged, with the
fully gapped Mott insulating state being separated from
the Fermi liquid state by an intermediate phase, in which
regions of momentum space near the ð0;!Þ=ð!; 0Þ point are
gapped and regions of momentum space near (% !=2,
%!=2) are not. By contrast, in most of the N ¼ 2, 4 calcu-
lations reported to date there is at half filling no intermediate
phase separating the insulator and the Fermi liquid [35,36],
while if the insulator is destroyed by doping an intermediate
phase with a suppressed, but nonzero, density of states is
found [35,36,42]. In this Letter we extend the new method-
ology to examine the properties of the superconducting state
at N large enough to properly represent the pseudogap.

The right-hand panel of Fig. 1 shows the phase diagram
determined from a comprehensive survey of parameter
space for the N ¼ 8 dynamical cluster approximation,
which previous work [15] shows adequately represents
the N ! 1 normal state physics of the model. Studies of
selected U and doping values in the computationally much
more expensive N ¼ 16 site cluster confirm (lower left

panel) that the physics found for N ¼ 8 is generic. The
scan of the phase diagram is conducted at temperature
T ¼ t=40 but checks of selected interaction and doping
values at our lowest accessible temperature T ¼ t=60 (see
also Ref. [53]) indicate that lower temperatures do not
bring significant changes (see Supplemental Material).
dx2"y2-symmetry superconductivity, with a typical tran-

sition temperature &t=40 ' 100 K (using a t ' 0:3 eV
representative of the CuO2 superconductors) occurs in a
band of interaction strength and density, vanishing if inter-
action or doping is tuned too far away from the insulating
state but separated from the Mott insulator by a region of
pseudogapped but nonsuperconducting states. This result,
previously inferred from extrapolation of the pairing
susceptibility [22] at high temperature, is here confirmed.
The onset of the normal state pseudogap (dashed line)
corresponds to the maximum in the superconducting order
parameter (see Supplemental Material [16]) and to the
maximum in transition temperature (see below). The inset
of Fig. 2, Supplemental Material [16], shows that the
superconducting region remains separated from the pseu-
dogap even as T ! 0.
The upper left panel shows that the situation is different

in the N ¼ 4 approximation. In this case, superconductiv-
ity extends all the way to the boundary of the Mott phase,
as has previously been found [45–47,54]. We believe that
the difference arises because in the 8- and 16-site cluster
approximations the pseudogap leads at T ¼ 0 to a com-
plete suppression of the density of states in the momentum
region (0, !) important for superconductivity; in the 4-site
approximations the pseudogap produces a density of states

FIG. 1 (color online). Superconducting phase diagram of the
two-dimensional Hubbard model in the plane of interaction
strength U and carrier concentration x computed using the 8-site
(right panel), the 4-site (left upper panel), and 16-site (left lower
panel) DCA dynamical mean field approximation at temperature
T ¼ t=40 with t0=t ¼ 0. Dashed line: location of the normal state
pseudogap onset. Circles and shading (red online) indicate the
superconducting region; squares (black online) and no shading the
nonsuperconducting Fermi liquid; diamonds and lighter shading
(blue online) the nonsuperconducting pseudogap region; triangles
and heavy solid line (dark green online) theMott insulating region
at n ¼ 1 and U >Uc. Open circles (light green online) denote
the points analyzed in Fig. 2. ‘‘Cross’’ and ‘‘plus’’ symbols in the
lower left panel denote points determined by Yang et al. [22] to
be nonsuperconducting and superconducting, respectively.
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3Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191 Gif-sur-Yvette, France

4Department of Physics, Columbia University, New York, New York 10027, USA
(Received 31 August 2012; published 22 May 2013)

Recently developed numerical methods have enabled the explicit construction of the superconducting

state of the Hubbard model of strongly correlated electrons in parameter regimes where the model also

exhibits a pseudogap and a Mott insulating phase. dx2!y2 symmetry superconductivity is found to occur

in proximity to the Mott insulator, but separated from it by a pseudogapped nonsuperconducting phase.

The superconducting transition temperature and order parameter amplitude are found to be maximal at

the onset of the normal-state pseudogap. The emergence of superconductivity from the normal state

pseudogap leads to a decrease in the excitation gap. All of these features are consistent with the observed

behavior of the copper-oxide superconductors.
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Layered perovskite-based copper oxide compounds dis-
play three remarkable properties: d-wave superconductiv-
ity with unprecedentedly high transition temperatures [1],
a nontrivial (‘‘Mott’’) insulating state [2], and non-Fermi-
liquid physics, most notably a ‘‘pseudogap’’ regime in
which the density of states is strongly suppressed in
some parts of the Brillouin zone but not in others [3].
P.W. Anderson [2] argued that these three classes of
phenomena have a common origin as strong-correlation
effects understandable in terms of the two-dimensional
repulsive Hubbard model, a minimal model of interacting
electrons on a lattice with Hamiltonian

H ¼
X

p;!

ð"p !#Þcyp;!cp;! þU
X

i

ni;"ni;#; (1)

where "p ¼ !2tðcospx þ cospyÞ þ 4t0 cospx cospy an
electron dispersion and U > 0 a local interaction which
disfavors double occupancy of a site.

In the years since Anderson’s paper, the interplay of the
pseudogap and superconductivity and the relation of both
to the Hubbard model have been of central interest to
condensed matter physicists. The existence of d-wave
superconductivity in the Hubbard model has been demon-
strated by perturbative analytic calculations [4] (later
improved by renormalization group methods [5,6]) and
by numerics [7,8]. The issue of the pseudogap has been
more controversial. It has been variously argued that the
pseudogap is a signature of unusual superconducting
fluctuations [9–11], of a competing nonsuperconducting
phase or regime [3,12], or of physics not contained in
the Hubbard model [13]. Theoretical determination of the
interplay of the pseudogap and superconductivity in the
Hubbard model is important in helping resolve this con-
troversy, and will provide insight into the pseudogap phe-
nomenon and into strongly correlated superconductivity

more generally, but this requires access to intermediate
or strong couplings for which perturbation theory is
inadequate.
The development of cluster dynamical mean field theory

[14] has provided important nonperturbative information
about the Hubbard model. Dynamical mean field theory
approximates the electron self-energy in terms of a finite
number of auxiliary functions determined from the solu-
tion of an N-site quantum impurity model and becomes
exact as N tends to infinity. In this Letter we use dynamical
mean field methods to determine the interplay of super-
conductivity and the pseudogap in the Hubbard model.
This is challenging because the theory of the supercon-
ducting state involves both normal (N) and anomalous (A)
components of the Green’s function G and self-energy !,
leading to a doubling of the size of all matrices involved in
the calculation, and hence to at least an eightfold increase
in computational burden, which is further increased by the
need to reach very low temperatures.
We have constructed the superconducting state and

studied its interplay with the pseudogap using clusters of
N ¼ 4, 8, 16 sites, a size range found in previous work [15]
to be large enough to distinguish generic N ! 1 behavior
from that specific to particular clusters. Specifics of our
methods are given in the Supplemental Material [16]; here
we briefly note that a key aspect of our study is the use of
recently developed ‘‘submatrix update’’ numerical tech-
niques [17–19] which enable access to couplings strong
enough to produce a pseudogap at temperatures low
enough to construct the superconducting state for cluster
size N large enough to reasonably represent the N ! 1
limit. Our key results are that the pseudogap and super-
conductivity are competing phases and that, remarkably,
the onset of superconductivity within the pseudogap phase
leads to a decrease in the excitation gap, in sharp contrast
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FIG. 4. The leading eigenvalue at 10% doping for U/t = 4.

The critical temperature Tc is converges to Tc ⇡ 0.024 for

clusters larger than 36.

ter size. For the smallest cluster sizes Nc < 36, one also
sees that at a fixed temperature, �d increases monoton-
ically with cluster size, as does Tc. We believe that in
this regime of large Nc dependence, the superconduct-
ing coherence length is larger than the cluster so that
spatial phase fluctuations are neglected. Since pairs are
correlated over longer distances than those within the
cluster size, increasing the cluster size takes into account
longer-ranged pair-field correlations and therefore �d(T )
and also Tc increase with Nc. This is similar to what one
sees in finite size calculations for the cluster pair-field
correlations, which increase monotonically with cluster
size (see e.g. Fig. 1 in Ref.? ).

In order to show the Nc dependence of Tc more clearly,
we plot in Fig. 5 Tc versus Nc as determined from
�d(Tc) = 1 (black circles) together with the previous
DCA results (red squares). Here one clearly observes
the monotonic rise of Tc(Nc) of the DCA+ results for
Nc < 36. The previous DCA calculations were also able
to cover most of this range in Nc, although the results for
Tc were much more erratic as can be seen from the red
squares. With the new DCA+ results, it now becomes
clear that the cluster sizes that could be accessed with
the DCA are in a regime where the coherence length is
larger than the largest length scale covered by the clus-
ters. The DCA+ algorithm, however, due to the larger
average QMC sign, can go to significantly larger cluster
sizes. Most importantly, it can access a regime in which
Tc(Nc) appears to remain roughly constant with Nc or
just weakly decreases. We believe that in this regime, the
linear cluster sizes are larger than the coherence length.
In this case, just as we have found for the attractive
model in Sec. IIA, Tc should display a weak logarithmic
decrease with cluster size according to the KT scaling
behavior in Eq. (26) since spatial phase fluctuations are
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FIG. 5. The superconducting transition temperature Tc ver-

sus cluster-size computed with the DCA (red squares) and the

DCA
+
(black circles). Due to a more favorable sign-problem

in the DCA
+
, we can observe a consistent growth of Tc to-

wards the extrapolated value of the DCA.

increasingly taken into account.
Although the range of cluster sizes for which this

behavior is observed is very small (36 < Nc < 56),
it is interesting to see whether these results are con-
sistent with the KT scaling behavior in Eq. (26) and
whether one can extract a reliable infinite cluster size
limit Tc(Nc ! 1) ⌘ TKT. To this end we first need to
determine error bars for Tc(Nc). There are two sources of
errors in the DCA+ (and in the DCA) algorithm: (1) The
statistical error arising from the Monte Carlo sampling,
and (2) the error associated with di↵erences in the results
from di↵erent cluster shapes. While the cluster shape de-
pendence is significantly reduced in the DCA+ , we still
assume that the statistical Monte Carlo error is smaller
than the spread in results arising from di↵erent cluster
shapes. Thus, for each cluster size Nc, we calculate Tc

for four di↵erent cluster shapes. The mean and standard
deviation of these results is shown in Fig. 6 as circles and
dashed lines. For this calculation, we have used a very
small deconvolution cut-o↵ �� = 0.1 (typically we use
�� = 0.5), which amplifies the cluster-shape dependen-
cies to a great extent. In order to obtain an estimate for
TKT and its error, we now generate for each cluster size
a Gaussian distribution of 10000 transition temperatures
around the mean and within the confidence interval. For
each of this generated set of transition temperatures, we
perform a fit with Eq. (26) in order to obtain an estimate
for TKT. This results in a distribution of TKT, which we
show in the inset of Fig. 6. From a Gaussian fit of this
distribution we obtain a mean of TKT = 0.0199± 0.0019.
The average fit to the data is shown in Fig. 6 with the
red line.

As mentioned before and demonstrated in Fig. 5, the

Consistent with Kosterlitz-Thouless scaling 
 

7

in Eq. (??) as outlined in Section (IC) and then obtain
an estimate of TKT by fitting Tc(Nc) with the expected
KT form. We will show that both procedures result in
the same estimate for TKT.

We start with a finite size scaling analysis of the s-wave
cluster pair-field susceptibility

Ps =

Z �

0
d⌧ h�†(⌧)�(0)i (22)

with

�† =
1p
Nc

X

~K

c
†
~K"

c
†
� ~K#

. (23)

Note that Ps can be obtained directly from the Q = 0
cluster two-particle Green’s function G

Q,II
pp (K, K

0) and is
defined as

Ps =
T

2

N2
c

X

K,K0

G
Q=0,II
pp (K, K

0) (24)

where the sum over K (and K
0) implicitly contains a

sum over momenta ~K and Matsubara frequencies !n.
If one assumes that the transition to the superconduct-

ing phase takes place when the correlation length reaches
the linear cluster size Lc =

p
Nc, one expects from finite

size scaling for a Kosterlitz-Thouless transition that?

PsL
�7/4
c = Lc exp


�↵p

T � Tc

�
. (25)

In Fig. 2, we have plotted the best data-collapse for
this equation at 50% doping. The critical temperature
TKT = 0.13 obtained by the data-collapse is equal to
the value obtained by Paiva et. al. We believe that
the discrepancy on the ↵ parameter (0.3 versus 0.1) can
most likely be attributed to the mean-field character of
the DCA algorithm.

Next, we use the new DCA+two-particle formalism de-
scribed in Section I C to calculate the lattice irreducible
vertex in the particle-particle channel, �pp(k, k

0), with
continuous momentum dependence. We then compute
the leading eigenvalue �s(T ) (the corresponding eigen-
vector has s-wave symmetry) of the pairing matrix �pp

�
0

that enters the lattice Bethe-Salpeter equation. This al-
lows us to determine the transition temperature Tc(Nc)
for a given cluster size Nc from �s(Tc) = 1. The exact
infinite cluster size result Tc(Nc ! 1) ⌘ TKT is then
obtained from fitting the Tc(Nc) data with the expected
KT behavior?

Tc(Nc) = T
KT
c +

A

[B + log(
p

Nc)]2
. (26)

As one sees from the inset of Fig. 3, the fits of the
data for electron densities hni = 0.1, 0.5 and 0.8 with the

form in Eq. (26) are excellent. The resulting estimates for
TKT(hni) are shown as symbols in the main figure. The
error bars are obtained by omitting each data-point once
in the corresponding Tc(Nc) curves, which results in 6
di↵erent estimates for TKT for each density and thus the
standard deviation represented by the error bars. We can
clearly observe that the obtained transition temperatures
lie within the error-bars of Paiva et. al (red dashed lines
in Fig. 2).

From these results one can draw two important conclu-
sions: First, the transition temperature we obtain from
the data-collapse of the cluster-susceptibility is in ex-
cellent agreement with the transition temperature ob-
tained from the lattice Bethe-Salpeter equation. The
first procedure is based entirely on the two-particle clus-
ter Greens function and thus does not involve the new
procedure for determining the lattice irreducible vertex.
The second method, in contrast, uses the new DCA+two-
particle framework (inversion of Eq. (16) for the lattice
vertex. This provides evidence that the algorithm we use
to invert the coarse-graining of the lattice vertex func-
tion in Eq. (16) provides accurate estimates of transition
temperatures for a given cluster size Nc, which lead to
the same inifite cluster size limit as the results obtained
from finite size scaling of the cluster susceptibility. Sec-
ond, the DCA+ calculations reproduce the temperature
versus doping phase-diagram of the attractive Hubbard
model with an interaction of U/t = �4 previously deter-
mined by Paiva et al.. From this we conclude that the
DCA+algorithm provides a reliable method to accurately
determine phase transition temperatures.

B. 2D repulsive Hubbard model

We will start the DCA+ study of the 2D repulsive Hub-
bard model by re-investigating d-wave superconductivity
in the weak-coupling U = 4t regime for which previous
DCA results are already available? . We will then move
on to the intermediate-coupling U = 7t regime, which has
been di�cult to access with standard DCA. In particular,
we will show results for antiferromagnetism at half-filling
and d-wave superconductivity in the doped model.

1. Superconductivity at weak coupling

As for the attractive model, we calculate the temper-
ature dependence of the leading eigenvalues and eigen-
vectors of the pairing matrix �pp

�
0 that enters the lat-

tice Bethe-Salpeter equation for di↵erent cluster sizes.
At low temperatures, the leading eigenvector has d-wave
symmetry. In Fig. 4 we show DCA+ results for the lead-
ing d-wave eigenvalue �d(T ) versus temperature for clus-
ter sizes ranging from 16 to 52 sites for U = 4t and
hni = 0.9. One sees that �d(T ) monotonically increases
with decreasing temperature and eventually crosses one,
which defines the transition temperature for a given clus-

lim
Nc→∞

TKT(Nc) = 0.0199 ± 0.0019
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The DCA+ algorithm was recently introduced by Stear, Maier, and Schulthess [Phys. Rev. B 88, 115101 (2013)]
to extend the dynamic cluster approximation (DCA) with a continuous lattice self-energy in order to achieve better
convergence with cluster size. Here we extend the DCA+ algorithm to the calculation of two-particle correlation
functions by introducing irreducible vertex functions with continuous momentum dependence consistent with
the DCA+ self-energy. This enables a significantly more controlled and reliable study of phase transitions than
with the DCA. We test the new method by calculating the superconducting transition temperature Tc in the
attractive Hubbard model and show that it reproduces previous determinantal quantum Monte Carlo results. We
then calculate Tc in the doped repulsive Hubbard model, for which previous DCA calculations could only access
the weak-coupling (U = 4t) regime for large clusters. We show that the new algorithm provides access to much
larger clusters and delivers asymptotically converged results for Tc for both the weak (U = 4t) and intermediate
(U = 7t) coupling regimes, and thereby enables the accurate determination of the exact infinite cluster size result.
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I. INTRODUCTION

Many fascinating phenomena observed in materials, such
as high-temperature superconductivity or colossal magnetore-
sistance, owe their existence to strong interactions between
electrons and their theoretical study has therefore posed one
of the most difficult challenges in condensed matter science.
Due to the complexity of the underlying quantum many-
body problem, analytical theories require approximations and
numerical calculations of simplified model Hamiltonians have
become increasingly important to analyze the physics of
these systems. The two-dimensional (2D) Hubbard model, a
standard model of correlated electron systems, has been used
extensively to describe the physics of the high-temperature
superconducting cuprates [1,2]. Its Hamiltonian for a square
lattice of sites i is given by

H =
∑

!k,σ

ε!k c
†
!kσ

c!kσ
+ U

∑

i

ni↑ni↓. (1)

Here, c(†)
!kσ

destroys (creates) an electron with momentum !k and
spin σ and ni,σ is the occupation number operator for site i.
The dispersion

ε!k = −2t(cos kx + cos ky) (2)

corresponds to nearest neighbor hopping with an amplitude of
t and U describes the on-site Coulomb repulsion between two
electrons with opposite spin.

Due to the exponential growth of the Hilbert space with
the number of electrons, many numerical methods have taken
a finite size approach, in which one carries out calculations
on a finite size lattice and then tries to scale up to the
thermodynamic limit. The dynamical cluster approximation
(DCA) takes a different approach in which the bulk lattice
problem is replaced by an effective cluster embedded in a
mean-field bath that is designed to represent the remaining
degrees of freedom [3–5]. For a given cluster size, it therefore

gives approximate results for the thermodynamic limit and
thus, in contrast to finite size methods, allows one to access
broken symmetry states. Similar to finite size methods, one
can also carry out calculations on different cluster sizes and
then use finite size scaling in order to obtain an exact result for
the thermodynamic limit.

DCA calculations on different cluster sizes have been used
recently to study the normal, paramagnetic phase pseudogap
state that is found in the 2D Hubbard model for electron filling
factors close to one (half-filling) at intermediate to strong
coupling [6]. Similar calculations have also shown that this
model describes a superconducting transition with d-wave
symmetry [7] and even allowed an analysis of the pairing
interaction [8,9]. But if one wants to carry out calculations
of the doped model on large clusters at low temperatures,
one has to chose an unrealistically small value of U = 4t ,
since the fermion sign problem of the QMC algorithm used
as a cluster solver within the DCA prevents large cluster
simulations for U ∼ 8t that would be more realistic for
these systems. In addition, even for U = 4t , the results for
the superconducting transition temperature Tc were far from
converged, in part because the accessible cluster sizes were
too small, but also because for small clusters, results generally
depend significantly on the cluster size and shape [7].

As an illustrative example of this strong cluster shape and
size dependence, we plot in Fig. 1 the DCA results for the
leading (d-wave) eigenvalue λd of the Bethe-Salpeter equation
in the particle-particle channel [9] calculated for a 2 × 2
four-site and a

√
8 ×

√
8 eight-site cluster. This quantity is

a measure of the strength of the pairing correlations in the
d-wave channel and indicates a superconducting instability at
a temperature Tc, where λd (Tc) = 1. One sees that the four-site
cluster has a finite temperature superconducting transition
where λd crosses one, while the eight-site cluster does not. We
believe that this discrepancy can be ascribed to differences in
the finite size sampling of a continuous d-wave cos kx − cos ky
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FIG. 4. The leading eigenvalue at 10% doping for U/t = 4.

The critical temperature Tc is converges to Tc ⇡ 0.024 for

clusters larger than 36.

ter size. For the smallest cluster sizes Nc < 36, one also
sees that at a fixed temperature, �d increases monoton-
ically with cluster size, as does Tc. We believe that in
this regime of large Nc dependence, the superconduct-
ing coherence length is larger than the cluster so that
spatial phase fluctuations are neglected. Since pairs are
correlated over longer distances than those within the
cluster size, increasing the cluster size takes into account
longer-ranged pair-field correlations and therefore �d(T )
and also Tc increase with Nc. This is similar to what one
sees in finite size calculations for the cluster pair-field
correlations, which increase monotonically with cluster
size (see e.g. Fig. 1 in Ref.? ).

In order to show the Nc dependence of Tc more clearly,
we plot in Fig. 5 Tc versus Nc as determined from
�d(Tc) = 1 (black circles) together with the previous
DCA results (red squares). Here one clearly observes
the monotonic rise of Tc(Nc) of the DCA+ results for
Nc < 36. The previous DCA calculations were also able
to cover most of this range in Nc, although the results for
Tc were much more erratic as can be seen from the red
squares. With the new DCA+ results, it now becomes
clear that the cluster sizes that could be accessed with
the DCA are in a regime where the coherence length is
larger than the largest length scale covered by the clus-
ters. The DCA+ algorithm, however, due to the larger
average QMC sign, can go to significantly larger cluster
sizes. Most importantly, it can access a regime in which
Tc(Nc) appears to remain roughly constant with Nc or
just weakly decreases. We believe that in this regime, the
linear cluster sizes are larger than the coherence length.
In this case, just as we have found for the attractive
model in Sec. IIA, Tc should display a weak logarithmic
decrease with cluster size according to the KT scaling
behavior in Eq. (26) since spatial phase fluctuations are
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0.04
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T c

DCA+
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FIG. 5. The superconducting transition temperature Tc ver-

sus cluster-size computed with the DCA (red squares) and the

DCA
+
(black circles). Due to a more favorable sign-problem

in the DCA
+
, we can observe a consistent growth of Tc to-

wards the extrapolated value of the DCA.

increasingly taken into account.
Although the range of cluster sizes for which this

behavior is observed is very small (36 < Nc < 56),
it is interesting to see whether these results are con-
sistent with the KT scaling behavior in Eq. (26) and
whether one can extract a reliable infinite cluster size
limit Tc(Nc ! 1) ⌘ TKT. To this end we first need to
determine error bars for Tc(Nc). There are two sources of
errors in the DCA+ (and in the DCA) algorithm: (1) The
statistical error arising from the Monte Carlo sampling,
and (2) the error associated with di↵erences in the results
from di↵erent cluster shapes. While the cluster shape de-
pendence is significantly reduced in the DCA+ , we still
assume that the statistical Monte Carlo error is smaller
than the spread in results arising from di↵erent cluster
shapes. Thus, for each cluster size Nc, we calculate Tc

for four di↵erent cluster shapes. The mean and standard
deviation of these results is shown in Fig. 6 as circles and
dashed lines. For this calculation, we have used a very
small deconvolution cut-o↵ �� = 0.1 (typically we use
�� = 0.5), which amplifies the cluster-shape dependen-
cies to a great extent. In order to obtain an estimate for
TKT and its error, we now generate for each cluster size
a Gaussian distribution of 10000 transition temperatures
around the mean and within the confidence interval. For
each of this generated set of transition temperatures, we
perform a fit with Eq. (26) in order to obtain an estimate
for TKT. This results in a distribution of TKT, which we
show in the inset of Fig. 6. From a Gaussian fit of this
distribution we obtain a mean of TKT = 0.0199± 0.0019.
The average fit to the data is shown in Fig. 6 with the
red line.

As mentioned before and demonstrated in Fig. 5, the

Consistent with Kosterlitz-Thouless scaling 
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in Eq. (??) as outlined in Section (IC) and then obtain
an estimate of TKT by fitting Tc(Nc) with the expected
KT form. We will show that both procedures result in
the same estimate for TKT.

We start with a finite size scaling analysis of the s-wave
cluster pair-field susceptibility

Ps =

Z �

0
d⌧ h�†(⌧)�(0)i (22)

with

�† =
1p
Nc

X

~K

c
†
~K"

c
†
� ~K#

. (23)

Note that Ps can be obtained directly from the Q = 0
cluster two-particle Green’s function G

Q,II
pp (K, K

0) and is
defined as

Ps =
T

2

N2
c

X

K,K0

G
Q=0,II
pp (K, K

0) (24)

where the sum over K (and K
0) implicitly contains a

sum over momenta ~K and Matsubara frequencies !n.
If one assumes that the transition to the superconduct-

ing phase takes place when the correlation length reaches
the linear cluster size Lc =

p
Nc, one expects from finite

size scaling for a Kosterlitz-Thouless transition that?

PsL
�7/4
c = Lc exp


�↵p

T � Tc

�
. (25)

In Fig. 2, we have plotted the best data-collapse for
this equation at 50% doping. The critical temperature
TKT = 0.13 obtained by the data-collapse is equal to
the value obtained by Paiva et. al. We believe that
the discrepancy on the ↵ parameter (0.3 versus 0.1) can
most likely be attributed to the mean-field character of
the DCA algorithm.

Next, we use the new DCA+two-particle formalism de-
scribed in Section I C to calculate the lattice irreducible
vertex in the particle-particle channel, �pp(k, k

0), with
continuous momentum dependence. We then compute
the leading eigenvalue �s(T ) (the corresponding eigen-
vector has s-wave symmetry) of the pairing matrix �pp

�
0

that enters the lattice Bethe-Salpeter equation. This al-
lows us to determine the transition temperature Tc(Nc)
for a given cluster size Nc from �s(Tc) = 1. The exact
infinite cluster size result Tc(Nc ! 1) ⌘ TKT is then
obtained from fitting the Tc(Nc) data with the expected
KT behavior?

Tc(Nc) = T
KT
c +

A

[B + log(
p

Nc)]2
. (26)

As one sees from the inset of Fig. 3, the fits of the
data for electron densities hni = 0.1, 0.5 and 0.8 with the

form in Eq. (26) are excellent. The resulting estimates for
TKT(hni) are shown as symbols in the main figure. The
error bars are obtained by omitting each data-point once
in the corresponding Tc(Nc) curves, which results in 6
di↵erent estimates for TKT for each density and thus the
standard deviation represented by the error bars. We can
clearly observe that the obtained transition temperatures
lie within the error-bars of Paiva et. al (red dashed lines
in Fig. 2).

From these results one can draw two important conclu-
sions: First, the transition temperature we obtain from
the data-collapse of the cluster-susceptibility is in ex-
cellent agreement with the transition temperature ob-
tained from the lattice Bethe-Salpeter equation. The
first procedure is based entirely on the two-particle clus-
ter Greens function and thus does not involve the new
procedure for determining the lattice irreducible vertex.
The second method, in contrast, uses the new DCA+two-
particle framework (inversion of Eq. (16) for the lattice
vertex. This provides evidence that the algorithm we use
to invert the coarse-graining of the lattice vertex func-
tion in Eq. (16) provides accurate estimates of transition
temperatures for a given cluster size Nc, which lead to
the same inifite cluster size limit as the results obtained
from finite size scaling of the cluster susceptibility. Sec-
ond, the DCA+ calculations reproduce the temperature
versus doping phase-diagram of the attractive Hubbard
model with an interaction of U/t = �4 previously deter-
mined by Paiva et al.. From this we conclude that the
DCA+algorithm provides a reliable method to accurately
determine phase transition temperatures.

B. 2D repulsive Hubbard model

We will start the DCA+ study of the 2D repulsive Hub-
bard model by re-investigating d-wave superconductivity
in the weak-coupling U = 4t regime for which previous
DCA results are already available? . We will then move
on to the intermediate-coupling U = 7t regime, which has
been di�cult to access with standard DCA. In particular,
we will show results for antiferromagnetism at half-filling
and d-wave superconductivity in the doped model.

1. Superconductivity at weak coupling

As for the attractive model, we calculate the temper-
ature dependence of the leading eigenvalues and eigen-
vectors of the pairing matrix �pp

�
0 that enters the lat-

tice Bethe-Salpeter equation for di↵erent cluster sizes.
At low temperatures, the leading eigenvector has d-wave
symmetry. In Fig. 4 we show DCA+ results for the lead-
ing d-wave eigenvalue �d(T ) versus temperature for clus-
ter sizes ranging from 16 to 52 sites for U = 4t and
hni = 0.9. One sees that �d(T ) monotonically increases
with decreasing temperature and eventually crosses one,
which defines the transition temperature for a given clus-

lim
Nc→∞

TKT(Nc) = 0.0199 ± 0.0019

U = 4t, ⟨n⟩ = 0.9

‣ Highest Tc for U ~ W=8t

Staar et al., PRB ‘14
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The critical temperature Tc is converges to Tc ⇡ 0.024 for

clusters larger than 36.

ter size. For the smallest cluster sizes Nc < 36, one also
sees that at a fixed temperature, �d increases monoton-
ically with cluster size, as does Tc. We believe that in
this regime of large Nc dependence, the superconduct-
ing coherence length is larger than the cluster so that
spatial phase fluctuations are neglected. Since pairs are
correlated over longer distances than those within the
cluster size, increasing the cluster size takes into account
longer-ranged pair-field correlations and therefore �d(T )
and also Tc increase with Nc. This is similar to what one
sees in finite size calculations for the cluster pair-field
correlations, which increase monotonically with cluster
size (see e.g. Fig. 1 in Ref.? ).

In order to show the Nc dependence of Tc more clearly,
we plot in Fig. 5 Tc versus Nc as determined from
�d(Tc) = 1 (black circles) together with the previous
DCA results (red squares). Here one clearly observes
the monotonic rise of Tc(Nc) of the DCA+ results for
Nc < 36. The previous DCA calculations were also able
to cover most of this range in Nc, although the results for
Tc were much more erratic as can be seen from the red
squares. With the new DCA+ results, it now becomes
clear that the cluster sizes that could be accessed with
the DCA are in a regime where the coherence length is
larger than the largest length scale covered by the clus-
ters. The DCA+ algorithm, however, due to the larger
average QMC sign, can go to significantly larger cluster
sizes. Most importantly, it can access a regime in which
Tc(Nc) appears to remain roughly constant with Nc or
just weakly decreases. We believe that in this regime, the
linear cluster sizes are larger than the coherence length.
In this case, just as we have found for the attractive
model in Sec. IIA, Tc should display a weak logarithmic
decrease with cluster size according to the KT scaling
behavior in Eq. (26) since spatial phase fluctuations are
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wards the extrapolated value of the DCA.

increasingly taken into account.
Although the range of cluster sizes for which this

behavior is observed is very small (36 < Nc < 56),
it is interesting to see whether these results are con-
sistent with the KT scaling behavior in Eq. (26) and
whether one can extract a reliable infinite cluster size
limit Tc(Nc ! 1) ⌘ TKT. To this end we first need to
determine error bars for Tc(Nc). There are two sources of
errors in the DCA+ (and in the DCA) algorithm: (1) The
statistical error arising from the Monte Carlo sampling,
and (2) the error associated with di↵erences in the results
from di↵erent cluster shapes. While the cluster shape de-
pendence is significantly reduced in the DCA+ , we still
assume that the statistical Monte Carlo error is smaller
than the spread in results arising from di↵erent cluster
shapes. Thus, for each cluster size Nc, we calculate Tc

for four di↵erent cluster shapes. The mean and standard
deviation of these results is shown in Fig. 6 as circles and
dashed lines. For this calculation, we have used a very
small deconvolution cut-o↵ �� = 0.1 (typically we use
�� = 0.5), which amplifies the cluster-shape dependen-
cies to a great extent. In order to obtain an estimate for
TKT and its error, we now generate for each cluster size
a Gaussian distribution of 10000 transition temperatures
around the mean and within the confidence interval. For
each of this generated set of transition temperatures, we
perform a fit with Eq. (26) in order to obtain an estimate
for TKT. This results in a distribution of TKT, which we
show in the inset of Fig. 6. From a Gaussian fit of this
distribution we obtain a mean of TKT = 0.0199± 0.0019.
The average fit to the data is shown in Fig. 6 with the
red line.

As mentioned before and demonstrated in Fig. 5, the
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in Eq. (??) as outlined in Section (IC) and then obtain
an estimate of TKT by fitting Tc(Nc) with the expected
KT form. We will show that both procedures result in
the same estimate for TKT.

We start with a finite size scaling analysis of the s-wave
cluster pair-field susceptibility

Ps =

Z �

0
d⌧ h�†(⌧)�(0)i (22)

with

�† =
1p
Nc

X

~K

c
†
~K"

c
†
� ~K#

. (23)

Note that Ps can be obtained directly from the Q = 0
cluster two-particle Green’s function G

Q,II
pp (K, K

0) and is
defined as

Ps =
T

2

N2
c

X

K,K0

G
Q=0,II
pp (K, K

0) (24)

where the sum over K (and K
0) implicitly contains a

sum over momenta ~K and Matsubara frequencies !n.
If one assumes that the transition to the superconduct-

ing phase takes place when the correlation length reaches
the linear cluster size Lc =

p
Nc, one expects from finite

size scaling for a Kosterlitz-Thouless transition that?

PsL
�7/4
c = Lc exp


�↵p

T � Tc

�
. (25)

In Fig. 2, we have plotted the best data-collapse for
this equation at 50% doping. The critical temperature
TKT = 0.13 obtained by the data-collapse is equal to
the value obtained by Paiva et. al. We believe that
the discrepancy on the ↵ parameter (0.3 versus 0.1) can
most likely be attributed to the mean-field character of
the DCA algorithm.

Next, we use the new DCA+two-particle formalism de-
scribed in Section I C to calculate the lattice irreducible
vertex in the particle-particle channel, �pp(k, k

0), with
continuous momentum dependence. We then compute
the leading eigenvalue �s(T ) (the corresponding eigen-
vector has s-wave symmetry) of the pairing matrix �pp

�
0

that enters the lattice Bethe-Salpeter equation. This al-
lows us to determine the transition temperature Tc(Nc)
for a given cluster size Nc from �s(Tc) = 1. The exact
infinite cluster size result Tc(Nc ! 1) ⌘ TKT is then
obtained from fitting the Tc(Nc) data with the expected
KT behavior?

Tc(Nc) = T
KT
c +

A

[B + log(
p

Nc)]2
. (26)

As one sees from the inset of Fig. 3, the fits of the
data for electron densities hni = 0.1, 0.5 and 0.8 with the

form in Eq. (26) are excellent. The resulting estimates for
TKT(hni) are shown as symbols in the main figure. The
error bars are obtained by omitting each data-point once
in the corresponding Tc(Nc) curves, which results in 6
di↵erent estimates for TKT for each density and thus the
standard deviation represented by the error bars. We can
clearly observe that the obtained transition temperatures
lie within the error-bars of Paiva et. al (red dashed lines
in Fig. 2).

From these results one can draw two important conclu-
sions: First, the transition temperature we obtain from
the data-collapse of the cluster-susceptibility is in ex-
cellent agreement with the transition temperature ob-
tained from the lattice Bethe-Salpeter equation. The
first procedure is based entirely on the two-particle clus-
ter Greens function and thus does not involve the new
procedure for determining the lattice irreducible vertex.
The second method, in contrast, uses the new DCA+two-
particle framework (inversion of Eq. (16) for the lattice
vertex. This provides evidence that the algorithm we use
to invert the coarse-graining of the lattice vertex func-
tion in Eq. (16) provides accurate estimates of transition
temperatures for a given cluster size Nc, which lead to
the same inifite cluster size limit as the results obtained
from finite size scaling of the cluster susceptibility. Sec-
ond, the DCA+ calculations reproduce the temperature
versus doping phase-diagram of the attractive Hubbard
model with an interaction of U/t = �4 previously deter-
mined by Paiva et al.. From this we conclude that the
DCA+algorithm provides a reliable method to accurately
determine phase transition temperatures.

B. 2D repulsive Hubbard model

We will start the DCA+ study of the 2D repulsive Hub-
bard model by re-investigating d-wave superconductivity
in the weak-coupling U = 4t regime for which previous
DCA results are already available? . We will then move
on to the intermediate-coupling U = 7t regime, which has
been di�cult to access with standard DCA. In particular,
we will show results for antiferromagnetism at half-filling
and d-wave superconductivity in the doped model.

1. Superconductivity at weak coupling

As for the attractive model, we calculate the temper-
ature dependence of the leading eigenvalues and eigen-
vectors of the pairing matrix �pp

�
0 that enters the lat-

tice Bethe-Salpeter equation for di↵erent cluster sizes.
At low temperatures, the leading eigenvector has d-wave
symmetry. In Fig. 4 we show DCA+ results for the lead-
ing d-wave eigenvalue �d(T ) versus temperature for clus-
ter sizes ranging from 16 to 52 sites for U = 4t and
hni = 0.9. One sees that �d(T ) monotonically increases
with decreasing temperature and eventually crosses one,
which defines the transition temperature for a given clus-

lim
Nc→∞

TKT(Nc) = 0.0199 ± 0.0019

U = 4t, ⟨n⟩ = 0.9 U = 7t, ⟨n⟩ = 0.9
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FIG. 8. (Color online) Frequency and momentum dependence of
the leading eigenvector in the spin S = 1 particle-hole channel for
U/t = 7, Nc = 144 at half-filling for a temperature close to TN(Nc).
The inset shows the momentum dependence of !(k,πT ) along the
diagonal from !k = (0,π ) to (π,0).

also has a retarded component for this strength of the Coulomb
interaction.

We now turn to the doped model at U = 7t and study
the superconducting transition for a filling of 〈n〉 = 0.9. For
these parameters, the standard DCA algorithm can only access
clusters as large as 12 sites because of the fermion sign
problem. The DCA+ algorithm, however, significantly delays
the sign problem and allows us to access clusters as large as
28 sites.

Figure 9 shows the DCA+ results for the superconducting
transition temperature Tc versus cluster size (black circles)
in addition to the DCA results (red squares). The DCA data
for Tc have significant cluster size dependence and irregular
behavior and it is impossible to determine an estimate of
Tc based on these results. In contrast, the DCA+ results
are much more systematic: similar to the weak coupling

0 5 10 15 20 25 30

Nc

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
c

DCA+

DCA

FIG. 9. (Color online) DCA (red squares) and DCA+ (black cir-
cles) results for the superconducting transition temperature Tc versus
cluster size for U/t = 7 and 10% doping.
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FIG. 10. (Color online) k dependence of the leading eigenvector
at the first Matsubara frequency in the particle-particle channel
for U/t = 7, β = 20, Nc = 24, and 10% doping. One can clearly
observe the dx2−y2 cos kx − cos ky structure (red line). Inset: the $

dependence of !(k = {π,0},$ ).

U/t = 4 case, one observes a small cluster regime in which Tc

increases with Nc, followed by a regime where Tc(Nc) appears
approximately constant. Interestingly, the second regime of
constant Tc is reached already for a significantly smaller
cluster size than for the weak coupling case. From this we
estimate the coherence length ξ ≈

√
12 ≈ 3.5 lattice spacings

for U = 7t and 〈n〉 = 0.9. This is about half of the estimate we
obtained for U = 4t and indicates that the coherence length
decreases with increasing interaction strength U in the regime
of moderate values of U .

The !k dependence of the leading d-wave eigenvector
!(!k,$0 = πT ) obtained for the Nc = 28 site cluster is plotted
in Fig. 10. Its d-wave cos kx − cos ky structure is obvious
from this plot. A detailed analysis of the contribution of
higher d-wave harmonics will be published elsewhere. The
$ dependence of !(!k,$ ) reflects the frequency dependence
of the pairing interaction [9] and is shown for !k = (π,0) in the
inset. From this one sees that !(!k,$ ) falls off with $ on a
scale set by J = 4t2/U ≈ 0.57. This reflects a retarded pairing
interaction with similar dynamics as the spin fluctuations [9].

IV. CONCLUSION

In this paper, we have presented an extension of the recently
introduced DCA+ algorithm to the calculation of two-particle
correlation functions. The DCA+ extends the dynamic cluster
approximation with a continuous self-energy and thereby
reduces its cluster shape dependencies and the fermion sign
problem of the underlying QMC solver. The DCA+ two-
particle framework is derived from the requirement of thermo-
dynamic consistency, which assures that quantities calculated
from the two-particle Green’s functions are identical to those
calculated from the single-particle Green’s function. We have
shown that this requirement is satisfied if the coarse-grained
vertex function &̄α(K,K ′) =

∫
d!k d!k′φ !K (!k)&α(k,k′)φ !K ′(!k′) is

equal to the corresponding vertex function calculated on the

195133-9

Tc ∼ 0.05t

‣ Highest Tc for U ~ W=8t
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and pseudogap physics,8,13,17 their inability to host incommensu-
rate states leaves open important questions regarding the
interplay of stripes with the aforementioned orders.
In contrast to these previous finite temperature findings, zero-

temperature calculations, from a variety of methods, have
indicated striped ground states in the Hubbard model. A recent
comparison found close agreement in the ground state energies
using four different techniques,2 providing evidence for period-8
stripes in the ground state of the 1/8-hole-doped Hubbard model
with only nearest-neighbor hopping (t′= 0) and canonical
interaction strength (U/t= 8, the non-interacting bandwidth).
Instead, our findings show stripes with a period ~5 for 1/8 hole-
doping (Fig. 1b, p= 0.125), in better agreement with experimental
results on cuprates.18–20

To understand these differences, we study the impact of
varying the model parameters, starting with the next-nearest-
neighbor hopping t′, which induces a particle–hole asymmetry.
For t′=−0.1 and t′= 0, we find antiphase domain walls still
present, but with an increased period of ~8 for 1/8 hole-doping
(Fig. 2), similar to the previously mentioned results of ground state
calculations. In contrast, the period ~5 stripes from simulations

using a negative value of t′=−0.25 correspond well to neutron
scattering experiments where multiple hole-doped compounds
show incommensurablity corresponding to period 4–5 spin stripes
at 1/8 hole-doping.20 Also at 1/8 hole-doping, Fig. 2 shows the
staggered spin–spin correlation function for t′/t= 0.1 and t′/t=
0.25, equivalent to 1/8 electron-doping for negative t′. In contrast
to previous results, no antiphase domains are present and only
antiferromagnetism is visible. This is additionally corroborated by
our DMRG simulations in Fig. S2 of the Supplementary Materials.
As neutron scattering21,22 on electron-doped compounds similarly
finds only commensurate antiferromagnetic excitations at low
energy, our simulations show that a negative value of t′ that
properly captures the cuprates’ Fermi surface topology also
correctly describes the spin behavior in both directions of doping.
Variations in the interaction strength U make little direct impact

on the presence or periodicity of stripes. We first consider results
for the lowest temperature accessible to simulation. For U/t= 5, at
a temperature of T/t= 0.20, we again find period-5 stripes at 1/8
hole-doping (Fig. 3, top left). Increasing to U/t= 7 (Fig. 3, top right),
the worsened sign problem constrains the lowest accessible
temperature to T/t= 0.26. Here, the stripes instead have an
increased period of ~ 7. We attribute this to the change in
temperature: for the same ratio T/J= 0.45 of temperature to
exchange coupling, similar period ~ 7 domains are present for U/t
= 5 and U/t= 6 (Fig. 3, second row). At U/t= 8, the sign problem is
too severe to achieve temperatures of T/J= 0.45, but at accessible
temperatures we find no indication of different behavior. The
similarities between these results for the same T/J imply a marginal
role of the value of U, at least in the range of explored values.
Generally, with increasing temperatures we find slight increases

in stripe period and substantial reduction in correlation length
(Fig. 3). This is consistent with neutron scattering data on
La1.875Ba0.125CuO4 (LBCO), where spin incommensurability (inver-
sely proportional to the period) decreases with increasing
temperature.19 In our data, reduced correlation lengths at higher
temperatures make it increasingly difficult to see π-phase shifted
domains in correlation functions. At the temperature T/J= 0.75,
nearly all correlations expected from the nearest π-phase shifted

Fig. 1 a Spin correlation functions in the Hubbard model with
parameters U/t= 6, t′/t=−0.25 obtained by DQMC simulations at
temperature T/t= 0.22. Top: Spin correlation functions at 0 doping.
Bottom: staggered spin correlation functions, with signs flipped on
every other site, of the same data. b Staggered spin correlation
functions for various hole doping levels. Dashed green lines indicate
approximate locations of antiphase domain walls. Correlations
showing a + or − sign are nonzero by at least two standard errors

Fig. 2 Staggered spin correlation functions from DQMC at p= 0.125
hole doping, U/t= 6, and T/t= 0.22 for various values of t′
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A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational
symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emergence of
stripes in the Hubbard model, a minimal model believed to be relevant to the cuprate superconductors, using determinant
quantum Monte Carlo (DQMC) simulations at finite temperatures and density matrix renormalization group (DMRG) ground state
calculations. By varying temperature, doping, and model parameters, we characterize the extent of stripes throughout the phase
diagram of the Hubbard model. Our results show that including the often neglected next-nearest-neighbor hopping leads to the
absence of spin incommensurability upon electron-doping and nearly half-filled stripes upon hole-doping. The similarities of these
findings to experimental results on both electron and hole-doped cuprate families support a unified description across a large
portion of the cuprate phase diagram.
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INTRODUCTION
The lack of an analytic solution to the Hubbard model in two-
dimensions has led to development of various numerical
methods to study its low temperature and ground state proper-
ties. Calculations to benchmark these techniques have revealed
that different candidate ground states all lie close in energy,1,2

with small differences possibly associated with specific aspects of
each method. Density matrix renormalization group, exact
diagonalization/dynamical mean-field theory, constrained path
auxiliary field Monte Carlo, infinite projected entagled-pair states,
and density matrix embedding theory all find evidence for
stripes,1–7 having stronger amplitudes and longer correlation
lengths than d-wave superconductivity. However, dynamical
cluster approximation and cellular dynamical mean-field theory
calculations have not shown evidence for stripes, instead finding
a finite temperature transition into a d-wave superconductor.8–13

These seemingly different ground states with similar energies
reflect a delicate balance, sensitive to the specific nuances and
biases of each approach.
Numerically discerning energy differences to ascertain low-

temperature properties requires rigorous effort to eliminate
biases, and techniques may or may not reveal true ground states
if the treatments are variational. On the other hand, provided that
fluctuating orders are appreciable, calculations at higher tem-
peratures provide an alternative perspective and carry the benefit
that shortened correlation lengths reduce finite size effects. Here
we use determinant quantum Monte Carlo (DQMC), an exact
finite temperature technique, for this purpose. Although the
fermion sign problem sets a lower bound on the range of
temperatures amenable to simulation, we show that fluctuating
stripe order is nevertheless observable at accessible
temperatures.

RESULTS
We first describe the doping dependence of spin correlations for
the Hubbard model with interaction strength U/t= 6 and next-
nearest-neighbor hopping t′/t=−0.25, where t is the nearest-
neighboring hopping. Figure 1 displays the real space, equal-time
spin–spin correlation functions obtained from finite temperature
DQMC simulations on 16 × 4 clusters with periodic boundary
conditions. At half-filling (Fig. 1a), antiferromagnetic spin correla-
tions are evident from the checkerboard pattern, or equivalently
from the uniform phase of the staggered spin–spin correlation
functions (lower portion of Fig. 1a), defined with a (π, π) phase
factor that flips the sign of the correlation function on every other
site. Hole-doping (Fig. 1b, p= 0.042) first induces a decrease in
correlation length, followed by development of antiphase
domains with increasing hole concentration. The size of each
domain is inversely proportional to the hole doping level; and for
p ≥ 0.125, multiple sets of antiphase domain walls become visible
for this cluster geometry and size. This behavior, qualitatively and
quantitatively similar to previous findings for the three-band
Hubbard model,14 demonstrates that stripe behavior at finite
temperatures emerges in the Hubbard model through incom-
mensurate spin correlations. To ensure that these findings are not
artifacts of the anisotropic cluster geometry, we present and
discuss results for a square geometry in Fig. S1 of the
Supplementary Materials.
Previous finite-temperature calculations of the Hubbard model

failed to demonstrate spontaneous development of either spin or
charge incommensurability, absent imposing inhomogeneity from
external fields not part of the original model (e.g., see refs.15,16). In
light of the results presented here, a necessary ingredient appears
to be large enough clusters capable of supporting multiple stripe
domains. While calculations utilizing small clusters (, N= 8) have
been used to demonstrate antiferromagnetism, superconductivity,
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and pseudogap physics,8,13,17 their inability to host incommensu-
rate states leaves open important questions regarding the
interplay of stripes with the aforementioned orders.
In contrast to these previous finite temperature findings, zero-

temperature calculations, from a variety of methods, have
indicated striped ground states in the Hubbard model. A recent
comparison found close agreement in the ground state energies
using four different techniques,2 providing evidence for period-8
stripes in the ground state of the 1/8-hole-doped Hubbard model
with only nearest-neighbor hopping (t′= 0) and canonical
interaction strength (U/t= 8, the non-interacting bandwidth).
Instead, our findings show stripes with a period ~5 for 1/8 hole-
doping (Fig. 1b, p= 0.125), in better agreement with experimental
results on cuprates.18–20

To understand these differences, we study the impact of
varying the model parameters, starting with the next-nearest-
neighbor hopping t′, which induces a particle–hole asymmetry.
For t′=−0.1 and t′= 0, we find antiphase domain walls still
present, but with an increased period of ~8 for 1/8 hole-doping
(Fig. 2), similar to the previously mentioned results of ground state
calculations. In contrast, the period ~5 stripes from simulations

using a negative value of t′=−0.25 correspond well to neutron
scattering experiments where multiple hole-doped compounds
show incommensurablity corresponding to period 4–5 spin stripes
at 1/8 hole-doping.20 Also at 1/8 hole-doping, Fig. 2 shows the
staggered spin–spin correlation function for t′/t= 0.1 and t′/t=
0.25, equivalent to 1/8 electron-doping for negative t′. In contrast
to previous results, no antiphase domains are present and only
antiferromagnetism is visible. This is additionally corroborated by
our DMRG simulations in Fig. S2 of the Supplementary Materials.
As neutron scattering21,22 on electron-doped compounds similarly
finds only commensurate antiferromagnetic excitations at low
energy, our simulations show that a negative value of t′ that
properly captures the cuprates’ Fermi surface topology also
correctly describes the spin behavior in both directions of doping.
Variations in the interaction strength U make little direct impact

on the presence or periodicity of stripes. We first consider results
for the lowest temperature accessible to simulation. For U/t= 5, at
a temperature of T/t= 0.20, we again find period-5 stripes at 1/8
hole-doping (Fig. 3, top left). Increasing to U/t= 7 (Fig. 3, top right),
the worsened sign problem constrains the lowest accessible
temperature to T/t= 0.26. Here, the stripes instead have an
increased period of ~ 7. We attribute this to the change in
temperature: for the same ratio T/J= 0.45 of temperature to
exchange coupling, similar period ~ 7 domains are present for U/t
= 5 and U/t= 6 (Fig. 3, second row). At U/t= 8, the sign problem is
too severe to achieve temperatures of T/J= 0.45, but at accessible
temperatures we find no indication of different behavior. The
similarities between these results for the same T/J imply a marginal
role of the value of U, at least in the range of explored values.
Generally, with increasing temperatures we find slight increases

in stripe period and substantial reduction in correlation length
(Fig. 3). This is consistent with neutron scattering data on
La1.875Ba0.125CuO4 (LBCO), where spin incommensurability (inver-
sely proportional to the period) decreases with increasing
temperature.19 In our data, reduced correlation lengths at higher
temperatures make it increasingly difficult to see π-phase shifted
domains in correlation functions. At the temperature T/J= 0.75,
nearly all correlations expected from the nearest π-phase shifted

Fig. 1 a Spin correlation functions in the Hubbard model with
parameters U/t= 6, t′/t=−0.25 obtained by DQMC simulations at
temperature T/t= 0.22. Top: Spin correlation functions at 0 doping.
Bottom: staggered spin correlation functions, with signs flipped on
every other site, of the same data. b Staggered spin correlation
functions for various hole doping levels. Dashed green lines indicate
approximate locations of antiphase domain walls. Correlations
showing a + or − sign are nonzero by at least two standard errors

Fig. 2 Staggered spin correlation functions from DQMC at p= 0.125
hole doping, U/t= 6, and T/t= 0.22 for various values of t′
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A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational
symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emergence of
stripes in the Hubbard model, a minimal model believed to be relevant to the cuprate superconductors, using determinant
quantum Monte Carlo (DQMC) simulations at finite temperatures and density matrix renormalization group (DMRG) ground state
calculations. By varying temperature, doping, and model parameters, we characterize the extent of stripes throughout the phase
diagram of the Hubbard model. Our results show that including the often neglected next-nearest-neighbor hopping leads to the
absence of spin incommensurability upon electron-doping and nearly half-filled stripes upon hole-doping. The similarities of these
findings to experimental results on both electron and hole-doped cuprate families support a unified description across a large
portion of the cuprate phase diagram.
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INTRODUCTION
The lack of an analytic solution to the Hubbard model in two-
dimensions has led to development of various numerical
methods to study its low temperature and ground state proper-
ties. Calculations to benchmark these techniques have revealed
that different candidate ground states all lie close in energy,1,2

with small differences possibly associated with specific aspects of
each method. Density matrix renormalization group, exact
diagonalization/dynamical mean-field theory, constrained path
auxiliary field Monte Carlo, infinite projected entagled-pair states,
and density matrix embedding theory all find evidence for
stripes,1–7 having stronger amplitudes and longer correlation
lengths than d-wave superconductivity. However, dynamical
cluster approximation and cellular dynamical mean-field theory
calculations have not shown evidence for stripes, instead finding
a finite temperature transition into a d-wave superconductor.8–13

These seemingly different ground states with similar energies
reflect a delicate balance, sensitive to the specific nuances and
biases of each approach.
Numerically discerning energy differences to ascertain low-

temperature properties requires rigorous effort to eliminate
biases, and techniques may or may not reveal true ground states
if the treatments are variational. On the other hand, provided that
fluctuating orders are appreciable, calculations at higher tem-
peratures provide an alternative perspective and carry the benefit
that shortened correlation lengths reduce finite size effects. Here
we use determinant quantum Monte Carlo (DQMC), an exact
finite temperature technique, for this purpose. Although the
fermion sign problem sets a lower bound on the range of
temperatures amenable to simulation, we show that fluctuating
stripe order is nevertheless observable at accessible
temperatures.

RESULTS
We first describe the doping dependence of spin correlations for
the Hubbard model with interaction strength U/t= 6 and next-
nearest-neighbor hopping t′/t=−0.25, where t is the nearest-
neighboring hopping. Figure 1 displays the real space, equal-time
spin–spin correlation functions obtained from finite temperature
DQMC simulations on 16 × 4 clusters with periodic boundary
conditions. At half-filling (Fig. 1a), antiferromagnetic spin correla-
tions are evident from the checkerboard pattern, or equivalently
from the uniform phase of the staggered spin–spin correlation
functions (lower portion of Fig. 1a), defined with a (π, π) phase
factor that flips the sign of the correlation function on every other
site. Hole-doping (Fig. 1b, p= 0.042) first induces a decrease in
correlation length, followed by development of antiphase
domains with increasing hole concentration. The size of each
domain is inversely proportional to the hole doping level; and for
p ≥ 0.125, multiple sets of antiphase domain walls become visible
for this cluster geometry and size. This behavior, qualitatively and
quantitatively similar to previous findings for the three-band
Hubbard model,14 demonstrates that stripe behavior at finite
temperatures emerges in the Hubbard model through incom-
mensurate spin correlations. To ensure that these findings are not
artifacts of the anisotropic cluster geometry, we present and
discuss results for a square geometry in Fig. S1 of the
Supplementary Materials.
Previous finite-temperature calculations of the Hubbard model

failed to demonstrate spontaneous development of either spin or
charge incommensurability, absent imposing inhomogeneity from
external fields not part of the original model (e.g., see refs.15,16). In
light of the results presented here, a necessary ingredient appears
to be large enough clusters capable of supporting multiple stripe
domains. While calculations utilizing small clusters (, N= 8) have
been used to demonstrate antiferromagnetism, superconductivity,
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and pseudogap physics,8,13,17 their inability to host incommensu-
rate states leaves open important questions regarding the
interplay of stripes with the aforementioned orders.
In contrast to these previous finite temperature findings, zero-

temperature calculations, from a variety of methods, have
indicated striped ground states in the Hubbard model. A recent
comparison found close agreement in the ground state energies
using four different techniques,2 providing evidence for period-8
stripes in the ground state of the 1/8-hole-doped Hubbard model
with only nearest-neighbor hopping (t′= 0) and canonical
interaction strength (U/t= 8, the non-interacting bandwidth).
Instead, our findings show stripes with a period ~5 for 1/8 hole-
doping (Fig. 1b, p= 0.125), in better agreement with experimental
results on cuprates.18–20

To understand these differences, we study the impact of
varying the model parameters, starting with the next-nearest-
neighbor hopping t′, which induces a particle–hole asymmetry.
For t′=−0.1 and t′= 0, we find antiphase domain walls still
present, but with an increased period of ~8 for 1/8 hole-doping
(Fig. 2), similar to the previously mentioned results of ground state
calculations. In contrast, the period ~5 stripes from simulations

using a negative value of t′=−0.25 correspond well to neutron
scattering experiments where multiple hole-doped compounds
show incommensurablity corresponding to period 4–5 spin stripes
at 1/8 hole-doping.20 Also at 1/8 hole-doping, Fig. 2 shows the
staggered spin–spin correlation function for t′/t= 0.1 and t′/t=
0.25, equivalent to 1/8 electron-doping for negative t′. In contrast
to previous results, no antiphase domains are present and only
antiferromagnetism is visible. This is additionally corroborated by
our DMRG simulations in Fig. S2 of the Supplementary Materials.
As neutron scattering21,22 on electron-doped compounds similarly
finds only commensurate antiferromagnetic excitations at low
energy, our simulations show that a negative value of t′ that
properly captures the cuprates’ Fermi surface topology also
correctly describes the spin behavior in both directions of doping.
Variations in the interaction strength U make little direct impact

on the presence or periodicity of stripes. We first consider results
for the lowest temperature accessible to simulation. For U/t= 5, at
a temperature of T/t= 0.20, we again find period-5 stripes at 1/8
hole-doping (Fig. 3, top left). Increasing to U/t= 7 (Fig. 3, top right),
the worsened sign problem constrains the lowest accessible
temperature to T/t= 0.26. Here, the stripes instead have an
increased period of ~ 7. We attribute this to the change in
temperature: for the same ratio T/J= 0.45 of temperature to
exchange coupling, similar period ~ 7 domains are present for U/t
= 5 and U/t= 6 (Fig. 3, second row). At U/t= 8, the sign problem is
too severe to achieve temperatures of T/J= 0.45, but at accessible
temperatures we find no indication of different behavior. The
similarities between these results for the same T/J imply a marginal
role of the value of U, at least in the range of explored values.
Generally, with increasing temperatures we find slight increases

in stripe period and substantial reduction in correlation length
(Fig. 3). This is consistent with neutron scattering data on
La1.875Ba0.125CuO4 (LBCO), where spin incommensurability (inver-
sely proportional to the period) decreases with increasing
temperature.19 In our data, reduced correlation lengths at higher
temperatures make it increasingly difficult to see π-phase shifted
domains in correlation functions. At the temperature T/J= 0.75,
nearly all correlations expected from the nearest π-phase shifted

Fig. 1 a Spin correlation functions in the Hubbard model with
parameters U/t= 6, t′/t=−0.25 obtained by DQMC simulations at
temperature T/t= 0.22. Top: Spin correlation functions at 0 doping.
Bottom: staggered spin correlation functions, with signs flipped on
every other site, of the same data. b Staggered spin correlation
functions for various hole doping levels. Dashed green lines indicate
approximate locations of antiphase domain walls. Correlations
showing a + or − sign are nonzero by at least two standard errors

Fig. 2 Staggered spin correlation functions from DQMC at p= 0.125
hole doping, U/t= 6, and T/t= 0.22 for various values of t′
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A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational
symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emergence of
stripes in the Hubbard model, a minimal model believed to be relevant to the cuprate superconductors, using determinant
quantum Monte Carlo (DQMC) simulations at finite temperatures and density matrix renormalization group (DMRG) ground state
calculations. By varying temperature, doping, and model parameters, we characterize the extent of stripes throughout the phase
diagram of the Hubbard model. Our results show that including the often neglected next-nearest-neighbor hopping leads to the
absence of spin incommensurability upon electron-doping and nearly half-filled stripes upon hole-doping. The similarities of these
findings to experimental results on both electron and hole-doped cuprate families support a unified description across a large
portion of the cuprate phase diagram.
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INTRODUCTION
The lack of an analytic solution to the Hubbard model in two-
dimensions has led to development of various numerical
methods to study its low temperature and ground state proper-
ties. Calculations to benchmark these techniques have revealed
that different candidate ground states all lie close in energy,1,2

with small differences possibly associated with specific aspects of
each method. Density matrix renormalization group, exact
diagonalization/dynamical mean-field theory, constrained path
auxiliary field Monte Carlo, infinite projected entagled-pair states,
and density matrix embedding theory all find evidence for
stripes,1–7 having stronger amplitudes and longer correlation
lengths than d-wave superconductivity. However, dynamical
cluster approximation and cellular dynamical mean-field theory
calculations have not shown evidence for stripes, instead finding
a finite temperature transition into a d-wave superconductor.8–13

These seemingly different ground states with similar energies
reflect a delicate balance, sensitive to the specific nuances and
biases of each approach.
Numerically discerning energy differences to ascertain low-

temperature properties requires rigorous effort to eliminate
biases, and techniques may or may not reveal true ground states
if the treatments are variational. On the other hand, provided that
fluctuating orders are appreciable, calculations at higher tem-
peratures provide an alternative perspective and carry the benefit
that shortened correlation lengths reduce finite size effects. Here
we use determinant quantum Monte Carlo (DQMC), an exact
finite temperature technique, for this purpose. Although the
fermion sign problem sets a lower bound on the range of
temperatures amenable to simulation, we show that fluctuating
stripe order is nevertheless observable at accessible
temperatures.

RESULTS
We first describe the doping dependence of spin correlations for
the Hubbard model with interaction strength U/t= 6 and next-
nearest-neighbor hopping t′/t=−0.25, where t is the nearest-
neighboring hopping. Figure 1 displays the real space, equal-time
spin–spin correlation functions obtained from finite temperature
DQMC simulations on 16 × 4 clusters with periodic boundary
conditions. At half-filling (Fig. 1a), antiferromagnetic spin correla-
tions are evident from the checkerboard pattern, or equivalently
from the uniform phase of the staggered spin–spin correlation
functions (lower portion of Fig. 1a), defined with a (π, π) phase
factor that flips the sign of the correlation function on every other
site. Hole-doping (Fig. 1b, p= 0.042) first induces a decrease in
correlation length, followed by development of antiphase
domains with increasing hole concentration. The size of each
domain is inversely proportional to the hole doping level; and for
p ≥ 0.125, multiple sets of antiphase domain walls become visible
for this cluster geometry and size. This behavior, qualitatively and
quantitatively similar to previous findings for the three-band
Hubbard model,14 demonstrates that stripe behavior at finite
temperatures emerges in the Hubbard model through incom-
mensurate spin correlations. To ensure that these findings are not
artifacts of the anisotropic cluster geometry, we present and
discuss results for a square geometry in Fig. S1 of the
Supplementary Materials.
Previous finite-temperature calculations of the Hubbard model

failed to demonstrate spontaneous development of either spin or
charge incommensurability, absent imposing inhomogeneity from
external fields not part of the original model (e.g., see refs.15,16). In
light of the results presented here, a necessary ingredient appears
to be large enough clusters capable of supporting multiple stripe
domains. While calculations utilizing small clusters (, N= 8) have
been used to demonstrate antiferromagnetism, superconductivity,
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and pseudogap physics,8,13,17 their inability to host incommensu-
rate states leaves open important questions regarding the
interplay of stripes with the aforementioned orders.
In contrast to these previous finite temperature findings, zero-

temperature calculations, from a variety of methods, have
indicated striped ground states in the Hubbard model. A recent
comparison found close agreement in the ground state energies
using four different techniques,2 providing evidence for period-8
stripes in the ground state of the 1/8-hole-doped Hubbard model
with only nearest-neighbor hopping (t′= 0) and canonical
interaction strength (U/t= 8, the non-interacting bandwidth).
Instead, our findings show stripes with a period ~5 for 1/8 hole-
doping (Fig. 1b, p= 0.125), in better agreement with experimental
results on cuprates.18–20

To understand these differences, we study the impact of
varying the model parameters, starting with the next-nearest-
neighbor hopping t′, which induces a particle–hole asymmetry.
For t′=−0.1 and t′= 0, we find antiphase domain walls still
present, but with an increased period of ~8 for 1/8 hole-doping
(Fig. 2), similar to the previously mentioned results of ground state
calculations. In contrast, the period ~5 stripes from simulations

using a negative value of t′=−0.25 correspond well to neutron
scattering experiments where multiple hole-doped compounds
show incommensurablity corresponding to period 4–5 spin stripes
at 1/8 hole-doping.20 Also at 1/8 hole-doping, Fig. 2 shows the
staggered spin–spin correlation function for t′/t= 0.1 and t′/t=
0.25, equivalent to 1/8 electron-doping for negative t′. In contrast
to previous results, no antiphase domains are present and only
antiferromagnetism is visible. This is additionally corroborated by
our DMRG simulations in Fig. S2 of the Supplementary Materials.
As neutron scattering21,22 on electron-doped compounds similarly
finds only commensurate antiferromagnetic excitations at low
energy, our simulations show that a negative value of t′ that
properly captures the cuprates’ Fermi surface topology also
correctly describes the spin behavior in both directions of doping.
Variations in the interaction strength U make little direct impact

on the presence or periodicity of stripes. We first consider results
for the lowest temperature accessible to simulation. For U/t= 5, at
a temperature of T/t= 0.20, we again find period-5 stripes at 1/8
hole-doping (Fig. 3, top left). Increasing to U/t= 7 (Fig. 3, top right),
the worsened sign problem constrains the lowest accessible
temperature to T/t= 0.26. Here, the stripes instead have an
increased period of ~ 7. We attribute this to the change in
temperature: for the same ratio T/J= 0.45 of temperature to
exchange coupling, similar period ~ 7 domains are present for U/t
= 5 and U/t= 6 (Fig. 3, second row). At U/t= 8, the sign problem is
too severe to achieve temperatures of T/J= 0.45, but at accessible
temperatures we find no indication of different behavior. The
similarities between these results for the same T/J imply a marginal
role of the value of U, at least in the range of explored values.
Generally, with increasing temperatures we find slight increases

in stripe period and substantial reduction in correlation length
(Fig. 3). This is consistent with neutron scattering data on
La1.875Ba0.125CuO4 (LBCO), where spin incommensurability (inver-
sely proportional to the period) decreases with increasing
temperature.19 In our data, reduced correlation lengths at higher
temperatures make it increasingly difficult to see π-phase shifted
domains in correlation functions. At the temperature T/J= 0.75,
nearly all correlations expected from the nearest π-phase shifted

Fig. 1 a Spin correlation functions in the Hubbard model with
parameters U/t= 6, t′/t=−0.25 obtained by DQMC simulations at
temperature T/t= 0.22. Top: Spin correlation functions at 0 doping.
Bottom: staggered spin correlation functions, with signs flipped on
every other site, of the same data. b Staggered spin correlation
functions for various hole doping levels. Dashed green lines indicate
approximate locations of antiphase domain walls. Correlations
showing a + or − sign are nonzero by at least two standard errors

Fig. 2 Staggered spin correlation functions from DQMC at p= 0.125
hole doping, U/t= 6, and T/t= 0.22 for various values of t′
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‣ Mean-field coupling frustrates stripe formation 
and favors superconductivity

ARTICLE OPEN

Stripe order from the perspective of the Hubbard model
Edwin W. Huang1,2, Christian B. Mendl2, Hong-Chen Jiang2, Brian Moritz2,3 and Thomas P. Devereaux2,4

A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational
symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emergence of
stripes in the Hubbard model, a minimal model believed to be relevant to the cuprate superconductors, using determinant
quantum Monte Carlo (DQMC) simulations at finite temperatures and density matrix renormalization group (DMRG) ground state
calculations. By varying temperature, doping, and model parameters, we characterize the extent of stripes throughout the phase
diagram of the Hubbard model. Our results show that including the often neglected next-nearest-neighbor hopping leads to the
absence of spin incommensurability upon electron-doping and nearly half-filled stripes upon hole-doping. The similarities of these
findings to experimental results on both electron and hole-doped cuprate families support a unified description across a large
portion of the cuprate phase diagram.

npj Quantum Materials �(2018)�3:22� ; doi:10.1038/s41535-018-0097-0

INTRODUCTION
The lack of an analytic solution to the Hubbard model in two-
dimensions has led to development of various numerical
methods to study its low temperature and ground state proper-
ties. Calculations to benchmark these techniques have revealed
that different candidate ground states all lie close in energy,1,2

with small differences possibly associated with specific aspects of
each method. Density matrix renormalization group, exact
diagonalization/dynamical mean-field theory, constrained path
auxiliary field Monte Carlo, infinite projected entagled-pair states,
and density matrix embedding theory all find evidence for
stripes,1–7 having stronger amplitudes and longer correlation
lengths than d-wave superconductivity. However, dynamical
cluster approximation and cellular dynamical mean-field theory
calculations have not shown evidence for stripes, instead finding
a finite temperature transition into a d-wave superconductor.8–13

These seemingly different ground states with similar energies
reflect a delicate balance, sensitive to the specific nuances and
biases of each approach.
Numerically discerning energy differences to ascertain low-

temperature properties requires rigorous effort to eliminate
biases, and techniques may or may not reveal true ground states
if the treatments are variational. On the other hand, provided that
fluctuating orders are appreciable, calculations at higher tem-
peratures provide an alternative perspective and carry the benefit
that shortened correlation lengths reduce finite size effects. Here
we use determinant quantum Monte Carlo (DQMC), an exact
finite temperature technique, for this purpose. Although the
fermion sign problem sets a lower bound on the range of
temperatures amenable to simulation, we show that fluctuating
stripe order is nevertheless observable at accessible
temperatures.

RESULTS
We first describe the doping dependence of spin correlations for
the Hubbard model with interaction strength U/t= 6 and next-
nearest-neighbor hopping t′/t=−0.25, where t is the nearest-
neighboring hopping. Figure 1 displays the real space, equal-time
spin–spin correlation functions obtained from finite temperature
DQMC simulations on 16 × 4 clusters with periodic boundary
conditions. At half-filling (Fig. 1a), antiferromagnetic spin correla-
tions are evident from the checkerboard pattern, or equivalently
from the uniform phase of the staggered spin–spin correlation
functions (lower portion of Fig. 1a), defined with a (π, π) phase
factor that flips the sign of the correlation function on every other
site. Hole-doping (Fig. 1b, p= 0.042) first induces a decrease in
correlation length, followed by development of antiphase
domains with increasing hole concentration. The size of each
domain is inversely proportional to the hole doping level; and for
p ≥ 0.125, multiple sets of antiphase domain walls become visible
for this cluster geometry and size. This behavior, qualitatively and
quantitatively similar to previous findings for the three-band
Hubbard model,14 demonstrates that stripe behavior at finite
temperatures emerges in the Hubbard model through incom-
mensurate spin correlations. To ensure that these findings are not
artifacts of the anisotropic cluster geometry, we present and
discuss results for a square geometry in Fig. S1 of the
Supplementary Materials.
Previous finite-temperature calculations of the Hubbard model

failed to demonstrate spontaneous development of either spin or
charge incommensurability, absent imposing inhomogeneity from
external fields not part of the original model (e.g., see refs.15,16). In
light of the results presented here, a necessary ingredient appears
to be large enough clusters capable of supporting multiple stripe
domains. While calculations utilizing small clusters (, N= 8) have
been used to demonstrate antiferromagnetism, superconductivity,
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Pairing interaction and Bethe-Salpeter equation
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Structure of the pairing interaction

TAM et al., PRL ’06, PRB ‘06

Gc2!K4;K3;K2;K1"#$Gc!K1"Gc!K2"
%&!K1;K4

!K2;K3
$!K1;K3

!K2;K4
'

( T
N
!K1(K2;K3(K4

Gc!K4"Gc!K3"

%!!K4;K3;K2;K1"%Gc!K2"Gc!K1":
(3)

Then, using Gc and !, one can determine the irreducible
particle-particle and particle-hole vertices !pp and !ph

from the Bethe-Salpeter equations shown in Figs. 1(a)
and 1(b). There is a second particle-hole vertex but it is
simply related to !ph. Note that !ph and !pp do not have a
subscript c, since both the lattice and the cluster share these
compact quantities. Because of the rotational invariance of
the Hubbard model, it is convenient to separate the
particle-particle channels into singlet and triplet and the
particle-hole channels into a magnetic part which carries
spin S # 1 and a charge density part which has S # 0.

In order to determine the nature of the low temperature
correlations, we use these irreducible vertices and the
lattice single-particle Green’s function to calculate the
Bethe-Salpeter eigenvalues and eigenfunctions in various
channels. For example, in the particle-particle channel

$ T
N

X

k0
!pp!K;$K;K0;$K0"G"!k0"G#!$k0""#!K0"

# $#"#!K" (4)

with a similar equation using !ph for the particle-hole
channel. Here, the sum over k0 denotes a sum over both

momentum k0 and Matsubara !n0 variables. We decom-
pose k0 # K0 ( ~k0. By assumption, irreducible quantities
like !pp and"# do not depend on ~k0, allowing us to coarse-
grain the Green function legs, yielding an equation that
depends only on coarse-grained and cluster quantities

$ T
Nc

X

K0
!pp!K;$K;K0;$K0" "%pp0 !K0""#!K0"#$#"#!K"

(5)

with "%pp0 !K0" # Nc
N

P
~k0G"!K0 ( ~k0; i!n0"G#!$K0 $ ~k0;

$i!n0".
In Fig. 2 we show the leading eigenvalue versus tem-

perature for the pairing, charge density, and magnetic
channels for U=t # 4 and hni # 0:85. As the temperature
is reduced, the leading particle-hole eigenvalue occurs in
the magnetic channel and has a center of mass momentum
Q # !&;&" and !m # 0. Previous Monte Carlo calcula-
tions on 8% 8 lattices show that for this doping the peak
response is slightly shifted from !&;&", but our 24-site
cluster lacks the resolution to see this [8]. This antiferro-
magnetic eigenvalue grows and then saturates at low tem-
peratures. The leading particle-particle eigenvalue is a spin
singlet and, as shown in the inset of Fig. 3, its eigenfunc-
tion "dx2$y2

has dx2$y2 symmetry. The !n frequency de-
pendence of the normalized gap function "dx2$y2

!K; !n" at
the antinodal point K # !&; 0" is plotted in Fig. 3. As
shown, it is even in !n, corresponding to a dx2$y2-wave
singlet, even frequency pairing. Also plotted in this figure

(a)
Γ = Γ + Γ Γpp pp

Γ

Γph

Γ

Γph
+

Γph

irr
+

Γ
ph +

=Γ
pp

Γ

(c)

(b) = Γ

FIG. 1. Bethe-Salpeter equations for (a) the particle-particle
and (b) the particle-hole channels showing the relationship
between the full vertex, the particle-particle irreducible vertex
!pp, and the particle-hole irreducible vertex !ph, respectively.
(c) Decomposition of the irreducible particle-particle vertex !pp

into a fully irreducible two-fermion vertex ^irr plus contributions
from the particle-hole channels. All diagrams represent DCA
cluster quantities, including the Green function legs.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0  0.5  1  1.5  2  2.5  3

le
ad

in
g 

ei
ge

nv
al

ue
s

T/t

Q=(π,π) magnetic
Q=(0,0) charge
Pairing d-wave

kx

k y (π,0)

(0,π) (π,π)

FIG. 2 (color online). Leading eigenvalues of the Bethe-
Salpeter equation [e.g., Eq. (5)] in various channels for U=t #
4 and a site occupation hni # 0:85. The Q # !&;&", !m # 0,
S # 1 magnetic eigenvalue is seen to saturate at low tempera-
tures. The leading eigenvalue in the singlet Q # !0; 0", !m # 0
particle-particle channel has dx2$y2 symmetry and increases
toward 1 at low temperatures [2]. The largest charge density
eigenvalue occurs in the Q # !0; 0", !m # 0 channel and satu-
rates at a small value. The inset shows the distribution of k points
for the 24-site cluster we have studied.
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Frequency dependence

is the!m dependence of the Q ! "!;!# spin susceptibility
""Q; !m# normalized to coincide with #dx2$y2

"K; !n# at
!n ! !T. The Matsubara frequency which enters the gap
function corresponds to a fermion frequency !n ! "2n%
1#!T, while !m ! 2m!T for the spin susceptibility, lead-
ing to the interlacing of points shown in Fig. 3. From the
momentum and frequency dependence of the gap function
#"K; !n#, it follows that the irreducible particle-particle
vertex is an increasing function of the momentum transfer
and is characterized by the same energy scale that enters
the spin susceptibility ""Q; !m#. At larger values of U it
will be interesting to see if there is an increased tendency
for a finite response at large Matsubara frequencies indi-
cating a contribution from the upper Hubbard band.

To learn more about the mechanism responsible for
dx2$y2 pairing in the doped Hubbard model, it is useful to
decompose the pairing interaction !pp as shown in
Fig. 1(c). Here, the irreducible particle-particle vertex is
given as a combination of a fully irreducible two-fermion
vertex ^irr and partially reducible particle-hole exchange
contributions [9,10]. For the even frequency, even momen-
tum part of the irreducible particle-particle vertex
!pp

even"K;K0# ! 1=2&!pp"K;K0# % !pp"K;$K0#', we obtain

!ppeven"K;K0# ! ^irr"K;K0# % 1
2"d"K;K0# % 3

2"m"K;K0#
(6)

with K ! "K; i!n#. The subscripts d and m denote the

charge density "S ! 0# and magnetic "S ! 1# particle-
hole channels

"d=m"K;K0# ! 1
2&!d=m"K $ K0;K0;$K#
$ !ph

d=m"K $ K0;K0;$K#
% !d=m"K % K0;$K0;$K#
$ !ph

d=m"K % K0;$K0;$K#': (7)

On the right hand side, the first label is for the center of
mass, and the second and third for the relative wave vectors
and frequencies. Using the Monte Carlo results for G and
!, we have solved the t-matrix equations shown in
Figs. 1(a) and 1(b) to determine !pp, "d and "m. Then,
substituting these into Eq. (6), we have determined the
fully irreducible vertex ^irr.

Monte Carlo results for the irreducible particle-particle
vertex !pp obtained from the 24-site cluster approximation
are shown in Fig. 4(a). Here, we set !n ! !0n ! !T, K !
"!; 0# and K0 takes momentum values along the dashed
line shown in the inset of Fig. 2. As the temperature is
lowered, !pp increases as the momentum transfer q ! K$
K0 increases as one expects for a d-wave pairing interac-
tion. To understand the origin of this behavior, the contri-
butions of the particle-hole "S ! 0# charge density and
"S ! 1# magnetic channels are plotted in Figs. 4(c) and
4(d) respectively and the contribution from the fully irre-
ducible vertex ^irr is shown in Fig. 4(b). It is clear that the
dominant contribution to !pp comes from the S ! 1 mag-
netic channel. The charge density channel and the fully
irreducible vertex are basically flat in momentum and
change relatively little as the temperature is reduced.
Thus, based upon the decomposition of the irreducible
particle-particle interaction shown in Fig. 4, we conclude
that the pairing mechanism in the doped two-dimensional
Hubbard model is mediated by the exchange of S ! 1
particle-hole spin-fluctuations.

To summarize, we have studied the pairing interaction
!pp of a doped hni ! 0:85, two-dimensional Hubbard
model with U=t ! 4. We found that the eigenfunction
#"K; i!n# of the leading low temperature eigenvalue in
the particle-particle pairing channel is an even frequency
singlet with dx2$y2 symmetry. The momentum and fre-
quency dependence of #"K; i!n# imply that !pp increases
as the momentum transfer q ! K$K0 increases and that
its dynamics is set by the same characteristic energy scale
as the spin susceptibility. It was also found to increase as
the temperature was lowered, saturating when the leading
antiferromagnetic eigenvalue stopped growing. Finally,
using an exact decomposition of !pp, we showed that the
dominant contribution to this interaction comes from the
S ! 1 particle-hole channel. We believe that the calcula-
tion and analysis of the four-point vertex provides a useful,
unbiased method for determining the nature of the leading
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PRL 96, 047005 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 FEBRUARY 2006

047005-3

5.00

10.00

15.00

20.00

25.00

(0,0) (�/3,-�/3)(2�/3,-2�/3) (�,-�)

�
pp
(K
,K
’)

(a)

T=t
T=0.5t
T=0.25t
T=0.125t

0.00

5.00

10.00

15.00

20.00

(0,0) (�/3,-�/3)(2�/3,-2�/3) (�,-�)

3/
2�

m
(K
,K
’)

q=K-K’

(d)

T=t
T=0.5t
T=0.25t
T=0.125t

-10.00

-5.00

0.00

5.00

10.00

(0,0) (�/3,-�/3)(2�/3,-2�/3) (�,-�)

1/
2�

d(
K,
K’
)

q=K-K’

(c)

T=t
T=0.5t
T=0.25t
T=0.125t

0.00

5.00

10.00

15.00

20.00

(0,0) (�/3,-�/3)(2�/3,-2�/3) (�,-�)

�
irr
(K
,K
’)

(b)

T=t
T=0.5t
T=0.25t
T=0.125t

Momentum dependence

SpinCharge



12

Structure of the pairing interaction

‣ Pairing interaction carries spin S=1, increases with 

momentum transfer, and its dynamics reflects the spin 

fluctuation spectrum

TAM et al., PRL ’06, PRB ‘06
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In Fig. 2 we show the leading eigenvalue versus tem-

perature for the pairing, charge density, and magnetic
channels for U=t # 4 and hni # 0:85. As the temperature
is reduced, the leading particle-hole eigenvalue occurs in
the magnetic channel and has a center of mass momentum
Q # !&;&" and !m # 0. Previous Monte Carlo calcula-
tions on 8% 8 lattices show that for this doping the peak
response is slightly shifted from !&;&", but our 24-site
cluster lacks the resolution to see this [8]. This antiferro-
magnetic eigenvalue grows and then saturates at low tem-
peratures. The leading particle-particle eigenvalue is a spin
singlet and, as shown in the inset of Fig. 3, its eigenfunc-
tion "dx2$y2

has dx2$y2 symmetry. The !n frequency de-
pendence of the normalized gap function "dx2$y2

!K; !n" at
the antinodal point K # !&; 0" is plotted in Fig. 3. As
shown, it is even in !n, corresponding to a dx2$y2-wave
singlet, even frequency pairing. Also plotted in this figure
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FIG. 1. Bethe-Salpeter equations for (a) the particle-particle
and (b) the particle-hole channels showing the relationship
between the full vertex, the particle-particle irreducible vertex
!pp, and the particle-hole irreducible vertex !ph, respectively.
(c) Decomposition of the irreducible particle-particle vertex !pp

into a fully irreducible two-fermion vertex ^irr plus contributions
from the particle-hole channels. All diagrams represent DCA
cluster quantities, including the Green function legs.
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FIG. 2 (color online). Leading eigenvalues of the Bethe-
Salpeter equation [e.g., Eq. (5)] in various channels for U=t #
4 and a site occupation hni # 0:85. The Q # !&;&", !m # 0,
S # 1 magnetic eigenvalue is seen to saturate at low tempera-
tures. The leading eigenvalue in the singlet Q # !0; 0", !m # 0
particle-particle channel has dx2$y2 symmetry and increases
toward 1 at low temperatures [2]. The largest charge density
eigenvalue occurs in the Q # !0; 0", !m # 0 channel and satu-
rates at a small value. The inset shows the distribution of k points
for the 24-site cluster we have studied.
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Frequency dependence

is the!m dependence of the Q ! "!;!# spin susceptibility
""Q; !m# normalized to coincide with #dx2$y2

"K; !n# at
!n ! !T. The Matsubara frequency which enters the gap
function corresponds to a fermion frequency !n ! "2n%
1#!T, while !m ! 2m!T for the spin susceptibility, lead-
ing to the interlacing of points shown in Fig. 3. From the
momentum and frequency dependence of the gap function
#"K; !n#, it follows that the irreducible particle-particle
vertex is an increasing function of the momentum transfer
and is characterized by the same energy scale that enters
the spin susceptibility ""Q; !m#. At larger values of U it
will be interesting to see if there is an increased tendency
for a finite response at large Matsubara frequencies indi-
cating a contribution from the upper Hubbard band.

To learn more about the mechanism responsible for
dx2$y2 pairing in the doped Hubbard model, it is useful to
decompose the pairing interaction !pp as shown in
Fig. 1(c). Here, the irreducible particle-particle vertex is
given as a combination of a fully irreducible two-fermion
vertex ^irr and partially reducible particle-hole exchange
contributions [9,10]. For the even frequency, even momen-
tum part of the irreducible particle-particle vertex
!pp

even"K;K0# ! 1=2&!pp"K;K0# % !pp"K;$K0#', we obtain

!ppeven"K;K0# ! ^irr"K;K0# % 1
2"d"K;K0# % 3

2"m"K;K0#
(6)

with K ! "K; i!n#. The subscripts d and m denote the

charge density "S ! 0# and magnetic "S ! 1# particle-
hole channels

"d=m"K;K0# ! 1
2&!d=m"K $ K0;K0;$K#
$ !ph

d=m"K $ K0;K0;$K#
% !d=m"K % K0;$K0;$K#
$ !ph

d=m"K % K0;$K0;$K#': (7)

On the right hand side, the first label is for the center of
mass, and the second and third for the relative wave vectors
and frequencies. Using the Monte Carlo results for G and
!, we have solved the t-matrix equations shown in
Figs. 1(a) and 1(b) to determine !pp, "d and "m. Then,
substituting these into Eq. (6), we have determined the
fully irreducible vertex ^irr.

Monte Carlo results for the irreducible particle-particle
vertex !pp obtained from the 24-site cluster approximation
are shown in Fig. 4(a). Here, we set !n ! !0n ! !T, K !
"!; 0# and K0 takes momentum values along the dashed
line shown in the inset of Fig. 2. As the temperature is
lowered, !pp increases as the momentum transfer q ! K$
K0 increases as one expects for a d-wave pairing interac-
tion. To understand the origin of this behavior, the contri-
butions of the particle-hole "S ! 0# charge density and
"S ! 1# magnetic channels are plotted in Figs. 4(c) and
4(d) respectively and the contribution from the fully irre-
ducible vertex ^irr is shown in Fig. 4(b). It is clear that the
dominant contribution to !pp comes from the S ! 1 mag-
netic channel. The charge density channel and the fully
irreducible vertex are basically flat in momentum and
change relatively little as the temperature is reduced.
Thus, based upon the decomposition of the irreducible
particle-particle interaction shown in Fig. 4, we conclude
that the pairing mechanism in the doped two-dimensional
Hubbard model is mediated by the exchange of S ! 1
particle-hole spin-fluctuations.

To summarize, we have studied the pairing interaction
!pp of a doped hni ! 0:85, two-dimensional Hubbard
model with U=t ! 4. We found that the eigenfunction
#"K; i!n# of the leading low temperature eigenvalue in
the particle-particle pairing channel is an even frequency
singlet with dx2$y2 symmetry. The momentum and fre-
quency dependence of #"K; i!n# imply that !pp increases
as the momentum transfer q ! K$K0 increases and that
its dynamics is set by the same characteristic energy scale
as the spin susceptibility. It was also found to increase as
the temperature was lowered, saturating when the leading
antiferromagnetic eigenvalue stopped growing. Finally,
using an exact decomposition of !pp, we showed that the
dominant contribution to this interaction comes from the
S ! 1 particle-hole channel. We believe that the calcula-
tion and analysis of the four-point vertex provides a useful,
unbiased method for determining the nature of the leading
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FIG. 3 (color online). The Matsubara frequency dependence of
the eigenfunction #dx2$y2

"K; !n# of the leading particle-particle

eigenvalue of Fig. 2 for K ! "!; 0# normalized to #"K;!T#
(solid line, red online). Here, !n ! "2n% 1#!T with T !
0:125t. The Matsubara frequency dependence of the normalized
magnetic spin susceptibility 2""Q; !m#=&""Q; 0# % ""Q; 2!T#'
for Q ! "!;!# versus !m ! 2m!T (dashed line, green online).
Inset: The momentum dependence of the eigenfunction
#dx2$y2

"K;!T# normalized to #dx2$y2
!"0;!#;!T" shows its

dx2$y2 symmetry. Here, !n ! !T and the momentum values
correspond to values of K which lay along the dashed line shown
in the inset of Fig. 2.
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Structure of the pairing interaction

‣ Pairing interaction carries spin S=1, increases with 

momentum transfer, and its dynamics reflects the spin 

fluctuation spectrum

TAM et al., PRL ’06, PRB ‘06

Gc2!K4;K3;K2;K1"#$Gc!K1"Gc!K2"
%&!K1;K4

!K2;K3
$!K1;K3

!K2;K4
'

( T
N
!K1(K2;K3(K4

Gc!K4"Gc!K3"

%!!K4;K3;K2;K1"%Gc!K2"Gc!K1":
(3)

Then, using Gc and !, one can determine the irreducible
particle-particle and particle-hole vertices !pp and !ph

from the Bethe-Salpeter equations shown in Figs. 1(a)
and 1(b). There is a second particle-hole vertex but it is
simply related to !ph. Note that !ph and !pp do not have a
subscript c, since both the lattice and the cluster share these
compact quantities. Because of the rotational invariance of
the Hubbard model, it is convenient to separate the
particle-particle channels into singlet and triplet and the
particle-hole channels into a magnetic part which carries
spin S # 1 and a charge density part which has S # 0.

In order to determine the nature of the low temperature
correlations, we use these irreducible vertices and the
lattice single-particle Green’s function to calculate the
Bethe-Salpeter eigenvalues and eigenfunctions in various
channels. For example, in the particle-particle channel

$ T
N

X

k0
!pp!K;$K;K0;$K0"G"!k0"G#!$k0""#!K0"

# $#"#!K" (4)

with a similar equation using !ph for the particle-hole
channel. Here, the sum over k0 denotes a sum over both

momentum k0 and Matsubara !n0 variables. We decom-
pose k0 # K0 ( ~k0. By assumption, irreducible quantities
like !pp and"# do not depend on ~k0, allowing us to coarse-
grain the Green function legs, yielding an equation that
depends only on coarse-grained and cluster quantities

$ T
Nc

X

K0
!pp!K;$K;K0;$K0" "%pp0 !K0""#!K0"#$#"#!K"

(5)

with "%pp0 !K0" # Nc
N

P
~k0G"!K0 ( ~k0; i!n0"G#!$K0 $ ~k0;

$i!n0".
In Fig. 2 we show the leading eigenvalue versus tem-

perature for the pairing, charge density, and magnetic
channels for U=t # 4 and hni # 0:85. As the temperature
is reduced, the leading particle-hole eigenvalue occurs in
the magnetic channel and has a center of mass momentum
Q # !&;&" and !m # 0. Previous Monte Carlo calcula-
tions on 8% 8 lattices show that for this doping the peak
response is slightly shifted from !&;&", but our 24-site
cluster lacks the resolution to see this [8]. This antiferro-
magnetic eigenvalue grows and then saturates at low tem-
peratures. The leading particle-particle eigenvalue is a spin
singlet and, as shown in the inset of Fig. 3, its eigenfunc-
tion "dx2$y2

has dx2$y2 symmetry. The !n frequency de-
pendence of the normalized gap function "dx2$y2

!K; !n" at
the antinodal point K # !&; 0" is plotted in Fig. 3. As
shown, it is even in !n, corresponding to a dx2$y2-wave
singlet, even frequency pairing. Also plotted in this figure
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(b) = Γ

FIG. 1. Bethe-Salpeter equations for (a) the particle-particle
and (b) the particle-hole channels showing the relationship
between the full vertex, the particle-particle irreducible vertex
!pp, and the particle-hole irreducible vertex !ph, respectively.
(c) Decomposition of the irreducible particle-particle vertex !pp

into a fully irreducible two-fermion vertex ^irr plus contributions
from the particle-hole channels. All diagrams represent DCA
cluster quantities, including the Green function legs.
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FIG. 2 (color online). Leading eigenvalues of the Bethe-
Salpeter equation [e.g., Eq. (5)] in various channels for U=t #
4 and a site occupation hni # 0:85. The Q # !&;&", !m # 0,
S # 1 magnetic eigenvalue is seen to saturate at low tempera-
tures. The leading eigenvalue in the singlet Q # !0; 0", !m # 0
particle-particle channel has dx2$y2 symmetry and increases
toward 1 at low temperatures [2]. The largest charge density
eigenvalue occurs in the Q # !0; 0", !m # 0 channel and satu-
rates at a small value. The inset shows the distribution of k points
for the 24-site cluster we have studied.
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Frequency dependence

is the!m dependence of the Q ! "!;!# spin susceptibility
""Q; !m# normalized to coincide with #dx2$y2

"K; !n# at
!n ! !T. The Matsubara frequency which enters the gap
function corresponds to a fermion frequency !n ! "2n%
1#!T, while !m ! 2m!T for the spin susceptibility, lead-
ing to the interlacing of points shown in Fig. 3. From the
momentum and frequency dependence of the gap function
#"K; !n#, it follows that the irreducible particle-particle
vertex is an increasing function of the momentum transfer
and is characterized by the same energy scale that enters
the spin susceptibility ""Q; !m#. At larger values of U it
will be interesting to see if there is an increased tendency
for a finite response at large Matsubara frequencies indi-
cating a contribution from the upper Hubbard band.

To learn more about the mechanism responsible for
dx2$y2 pairing in the doped Hubbard model, it is useful to
decompose the pairing interaction !pp as shown in
Fig. 1(c). Here, the irreducible particle-particle vertex is
given as a combination of a fully irreducible two-fermion
vertex ^irr and partially reducible particle-hole exchange
contributions [9,10]. For the even frequency, even momen-
tum part of the irreducible particle-particle vertex
!pp

even"K;K0# ! 1=2&!pp"K;K0# % !pp"K;$K0#', we obtain

!ppeven"K;K0# ! ^irr"K;K0# % 1
2"d"K;K0# % 3

2"m"K;K0#
(6)

with K ! "K; i!n#. The subscripts d and m denote the

charge density "S ! 0# and magnetic "S ! 1# particle-
hole channels

"d=m"K;K0# ! 1
2&!d=m"K $ K0;K0;$K#
$ !ph

d=m"K $ K0;K0;$K#
% !d=m"K % K0;$K0;$K#
$ !ph

d=m"K % K0;$K0;$K#': (7)

On the right hand side, the first label is for the center of
mass, and the second and third for the relative wave vectors
and frequencies. Using the Monte Carlo results for G and
!, we have solved the t-matrix equations shown in
Figs. 1(a) and 1(b) to determine !pp, "d and "m. Then,
substituting these into Eq. (6), we have determined the
fully irreducible vertex ^irr.

Monte Carlo results for the irreducible particle-particle
vertex !pp obtained from the 24-site cluster approximation
are shown in Fig. 4(a). Here, we set !n ! !0n ! !T, K !
"!; 0# and K0 takes momentum values along the dashed
line shown in the inset of Fig. 2. As the temperature is
lowered, !pp increases as the momentum transfer q ! K$
K0 increases as one expects for a d-wave pairing interac-
tion. To understand the origin of this behavior, the contri-
butions of the particle-hole "S ! 0# charge density and
"S ! 1# magnetic channels are plotted in Figs. 4(c) and
4(d) respectively and the contribution from the fully irre-
ducible vertex ^irr is shown in Fig. 4(b). It is clear that the
dominant contribution to !pp comes from the S ! 1 mag-
netic channel. The charge density channel and the fully
irreducible vertex are basically flat in momentum and
change relatively little as the temperature is reduced.
Thus, based upon the decomposition of the irreducible
particle-particle interaction shown in Fig. 4, we conclude
that the pairing mechanism in the doped two-dimensional
Hubbard model is mediated by the exchange of S ! 1
particle-hole spin-fluctuations.

To summarize, we have studied the pairing interaction
!pp of a doped hni ! 0:85, two-dimensional Hubbard
model with U=t ! 4. We found that the eigenfunction
#"K; i!n# of the leading low temperature eigenvalue in
the particle-particle pairing channel is an even frequency
singlet with dx2$y2 symmetry. The momentum and fre-
quency dependence of #"K; i!n# imply that !pp increases
as the momentum transfer q ! K$K0 increases and that
its dynamics is set by the same characteristic energy scale
as the spin susceptibility. It was also found to increase as
the temperature was lowered, saturating when the leading
antiferromagnetic eigenvalue stopped growing. Finally,
using an exact decomposition of !pp, we showed that the
dominant contribution to this interaction comes from the
S ! 1 particle-hole channel. We believe that the calcula-
tion and analysis of the four-point vertex provides a useful,
unbiased method for determining the nature of the leading
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FIG. 3 (color online). The Matsubara frequency dependence of
the eigenfunction #dx2$y2

"K; !n# of the leading particle-particle

eigenvalue of Fig. 2 for K ! "!; 0# normalized to #"K;!T#
(solid line, red online). Here, !n ! "2n% 1#!T with T !
0:125t. The Matsubara frequency dependence of the normalized
magnetic spin susceptibility 2""Q; !m#=&""Q; 0# % ""Q; 2!T#'
for Q ! "!;!# versus !m ! 2m!T (dashed line, green online).
Inset: The momentum dependence of the eigenfunction
#dx2$y2

"K;!T# normalized to #dx2$y2
!"0;!#;!T" shows its

dx2$y2 symmetry. Here, !n ! !T and the momentum values
correspond to values of K which lay along the dashed line shown
in the inset of Fig. 2.
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Pairing dynamics in strongly correlated superconductivity
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Confirmation of the phononic origin of Cooper pair formation in superconductors came with the demonstra-
tion that the interaction was retarded and that the corresponding energy scales were associated with phonons.
Using cellular dynamical mean-field theory for the two-dimensional Hubbard model, we identify such retar-
dation effects in d-wave pairing and associate the corresponding energy scales with short-range spin fluctua-
tions. We find which frequencies are relevant for pairing as a function of interaction strength and doping and
show that the disappearance of superconductivity on the overdoped side coincides with the disappearance of
the low-energy feature in the antiferromagnetic fluctuations, as observed in neutron-scattering experiments.

DOI: 10.1103/PhysRevB.80.205109 PACS number!s": 74.20.Mn, 71.10.Fd, 71.30.!h, 74.72."h

I. INTRODUCTION

In ordinary superconductors, the origin of attraction be-
tween electrons, the “pairing glue,” manifests itself in ob-
servable quantities. Indeed, the characteristic frequencies of
phonons appear directly in the frequency dependence of the
gap function, which in turn enters observables such as the
single-particle density of states !DOS" or the infrared con-
ductivity. Migdal-Eliashberg theory1,2 has been extremely
successful to extract from these experiments the spectral
function of the phonons that provide the glue.

High-temperature superconductors, heavy fermions, and
layered organic superconductors have phase diagrams, where
non-s-wave superconducting order parameters lie in close
proximity to antiferromagnetic phases. In the case of high-
temperature superconductors, much effort has been devoted
to find out whether antiferromagnetic fluctuations could be
the pairing glue.3–7 Even though its assumptions are not gen-
erally valid in that case, Eliashberg theory has been used to
extract the amplitude and frequency dependence of a spectral
function that is found to be similar to that for antiferromag-
netic fluctuations directly measured by neutron scattering.8–11

But understanding the origin of pairing in high-
temperature superconductors requires an approach that does
not rely on the assumptions entering Eliashberg theory and
that takes into account Mott insulating behavior. This seems
to rule out the theories that are based purely on early weak-
coupling ideas of boson exchange.12–14 In fact, Anderson has
argued that the appropriate starting point consistent with
Mott physics is the strong-coupling version of the Hubbard
model, or the t-J model. This point of view is challenged, for
example, by models involving three bands.15,16 But even if
we focus on the one-band Hubbard model, according to
Anderson17 it is an open issue whether interactions leading to
superconductivity are instantaneous,18 as suggested by reso-
nating valence bond mean-field factorization, or whether
they are retarded.7 In this paper, we show that indeed inter-
actions are retarded and that the corresponding spin fluctua-
tions observed in neutron scattering19,20 are relevant all the
way to the overdoped regime. We also stress the qualitative
differences with simple spin-fluctuation ideas.

II. MODEL AND METHOD

We study the Hubbard model Hamiltonian given by

H = − #
i,j,#

tijci,#
† cj,# + U#

i
ni↑ni↓, !1"

where tij and U correspond to the hopping matrix and the
on-site screened Coulomb repulsion, respectively, with ci,#

!†"

being the destruction !creation" operator for an electron at
site i with spin # and ni#=ci,#

† ci,# being the number operator.
The theoretical method that has been most successful to date
to treat the Mott transition starting from the one-band Hub-
bard model is dynamical mean-field theory !DMFT".21

Cluster generalizations of DMFT !Refs. 22–25" are nec-
essary to study problems in two dimensions, where correla-
tions beyond single site must be taken into account to study,
for example, d-wave superconductivity. They lead to phase
diagrams that have the same features as those observed ex-
perimentally for both electron-doped and hole-doped high-
temperature superconductors26–29 and for organic conductors.
In addition, observable quantities such as the density of
states,28 the angle-resolved photoemission spectroscopy
spectrum,27,28 and the optical conductivity28 have the experi-
mentally observed behavior. The method that we use, cellular
dynamical mean-field theory !CDMFT" with exact diagonal-
ization at T=0, is described in Refs. 23 and 27 and in Ap-
pendix A and has recently been critically reanalyzed in Ref.
30. It is best to access zero-temperature real-frequency data
and to obtain local quantities such as $!, as we do here. We
stress that it does not involve any Eliashberg-type approxi-
mation.

In CDMFT, antiferromagnetism and d-wave superconduc-
tivity coexist over part of the phase diagram. This is seen in
stoichiometric cuprates with intrinsically doped planes31 and
in a few other cases,32,33 but does not appear to be a com-
pletely generic property of the phase diagram. Our work is
thus restricted to showing that spin fluctuations are relevant
for high-temperature superconductivity all the way to the
overdoped regime, leaving open the possibility that addi-
tional types of fluctuations may either contribute to or hinder
superconductivity in the underdoped phase.

III. RETARDATION EFFECTS

The correspondence between the imaginary part of the
anomalous self-energy, %an! , and the imaginary part of the
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local spin susceptibility, !!, is seen in Fig. 1. We take band
parameters appropriate for La2−xSrxCuO4, namely, t"=
−0.17t for nearest-neighbor hopping and t!=0.08t for next-
nearest-neighbor hopping. CDMFT with U=8t then leads to
superconductivity in the doping range observed
experimentally.27 The anomalous self-energy "an! is defined
as minus the off-diagonal part of the inverse Green’s func-
tion in Nambu space. Numerical results are presented in en-
ergy units where t=1. For all different dopings, the positions
of the first two peaks in the spin fluctuations !black dots on
bottom panel" !Ref. 28" are just shifted down with respect to
the corresponding peaks in "an! !black dots on top panel".

In Eliashberg theory for the electron-phonon interactions,
the first two peaks in the phonon density of states are shifted
down with respect to those in "an! by the BCS gap.7 Simi-
larly, the downshift in peaks in !! seen in Fig. 1!b" increases
as we underdope, like the single-particle gap. For U=12t and
realistic band structure for YBa2Cu3O7−x the shift is very
weakly doping dependent as seen in Appendix B 2.

In Migdal-Eliashberg theory, the real part of the self-
energy "an" multiplied by the quasiparticle renormalization

factor is the gap function. As discussed further in Appendix
B 3, we find that this function has no static contribution, i.e.,
no frequency-independent contribution at high frequency,
contrary to what was found in the t-J model.7,28 To identify
the energy scales relevant for the pairs, we introduce a con-
venient function, the “cumulative spectral weight of the or-
der parameter”

IF!#" # − $
0

# d#"
$

Im Fij
R!#"" . !2"

Here FR is the retarded Gork’ov’s function defined in imagi-
nary time by Fij #−%Tci↑!%"cj↓!0"& with i and j being the
nearest neighbors. The infinite frequency limit of IF!#" is
equal to %ci↑cj↓&, which in turn is proportional to the d-wave
order parameter !it changes sign under $ /2 rotation". It was
shown in Ref. 28 that %ci↑cj↓& scales like Tc. For all these
reasons, IF!#" is useful to estimate the frequencies relevant
for binding. Its meaning is further illustrated by the d-wave
BCS result in Fig. 2!a". The function IF!#" rises monotoni-
cally until it reaches the sharp BCS cutoff frequency #c
above which no binding occurs. IF!#" extracted from the
Eliashberg calculation34 for lead is also displayed in Fig.
2!a". The maximum is reached at a frequency just above the
largest phonon frequency. Further discussion on IF!#" and
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FIG. 1. !Color online" !a" Imaginary part of the anomalous self-
energy Im "an#"an! at the Fermi wave vector nearest to the antin-
odal point, for various dopings. !b" Imaginary part of the local spin
susceptibility Im !#!!. Black dots in !a" and !b" identify peaks.
The position of the peaks of "an! in !a" are reported as pale magenta
dots in !b" at the same height as the corresponding !! to illustrate
the correspondence between the main peaks of the two functions.
The frequency splitting between the peaks decreases with doping,
like the single-particle gap. The red curves are for the normal state.
The lower frequency peak present in the superconducting state dis-
appears and the next peak moves to higher frequency with doping.
In all the figures, the Lorentzian broadening is 0.125t, U=8t, t"=
−0.3t, t!=−0.08t, for La2−xSrxCuO4 and t=1, &=1.

FIG. 2. !Color online" !a" The solid green line is IF!#" for a
d-wave BCS superconductor with a cutoff at #c=0.5. The dashed
magenta line is obtained from Eliashberg theory for Pb in Ref. 34.
Frequencies in that case are measured in units of the transverse
phonon frequency. The two glitches before the maximum corre-
spond to the transverse and longitudinal peaks in the phonon den-
sity of states. The scale of the vertical axis is arbitrary. !b" IF!#"
calculated for various dopings. The horizontal lines for the asymp-
totes mark the value of the order parameter. !c" The three indepen-
dent Fourier components of !! on a 2'2 plaquette for an under-
doped case. The !$ ,$" component dominates at low frequencies.
Further examples appear in Appendix C.
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DCA phase diagram

we start from the far-right side of Figure 1, in the overdoped metallic state. This state is

characterized by a large Fermi surface that has a volume containing 1 þ p holes per

Cu atom, as determined by angle-dependent magneto-resistance (11), angle-resolved pho-

toemission spectroscopy (12), and quantum oscillations (13), all performed on the single-

layer cuprate Tl2Ba2CuO6þd (Tl-2201). The low-temperature Hall coefficient RH of

overdoped Tl-2201 is positive and equal to 1 / e (1 þ p) (14), as expected for a single-band

metal with a hole density n¼ 1þ p. Conduction in the normal state obeys the Wiedemann-

Franz law (15), a hallmark of Fermi-liquid theory. At the highest doping, beyond the

superconducting phase (Figure 1), the electrical resistivity r(T) of Tl-2201 exhibits the

standard T2 temperature dependence of a Fermi liquid (16), also observed in La2–xSrxCuO4

(LSCO) (17).

3. SCATTERING AND PAIRING

The question then is this: What makes superconductivity emerge from this particular,

rather conventional, metal? The critical doping at which superconductivity springs is

roughly the same in all hole-doped cuprates, namely pc # 0.27. Note that although it

appears to obey weak-coupling BCS theory, at least initially (15, 18), the superconducting

state has d-wave symmetry (19) rather than the usual s-wave symmetry, pointing to an

electronic rather than phononic pairing mechanism (20). What happens at pc to make

d-wave pairing prevail? Let us investigate one intriguing clue: At this special doping, the

scattering between electrons undergoes a qualitative change. Indeed, it is precisely below pc
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Figure 1

Schematic phase diagram of cuprate superconductors as a function of hole doping p. TheMott insulator at
p¼ 0 shows antiferromagnetic (AF) order below TN, which vanishes rapidly with doping. At high doping,
the metallic state shows all the signs of a conventional Fermi liquid. At the critical doping pc, two events
happen simultaneously: Superconductivity appears (below a critical temperature Tc), and the resistivity
deviates from its Fermi-liquid behavior, acquiring a linear temperature dependence.The simultaneousonset
ofTc and linear resistivity is the starting point for our exploration of cuprates. The evolution frommetal to
insulator is interrupted by the onset of the pseudogap phase that sets in below a crossover temperature T$,
which goes to zero at a quantum critical point (QCP) located at p$ in the absence of superconductivity
(removed, for example, by application of a largemagnetic field). The existence, nature, and locationof such
a QCP are a major focus of this review. In the presence of superconductivity, the QCP may move to lower
doping, down topS, as a result of a competitionbetween the pseudogapand superconductingphases (9, 10).
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Pseudogap in the 2D Hubbard Model
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Abstract – We introduce a valence bond dynamical mean-field theory of doped Mott insulators. It
is based on a minimal cluster of two orbitals, each associated with a different region of momentum
space and hybridized to a self-consistent bath. The low-doping regime is characterized by singlet
formation and the suppression of quasiparticles in the antinodal regions, leading to the formation
of Fermi arcs. This is described in terms of an orbital-selective transition in reciprocal space. The
calculated tunneling and photoemission spectra are consistent with the phenomenology of the
normal state of cuprates. We derive a low-energy description of these effects using a generalization
of the slave-boson method.
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The doping of a Mott insulator is a fundamental
problem of condensed-matter physics, relevant to the
physics of cuprate superconductors [1]. In the simplest
Brinkman-Rice [2] description, the doped metallic state
is a Fermi liquid in which quasiparticles are formed with
a heavy mass m∗/m∼ 1/δ and a reduced weight Z ∼ δ
(δ is the doping level). This physical picture can indeed
be rationalized using the modern theoretical framework
of dynamical mean-field theory (DMFT) [3,4]. It is
applicable when spatial correlations are weak, which is
favored by high dimensionality and strong competing
(e.g. orbital) fluctuations. In cuprates however, which are
quasi–two-dimensional materials with low orbital degen-
eracy, it was pointed long ago by Anderson in a seminal
paper [1] that the antiferromagnetic superexchange (J)
plays a key role, leading to strong short-range correla-
tions associated with singlet formation (valence bonds)
between nearest-neighbor lattice sites. Slave-boson mean-
field theories [5–8], as well as projected variational wave
functions [9,10], provide simple theoretical frameworks
to incorporate this effect, modifying the Brinkman-Rice
picture at small doping δ! J/t and leading, e.g. to a finite
effective mass m∗/m∼ 1/(J/t+ δ), consistent with obser-
vations in cuprates. However, these theories fail to describe
a key phenomenon in underdoped cuprates, namely the

strong differentiation in momentum space observed e.g.
by photoemission spectroscopy (ARPES) [11]: Coherent
quasiparticle excitations are suppressed in the anti-
nodal regions of the Brillouin zone (BZ) and a pseudogap
appears in the normal state. In order to take this pheno-
menon into account while incorporating short-range corre-
lations, cluster extensions of the DMFT framework have
been investigated by several groups [4,12,13]. Most studies
have considered clusters of at least four sites (plaquette)
and numerical efforts have been devoted to increase the
cluster size in order to improve momentum-resolution
and get closer to the two-dimensional lattice [14].
In this article, we follow a different route, looking for a

description based on the minimal cluster able to success-
fully describe momentum-space differentiation together
with Mott physics. We find that a two-site cluster is
sufficient to achieve this goal on a qualitative level, and
to a wide extent on a quantitative level when compared
to larger cluster calculations. This allows us to construct
a valence bond dynamical mean-field theory (VB-DMFT)
of nodal/antinodal differentiation, in which this phenom-
enon is linked to the distinct properties of the orbitals
associated with different regions of momentum space.
The main motivation to choose the smallest possible

cluster is to advance our qualitative understanding.
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Fig. 4: (Color online) Intensity maps of the spectral function
A(k, 0) for different doping levels. Lower-right panel: normal-
ized intensity A(φ, 0)/A(0, 0) along the Fermi surface (φ= 0 is
the node, φ=±45 the antinode). The nodal intensity A(0, 0)
is 0.045 for δ= 6%, 1.66 for δ= 10% and 4.61 for δ= 14%.
β = 200.

study of [24]. Note, however, that this maximum does not
induce a maximum of the scattering rate computed at the
Fermi surface.
VB-DMFT provides a simple description of momentum

differentiation as observed in ARPES experiments. This is
illustrated by the intensity maps of the spectral function
A(k, 0) (obtained with M -interpolation) displayed in
fig. 4. At very high doping δ! 25% (not shown), cluster
corrections to DMFT are negligible and the spectral
intensity is uniform along the Fermi surface. In contrast,
at lower δ, momentum differentiation sets in, revealing
apparent “Fermi arcs” at finite temperature with higher
spectral intensity in the nodal direction in comparison
to antinodes [11,25–27]. The last panel in fig. 4 shows
that the contrast of the spectral intensity along the
Fermi surface has a maximum around δ≈ 10%, similarly
to ARPES experiments (cf. fig. 3B of [27]). At low
doping, singlet formation induces a large real part in ΣK
(cf. fig. 1) and a large imaginary part of the self-energy in
the (π, 0) and (π,π) regions, which are responsible for this
strong momentum space differentiation. At intermediate
doping (8%" δ" 20%), this differentiation is reliably
addressed using VB-DMFT: The results are robust and
do not depend qualitatively on the interpolation scheme
nor on the specific decomposition of the BZ using similar
patches (note however that M -interpolated quantities
are quantitatively more accurate when compared to
the plaquette results). At low doping (δ" 6%) the M -
interpolated self-energy develops singularities on lines in
momentum space, leading to lines of zeroes of the Green’s
function and to the breakup of the Fermi surface into
pockets [23,28–31]. In this regime, a better momentum
resolution (larger clusters) is necessary to obtain reliable

results. This limitation is intrinsic to cluster methods,
regardless of the interpolation scheme.
VB-DMFT and the (non-self-consistent) two-impurity

Anderson model share common features. In both cases,
at low-δ, the singlet state dominates, and the real part
of the odd-orbital self-energy is large. These effects
are due to the term transferring singlet pairs from the
even orbital to the odd orbital, as can be checked by
explicitly removing it from the dimer Hamiltonian.
Interestingly, strong fluctuations in the singlet pairing
channel and momentum-space differentiation appear to
be related effects. The key difference between VB-DMFT
and the two-impurity model with fixed bath is that the
self-consistency leads to the opening of a gap in the odd
orbital. This gap reduces the scattering rate of the even
orbital, leading to an extremum in ImΣ+(i0+) (and also
in the reconstructed ImΣπ0(i0+)), which is absent in the
non–self-consistent two-impurity model.
To summarize, we have proposed in this article a

valence bond dynamical mean-field theory (VB-DMFT)
as a minimal cluster-based description of momentum
space differentiation in doped Mott insulators. Because
of its simplicity, this theory can be investigated with
moderate numerical effort and progress in qualitative
understanding can be achieved with low-energy methods
such as rotationally invariant slave bosons. The calculated
STM and ARPES spectra are consistent with the phenom-
enology of the normal state of cuprates. The low-doping
regime is dominated by singlet formation. Mott physics is
responsible for the suppression of coherent quasiparticles
at the antinodes, in qualitative agreement with other
approaches starting from the weak/intermediate-coupling
viewpoint [32]. Within VB-DMFT, this suppression is
described as an orbital-selective transition in momentum
space.

∗ ∗ ∗

We thank F. Lechermann, K. Haule and T. M.
Rice for useful discussions and acknowledge support
from ICAM and the ANR under grants ECCE, ETSF
and GASCOR. PSC thanks CPHT and IPhT-Saclay for
hospitality. GK was supported by the NSF and the Pascal
Chair.

REFERENCES

[1] Anderson P. W., Science, 235 (1987) 1196.
[2] Brinkman W. F. andRice T. M., Phys. Rev. B, 2 (1970)
4302.

[3] Georges A., Kotliar G., Krauth W. and Rozenberg
M. J., Rev. Mod. Phys., 68 (1996) 13.

[4] Kotliar G., Savrasov S. Y., Haule K., Oudovenko
V. S., Parcollet O. andMarianetti C. A., Rev. Mod.
Phys., 78 (2006) 865.

[5] Baskaran G., Zou Z. and Anderson P. W., Solid State
Commun., 63 (1987) 973.

[6] Kotliar G. and Liu J., Phys. Rev. B, 38 (1988) 5142.

57009-p4

diagonal !near "! /2,! /2#$.11–13 Thus optimally doped and
underdoped cuprate materials exhibit a self-energy with a
strong momentum dependence, inconsistent with the
Brinkman-Rice/single-site dynamical mean-field approach.

On the theoretical side the importance of going beyond
the Brinkman-Rice description was also recognized early on.
For example, the various forms of resonating valence bond
"RVB# theories take intersite correlations explicitly into ac-
count by expansion around a specific mean-field approxima-
tion and were shown to lead to a non-Brinkman-Rice doping
dependence of the electron effective mass and other Fermi-
liquid parameters14,15 and to a pseudogap16 "for a recent re-
view see Ref. 17#. Other authors have addressed the issue in
the context of analytical calculations based on the assumed
importance of antiferromagnetic18–21 or charge-density
wave22 correlations. These, and other semianalytic calcula-
tions, while demonstrating the importance of antiferromag-
netic correlations for the electron-doped cuprates, have not
led to a consensus regarding the physics of the hole-doped
cuprates, in part because they are based on approximations
which are uncontrolled "or are controlled in limits which are
not clearly relevant to the actual materials# and more impor-
tantly because they are based on assumptions about which
correlations are physically relevant and which may be ne-
glected. The appropriateness of the underlying assumptions
about which physics to include have been the subject of de-
bate.

Over the last decade the development of “cluster” dy-
namical mean-field methods23–26 has opened up a very prom-
ising new line of attack on the problem. These methods ob-
tain an approximate solution of the full many-body problem
in terms of the solution of an auxiliary N-site quantum im-
purity model coupled with a self-consistency condition. For a
review, see Refs. 27–29. N=1 corresponds to single-site dy-
namical mean-field theory with a momentum-independent
self-energy; clusters of size N"1 allow for some momentum
dependence of the self-energy and thus enable the study of
deviations from Brinkman-Rice behavior. As N→# one re-
covers the full model; however, the computational expense
rises rapidly as the interaction strength and cluster size in-
crease. An advantage of the methods is that no explicit as-
sumption is made about the important of one kind of elec-
tronic correlation "spin density, charge density, RVB# relative
to another, but the possibility of potential biases associated
with choice of cluster is an important issue which this paper
aims to address.

Important results obtained by cluster dynamical mean-
field methods have included the demonstration that in an
appropriate doping and interaction range the two-
dimensional Hubbard model can exhibit a pseudogap,30,31

“Fermi arcs,”32–36 and a variation in electronic properties
around the Fermi surface "nodal-antinodal
differentiation#.31–33,37–39 The methods have been shown to
yield a multistage approach to the Mott transition with the
insulating phase being separated from the weakly correlated
metallic phase by a “sector-selective” phase where some re-
gions of the Brillouin zone are gapped and others are
not37,39–41 and a number of physical properties were shown
to be in good agreement with experiment.38,39,42

Despite these successes, uncertainties remain. Most clus-
ter dynamical mean-field papers analyze one specific cluster.

Comparison of results obtained on clusters of different sizes
has been undertaken only in a few special cases,43–47 mostly
not directly relevant to the question of the doping-driven
Mott transition. It has therefore not been clear which results
are due to specific properties of clusters and which results are
representative of the physics of the full model. More gener-
ally, cluster dynamical mean-field calculations test the limits
of present day computational abilities so that compromises
are required between cluster size and the ranges of tempera-
ture, interaction strength and carrier concentration to be stud-
ied. Little information is available in the literature to guide
the choices which must be made.

This paper has two main goals: to clarify the physics of
the doping-driven Mott transition in two dimensions by iden-
tifying the robust physical features which can now be con-
sidered as established from cluster dynamical mean-field
theory and to identify the differences between different clus-
ter sizes and geometries. We present a global examination of
the one-electron properties of the doped Mott insulator, using
clusters of all feasible sizes from 2 up to 16 sites, respecting
the lattice symmetry. The investigation is made possible by
progress in algorithms, which have made the computations
much more efficient, enabling surveys of wide ranges of pa-
rameter space for many clusters.48,49 We describe the elec-
tronic properties in detail and show that the phase diagram
and physical properties are to a surprising extent robust
against choice of cluster size and geometry. Where differ-
ences occur, the features of the cluster which cause them are
determined. Our results define the current frontier of the
field, given present computational capabilities, and call for a
new generation of theoretical developments aiming at im-
proving momentum-space resolution.

While the various aspects of the doping-dependent phase
diagram of the two-dimensional Hubbard model have been
noted in various ways in the cluster dynamical mean-field
literature, the generality of the results and their robustness to
choice of cluster have not been previously appreciated. The
comparison of results for different sized clusters clearly dem-
onstrates that the essentials of the carrier concentration de-
pendence of physical properties of a doped Mott insulator are
as sketched in Fig. 1. Far from the insulating state, the prop-
erties are those of a moderately correlated Fermi liquid.
Moreover, the momentum dependence of the renormaliza-
tions is very weak: the properties are described well by
single-site dynamical mean-field theory, as previously noted,
e.g., in Refs. 32 and 33. We refer to this regime as the iso-

FIG. 1. "Color online# Qualitative sketch of doping regimes for
parameters considered in this paper.
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Momentum-space anisotropy and pseudogaps: A comparative cluster dynamical mean-field
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Cluster dynamical mean-field calculations based on 2-, 4-, 8-, and 16-site clusters are used to analyze the
doping-driven metal-insulator transition in the two-dimensional Hubbard model. Comparison of results ob-
tained on different clusters enables a determination of those aspects of the physics that are common to all
clusters and permits identification of artifacts associated with particular cluster geometries. A modest particle-
hole asymmetry in the underlying band structure is shown to lead to qualitatively different behavior on the
hole-doped side than on the electron-doped side. For particle-hole asymmetry of the sign and magnitude
appropriate to high-Tc cuprates, the approach to the insulator from the hole-doping side is found to proceed in
two stages from a high-doping region where the properties are those of a Fermi liquid with moderately
renormalized parameters and very weak momentum dependence. As doping is reduced the system first enters
an intermediate doping regime where the Fermi-liquid renormalizations are larger and the electron self-energy
varies significantly around the Fermi surface and then passes to a small doping regime characterized by a gap
on some parts of the Fermi surface but gapless behavior in other parts. On the electron-doped side the partially
gapped regime does not occur, and the momentum dependence of the electron self-energy is less pronounced.
Implications for the high-Tc cuprates and for the use of cluster dynamical mean-field methods in wider classes
of problems are discussed.
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I. INTRODUCTION

The evolution of a Mott !correlation-driven" insulating
state as charge carriers are induced by doping is one of the
basic questions in condensed-matter physics. It is relevant to
the behavior of wide classes of materials1 and is of particular
importance in the context of high-temperature copper-oxide
superconductivity, where following an early insight of
Anderson2 the materials are generally accepted to be doped
Mott insulators with the combination of “Mott” correlations
and !quasi-" two dimensionality giving rise to the novel
properties.

A crucial insight into the physics of doped Mott insulators
was provided by Brinkman and Rice3 who argued that the
low-temperature properties of the doped Mott insulator were
in effect those of a Fermi liquid with a quasiparticle mass
which diverged as the Mott insulating state was approached.
The Brinkman-Rice picture provides a reasonable descrip-
tion of data in many materials1 and has been refined theoreti-
cally over many years. In particular the development of the
single-site dynamical mean-field theory4 !DMFT" provided a
precise theoretical framework within which these results can
be derived. The key physical assumptions required for
Brinkman-Rice behavior are now understood to be the pres-
ence of strong correlations and the locality of correlation
effects. The mathematical expression of the latter assumption
is the momentum independence of the electron self-energy.
The locality assumption becomes strictly valid for classes of
lattice models in a limit of infinite lattice coordination
number5 and appears to provide a reasonable approximation
to the behavior of many three-dimensional materials.1 How-

ever, the momentum-independent self-energy approximation
is likely to be less accurate for materials, such as high-Tc
superconductors, where the electronic properties are two di-
mensional.

Indeed, it was recognized soon after the discovery of
high-Tc superconductivity in the CuO2 perovskites that the
materials required a description which went beyond the
Brinkman-Rice/single-site dynamical mean-field theory ap-
proach. The evidence has become stronger over the years and
it is beyond the scope of this paper to review the large ex-
perimental literature demonstrating this point. We do recall
here the results of angle-resolved photoemission and related
transport experiments which clearly illustrate this point.
Studies of hole-doped cuprate materials with very high dop-
ings !above the doping which maximizes the superconduct-
ing transition temperature" indicate a quasiparticle lifetime
and velocity renormalization which are nearly isotropic
around the Fermi surface,6 consistent with inferences from
magnetotransport.7,8 As the doping is reduced toward the in-
sulating phase the behavior changes. Photoemission mea-
surements on materials with “optimal” doping levels !near
the carrier concentration which maximizes the superconduct-
ing transition temperature" reveal an electron lifetime which
varies dramatically around the Fermi surface,9 again consis-
tent with inferences drawn from interpretations of the inter-
plane conductivity10 and from in-plane magnetoresistance
measurements.7 Measurements on “underdoped” cuprates
!those with carrier concentrations even closer to the insulat-
ing phase" reveal a “pseudogap” !reduction in electronic den-
sity of states" for momenta near the !0,#" / !# ,0" points of
the Brillouin zone but no pseudogap for states near the zone
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Also shown as light lines in Fig. 2 are the Fermi surfaces
of the noninteracting model for carrier concentrations corre-
sponding to half filling and 10%, 20%, and 30% hole doping.
The Fermi surface lines show a deficiency of the standard
4-site cluster: for hole dopings near to half filling the Fermi
surface is almost entirely contained in the !0,!" / !! ,0"
sectors; thus this cluster has a difficult time capturing
momentum-space differentiation along the Fermi surface.
The alternative 4! patching shown in the middle panel of Fig.
2 offers the possibility of capturing some of the zone-
diagonal region of the Fermi surface within a different sector.

The essential computational task is the solution of the
quantum impurity model. To accomplish this we use
continuous-time quantum Monte Carlo methods in the aux-
iliary field formulation !CT-AUX" !Ref. 48". This method is
an imaginary time method which yields the particle densities
in each sector, along with the sector Green’s function GK and
the sector self-energy "K. From GK we obtain the sector
occupancy nK via

nK = GK!# → 0−" =
1
$
#

n
GK!i%n"ei%n0+

. !4"

Note that the sector Green’s functions are normalized in such
a way that for nK=2 all k states in a sector are occupied by
two electrons. The total density is n=2!#KnK" /N !the two is
for spin".

In our analysis we work for the most part with sector
quantities GK, "K, and nK. We prefer to avoid the “periodiza-
tion” or interpolation schemes which attempt to reconstruct
continuous functions of momentum from the coarse-grained
quantities which are the direct output of the calculation.

Important quantities for the following discussion are the
parameters &k

!, Zk, and "!!k ,0"$"!!k ,%=0". These are de-
fined generally for a Fermi liquid in terms of the low-
frequency limit of the real !""" and imaginary !"!" parts of
the retarded electron self-energy "!k ,%" as

"!k,%" % &k
! − & + i"!!k,0" + %!1 − Zk

−1" + ¯ , !5a"

&k
! $ & + ""!k,0" , !5b"

Zk
−1 $ 1 − !%""!k,%"&%=0. !5c"

It will also be useful to consider

'k $ Zk&"!!k,0"& . !6"

In the DCA approximation we use here these become piece-
wise constant functions of momentum; we denote the value
appropriate to sector K by suppressing the momentum argu-
ment and adding a subscript K.

In the Fermi-liquid regime, these parameters express im-
portant aspects of electronic physics. For completeness we
briefly recall their meaning here. At low frequencies %→0,
the spectral function A!k ,%"=− 1

! Im G!k ,%" becomes

A!k,%" %
1
!

Zk'k

'% + Zk!&k
! − (k"(2 + 'k

2 . !7"

&k
! determines the location of the renormalized Fermi surface

!which is the locus of points kF for which (kF
=&kF

! ". Thus a
momentum dependence of &k

! signals a change in shape of
the Fermi surface and more generally a shift in the mean
energy of one momentum sector relative to the others. 'k is
the width of the quasiparticle peak. For a fixed k on the
Fermi surface, A!kF ,%" is peaked at %=0 and the width in
frequency is set by 'k. A necessary condition for Fermi-
liquid behavior is that 'k be small, in which case A!k ,%" is
characterized by a reasonably well-defined quasiparticle peak
with frequency width given by 'k and area given by the
quasiparticle weight Zk. The criterion 'k)!T is the math-
ematical expression of the condition that the width of a ther-
mally excited quasiparticle is less than its energy. In a Fermi
liquid "!!k ,0")T2 as T→0 so ' is parametrically less than
T. In this paper, however, since we cannot reach very low
temperatures, it will be useful to relax this definition and
consider as a quasi-Fermi liquid any system where !i" the
Luttinger theorem is reasonably well obeyed, !ii" 'k de-
creases as T decreases at all points along the renormalized
Fermi surface, and !iii" at all points along the Fermi surface
'k)!T.

Defining the bare velocity v!k=!(k /!k!, the dispersion
away from the Fermi surface is determined by the renormal-
ized velocity

FIG. 2. !Color online" Momentum-space tiling used to define cluster approximations studied here: 2 site !leftmost panel", 4 site with
standard patching !second from left", 4 site with alternative patching !4!", !central panel", 8 site !second from right", and 16 site !rightmost
panel". Momentum-space patches indicated by shaded regions; electron self-energy is independent of momentum within a patch but may
vary from patch to patch. Dots !red" represent the K points in reciprocal space associated to the patches in the DCA construction !see text".
Thin lines: Fermi surfaces for the noninteracting system with t"=−0.15t for half filling and hole dopings of 10%, 20%, and 30%. All clusters
have an inner patch around !0,0" !yellow" and an outer patch around !! ,!" !green". Clusters with four or more sites also have an antinodal
patch at !! ,0" and symmetry-related points !blue", clusters with eight or more sites have a nodal patch '!! /2,! /2", red(. The 16-site cluster
has two additional independent momentum sectors, around !! /2,0" !orange" and around !3! /2,! /2" !cyan". All clusters have the full
point-group symmetry of the lattice.
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Pseudogap induced by short-range spin correlations in a doped Mott insulator
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We study the evolution of a Mott-Hubbard insulator into a correlated metal upon doping in the two-
dimensional Hubbard model using the cellular dynamical mean-field theory. Short-range spin correlations
create two additional bands apart from the familiar Hubbard bands in the spectral function. Even a tiny doping
into this insulator causes a jump of the Fermi energy to one of these additional bands and an immediate
momentum-dependent suppression of the spectral weight at this Fermi energy. The pseudogap is closely tied to
the existence of these bands. This suggests a strong-coupling mechanism that arises from short-range spin
correlations and large scattering rates for the pseudogap phenomenon seen in several cuprates.
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The issue of the origin of the pseudogap phenomenon
observed in underdoped cuprates lies at the center of any
theoretical explanation for high-temperature superconductiv-
ity in the cuprates and is one of the most challenging ques-
tions in condensed matter physics. The suppression of low-
energy spectral weight in the normal state of these materials
has been observed through various experimental probes.1 In
spite of many theoretical works to explain the observed
anomalies, there is no consensus at present. The lack of con-
trolled approximations to deal with the strong-coupling phys-
ics and low dimensionality inherent to these systems contin-
ues to pose major stumbling blocks towards a complete
theoretical understanding. Since the parent compounds of the
cuprates are Mott-Hubbard insulators, an understanding of
such an insulator and its evolution into a correlated metal
upon doping is crucial.

In this paper we study the two-dimensional !2D" Hubbard
model on a square lattice at and near half-filling with cellular
dynamical mean-field theory !CDMFT".2 The CDMFT
method is a natural generalization of the single-site DMFT
!Ref. 3" to incorporate short-range spatial correlations. Since
at and near half-filling short-range spin correlations are
dominant at low energy, this method is expected to describe
additional features caused by spin degrees of freedom in the
single-particle spectrum. The CDMFT !Ref. 4" has already
passed several tests against exact results obtained by the Be-
the ansatz and density matrix renormalization group
!DMRG" techniques in one dimension, where the CDMFT
scheme is expected to be in the worst-case scenario. Long-
range order involving several lattice sites such as d-wave
superconductivity can be also described in CDMFT.5 Several
other cluster schemes have been proposed6–10 including the
dynamical cluster approximation !DCA",7 cluster perturba-
tion theory !CPT",8 and its variational extension !V-CPT".9
The variational principle used in the last scheme allows one
to consider CPT, V-CPT, and CDMFT within a unified
framework.

In the CDMFT construction2,4 the infinite lattice is tiled
with identical clusters of size Nc. In an effective action de-

scription, the degrees of freedom in a single cluster are
treated exactly, while the remaining ones are replaced by a
bath of noninteracting electrons, which hybridizes with the
cluster degrees of freedom. For practical purposes, it is use-
ful to view this cluster action as arising from a cluster-bath
Hamiltonian of the form

H = #
$#$%,%

t#$c#%
† c$% + U#

#

n#↑n#↓ + #
m,%

&m%am%
† am%

+ #
m,#,%

Vm#%!am%
† c#% + H . c . " . !1"

Here the indices # ,$=1, . . . ,Nc label sites within the cluster,
m=1, . . . ,Nb with Nb representing the number of bath de-
grees of freedom, and c#% and am% annihilate electrons on the
cluster and the bath, respectively. t#$ is the hopping matrix
within the cluster, &m% is the bath energy, and Vm#% is the
bath-cluster hybridization matrix. Let us adopt a matrix no-
tation !cluster indices suppressed" for the hopping matrix t,
the cluster Green function Gc!i'", its noninteracting counter-
part G0!i'", and the cluster self-energy (=G0

−1−Gc
−1. We

start with an initial guess for the bath parameters &m% and
Vm#% which determines a starting G0!i'". With this guess the
cluster Green function is calculated by solving the cluster-
bath Hamiltonian &Eq. !1"'. To close the self-consistency
loop we obtain a new G0!!i'" using

G0!
−1!i'n" = ( Nc

!2)"2 ) dk̃
1

i'n + # − t!k̃" − (!i'n"
*−1

+ (!i'n" . !2"

The integral comes from projecting on the cluster the Green
function of an infinite lattice formed of identical clusters
located at positions R! i. The self-energy of that Green func-
tion is equal to that in a single cluster. In real space it van-
ishes for sites that do not belong to the same cluster. How-
ever, hopping between clusters is allowed in the same way as
on the original infinite lattice. Hence, the hopping matrix has
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In conclusion, the long-standing problem of the evolution
of a Mott-Hubbard insulator into a correlated metal upon
doping has been examined in the two-dimensional Hubbard
model by using the cellular dynamical mean-field theory
which incorporates short-range spatial correlations. At half-
filling these correlations create two additional bands besides
the familiar Hubbard ones. Even a tiny doping into a Mott-
Hubbard insulator !t!=0" causes the Fermi energy to jump to
one of these bands and the spectral weight to be suppressed
immediately in a k-dependent way, such that a pseudogap
appears near !! ,0" while a peak survives near !! /2,! /2".
When AF long-range order is present at finite doping, the
picture is quite different, demonstrating that at strong cou-
pling the pseudogap in the particle-hole-symmetric model is
a short-range effect. Including particle-hole asymmetry with

a second neighbor hopping t! gives spectral weights that are
similar to those observed in hole- and electron-doped cu-
prates. This provides a systematic physical picture for the
emergence of the strong-coupling pseudogap phenomenon in
doped Mott-Hubbard insulators and the consequent non-
Fermi-liquid behavior that arises solely from short-range
spin correlations22–24 and large scattering rates, without any
symmetry breaking.
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Pairing in a dry Fermi sea

Normal metal: Cooper log instability
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λ(T ) = VP0(T )

P0(T ) ∼ log(a/T )

‣ Pairing interaction V is set at high T and SC 
instability arises from Cooper log divergence 
of pair propagator P0(T)
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Pairing interaction in pseudogap regime
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Ū2�S(k � k �, � � ��)

d-wave eigenvalue (Hubbard model)

“exact” eigenvalue

Eigenvalue from 
spin-fluctuation interaction

between 140 K and the superconducting transition temperature
TcB90 K, one would see the strength of the d-wave projection
hw(k! k0, om)id increase, leading to an increase in the d-wave
eigenvalue contrary to the results reported in ref. 1. One can of
course ask whether the strength of the spin–fluctuation
interaction at 40 K is sufficient to given an anti-nodal gap of
order 50 meV. Using a value of the coupling constant !Uc of order
of the bandwidth 1.5 eV, the solution of the Gorkov equation

f k;onð Þ ¼ ! T
N

X

q;om

Veff q;omð ÞF kþ q;onþomð Þ; ð16Þ

using the spin–fluctuation interaction Veff(q, om) in equation (2)
and the approximation equation (14) for F, is found to give an
anti-nodal gap of 50 meV.

Discussion
We have used DCA calculations for an under (hole) doped 2D
Hubbard model, which exhibits a PG, to see whether a
spin–fluctuation interaction provides a reasonable approximation
of the irreducible pairing interaction. In these calculations, the
dynamic mean-field cluster is such that charge density and
striping instabilities are suppressed, leaving AF and d-wave
pairing as the dominant correlations. Although the PG eliminates
the usual BCS logarithmic divergence of the pairing kernel, we
find that a pairing instability arises from an increase in the
strength of the spin–fluctuation interaction as the temperature
decreases. The finding that the PG suppresses the BCS
logarithmic divergence is similar to the result reported in ref. 1.
However, the increase in the pairing strength of the spin
fluctuations found in the DCA calculation is at odds with the
results reported in ref. 1. We believe that this disagreement
reflects a failure of the approximation in which the single-particle
spectral weight at a higher temperature is used to determine the
single-particle Green’s function at lower temperatures.

Using a single-particle spectral weight constructed from
ARPES data at 40 K, we find a significant enhancement of the
d-wave projected spin–fluctuation strength relative to that at

140 K. Thus, we find that the DCA results are consistent with the
40 K ARPES data and the increase in the strength of the spin
fluctuations can lead to superconductivity.

Methods
Hubbard model. The 2D Hubbard model we consider in the numerical
calculations is described by the Hamiltonian

H ¼
X

ij

tijc
y
iscjs þU

X

i

ni"ni#: ð17Þ

Here, c
yð Þ

is destroys (creates) an electron with spin s on site i and nis¼cyiscis is the
corresponding number operator. The hopping tij has a near-neighbour amplitude t
and a next-near-neighbour amplitude t0¼ ! 0.15t, leading to a dispersion

ek ¼ ! 2t cos kx þ cos ky
! "

! 4t0 cos kx cos ky : ð18Þ

We use t¼ 1 as the unit of energy and set the Coulomb repulsion U¼ 7t.

Dynamic cluster approximation. To study the behaviour of the Hubbard model
in equation (17), we use a DCA QMC algorithm9. Similar to finite-size lattice
calculations, the DCA represents the bulk lattice by a finite-size cluster, but uses
coarse graining to retain information about the bulk lattice degrees of freedom not
represented on the cluster. This leads to an approximation of the thermodynamic
limit, in which the bulk problem is replaced by a finite-size cluster embedded in a
mean-field host that is designed to represent the rest of the system. The basic
assumption is that correlations are short ranged and contained within the cluster,
so that the self-energy S(k, ion) is well approximated by a cluster self-energy
S(K, ion), where K are the cluster momenta. One then calculates a coarse-grained
Green’s function

!G K; ionð Þ ¼ Nc

N

X

k0

1
ion þ m! eKþ k0 !" K; ionð Þ ð19Þ

where m is the chemical potential, which is tuned to give a fixed filling hni, and Nc is
the number of sites in the cluster. For the 4& 4 Nc¼ 16 site clusters that we choose,
the sum averages over the momenta k0 in a square patch centred at 0 with sides of
length p/2. This reduces the complexity of the problem to that of a finite cluster of
size Nc, which can be solved using QMC techniques. Here we use the CT-AUX
quantum Monte Carlo algorithm developed by Gull et al.10 to calculate the
self-energy

P
K;onð Þ '

P
G0 K; ionð Þ;U½ ) as a functional of the cluster-excluded

propagator G K; ionð Þ¼ !G K; ionð Þ! 1 þ
P

K; ionð Þ
# $! 1

and the interaction U.

Calculation of irreducible particle–particle vertex. In addition to the cluster
single-particle Green’s function Gc(K, ion), the QMC is also used to calculate the
two-particle Green’s function in the singlet particle–particle channel with zero
centre of mass momentum and energy, Gc,2(K, K0)'Gc,2(K, !K, K0 , !K0), where
K¼ (K, ion) and K 0¼ K0; ion0ð Þ. The irreducible particle–particle vertex Gpp

irr K;K 0ð Þ
that enters in the DCA gap (equation (3)) is then extracted from the cluster
Bethe–Salpeter equation

Gc;2 K;K 0ð Þ ¼ Gc Kð ÞGc !Kð Þþ T
Nc

X

K 00
Gc Kð ÞGc !Kð ÞGpp

irr K;K 00ð ÞGc;2 K 00;K 0ð Þ:

ð20Þ

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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Nature of pair-field fluctuations across the superconducting dome

we start from the far-right side of Figure 1, in the overdoped metallic state. This state is

characterized by a large Fermi surface that has a volume containing 1 þ p holes per

Cu atom, as determined by angle-dependent magneto-resistance (11), angle-resolved pho-

toemission spectroscopy (12), and quantum oscillations (13), all performed on the single-

layer cuprate Tl2Ba2CuO6þd (Tl-2201). The low-temperature Hall coefficient RH of

overdoped Tl-2201 is positive and equal to 1 / e (1 þ p) (14), as expected for a single-band

metal with a hole density n¼ 1þ p. Conduction in the normal state obeys the Wiedemann-

Franz law (15), a hallmark of Fermi-liquid theory. At the highest doping, beyond the

superconducting phase (Figure 1), the electrical resistivity r(T) of Tl-2201 exhibits the

standard T2 temperature dependence of a Fermi liquid (16), also observed in La2–xSrxCuO4

(LSCO) (17).

3. SCATTERING AND PAIRING

The question then is this: What makes superconductivity emerge from this particular,

rather conventional, metal? The critical doping at which superconductivity springs is

roughly the same in all hole-doped cuprates, namely pc # 0.27. Note that although it

appears to obey weak-coupling BCS theory, at least initially (15, 18), the superconducting

state has d-wave symmetry (19) rather than the usual s-wave symmetry, pointing to an

electronic rather than phononic pairing mechanism (20). What happens at pc to make

d-wave pairing prevail? Let us investigate one intriguing clue: At this special doping, the

scattering between electrons undergoes a qualitative change. Indeed, it is precisely below pc
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Figure 1

Schematic phase diagram of cuprate superconductors as a function of hole doping p. TheMott insulator at
p¼ 0 shows antiferromagnetic (AF) order below TN, which vanishes rapidly with doping. At high doping,
the metallic state shows all the signs of a conventional Fermi liquid. At the critical doping pc, two events
happen simultaneously: Superconductivity appears (below a critical temperature Tc), and the resistivity
deviates from its Fermi-liquid behavior, acquiring a linear temperature dependence.The simultaneousonset
ofTc and linear resistivity is the starting point for our exploration of cuprates. The evolution frommetal to
insulator is interrupted by the onset of the pseudogap phase that sets in below a crossover temperature T$,
which goes to zero at a quantum critical point (QCP) located at p$ in the absence of superconductivity
(removed, for example, by application of a largemagnetic field). The existence, nature, and locationof such
a QCP are a major focus of this review. In the presence of superconductivity, the QCP may move to lower
doping, down topS, as a result of a competitionbetween the pseudogapand superconductingphases (9, 10).
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Doping dependence of  ε(T) = 1 − λd(T)
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Doping dependence of ε(T)

Bulk magnetic susceptibility ε(T) = 1 - λd(T)
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Doping dependence of ε(T)

Bulk magnetic susceptibility ε(T) = 1 - λd(T)
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Doping dependence of ε(T)
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Doping dependence of ε(T)
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Doping dependence of ε(T)
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Phase fluctuations in underdoped pseudogap region

results for χd(T) for various dopings are shown in the Supplemental
Material. Plots of ε(T)= 1− λd(T) are shown in Fig. 4 for 〈n〉= 0.93
and 0.85. The inset in Fig. 4a shows Monte-Carlo results for the
inverse spin susceptibility χ−1(T) of the classical 2D xymodel. Here,
one sees that there is a Curie–Weiss regime at higher
temperatures associated with Emery–Kivelson phase fluctua-
tions,19 which then crosses over to the low-temperature
vortex–antivortex KT behavior

χ!1ðTÞ $ exp ! bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=TKT ! 1

p
 !

; (9)

as TKT is approached.
We believe that the change in curvature of ε(T) as the

temperature decreases for the 〈n〉= 0.93 doping reflects the
onset of phase fluctuations19 as T decreases. This behavior is
analogous to that of a granular superconductor, in which at higher
temperatures, one has a BCS logðT=TMF

c Þ behavior associated with
a single grain followed by an xy Curie–Weiss behavior associated
with pair-phase fluctuations for a range of temperatures, until the
KT behavior is reached.20 We note that this change in curvature
and the upturn at low temperatures is not seen in DCA
calculations using a four-site cluster (2 × 2–plaquette). In addition,
in this case, DCA calculations find that Tc(〈n〉) has a maximum for
〈n〉= 0.95 and falls to zero very close to 〈n〉= 1,21 i.e., different

from the 12-site cluster results displayed in Fig. 2. We believe that
this is due to the fact that (spatial) phase fluctuations and KT
behavior, which reduce Tc, are absent in small clusters. This
characteristic change in behavior as the cluster size is increased
provides further support for the presence of phase fluctuations in
the underdoped PG region of the Hubbard model.
In contrast, for 〈n〉= 0.85, the superconducting transition is

approached from a region without a PG. In this doping regime, the
meanfield temperature TMF

c is close to the Kosterlitz–Thouless
temperature and over most of the temperature range above a
narrow region, set by the Ginzburg parameter, ε(T) has the BCS
form lnðT=TMF

c Þ as shown by the dashed curve in Fig. 4b.
Finally, although it is difficult to experimentally measure the

large q pairfield fluctuations2 which are necessary to determine
the short-distance pairfield susceptibility, in the numerical
simulations, this can be done. With Δy

‘þx;‘ ¼ ðcy‘þx"c
y
‘# ! cy‘þx#c

y
‘"Þ

creating a pair between site ‘ and its next-nearest-neighbor site in
the x-direction ‘þ x, we have calculated the local χyx(r= 0, T)
pairfield susceptibility

χyxðr ¼ 0; TÞ ¼ 1
N

X

‘

Z β

0
dτhΔ‘þy;‘ðτÞΔy

‘þx;‘ð0Þi: (10)

This measures the local pairfield induced on the ð‘; ‘þ yÞ link
when a singlet pair is created on the adjacent ð‘; ‘þ xÞ link. Its
negative sign clearly shows the d-wave character of the local
pairfield. The presence of such pairfield fluctuations in the
underdoped PG regime is also indicated by the observations of
the persistence of a gap node in the ARPES spectrum at a
temperature well above Tc.

22 We have chosen to study χyx(r= 0, T)
rather than the local d-wave susceptibility, because χyx(r= 0, T)
avoids a remnant of the equal time expectation value
hΔ‘þx;xΔ

y
‘þx;‘i ¼ !2hs‘þx ' s‘iþ 1

2 hn‘þxn‘i, which is associated with
the local spin and charge correlations.8

The results for χyx(T) are shown in Fig. 5. For the 〈n〉= 0.85
doping, the local χyx(T) pairfield susceptibility grows as T
decreases. However, for the underdoped case with 〈n〉= 0.93,
χyx(T) saturates as the temperature decreases and the system
enters the PG regime. In this case, the amplitude of the induced
local pairfield is limited by the opening of the PG. Note however,
as seen in Fig. 4a, χd(T)~ε

−1(T) continues to increase as T decreases
and the fluctuations of the phase of the pairfield-order parameter
decrease. Additional results for χyx(T) for various dopings are
shown in the Supplemental Material.

Fig. 4 Temperature dependence of ε(T)= 1− λd(T) for the 2D
Hubbard model. Here, ε(T) is normalized to its value at T/t= 0.2. a
ε(T) for 〈n〉= 0.93 and b for 〈n〉= 0.85. The inset in (a) shows Monte-
Carlo results for the susceptibility of a 2D xy model, which has a
fixed amplitude with only a phase degree of freedom that can
fluctuate. The dashed curves in (a) show the linear Curie–Weiss
behavior, while in (b), they show the BCS Cooper pair fluctuation
result ln T=TMF

c

" #

Fig. 5 Local pairfield susceptibility χyx(T) versus temperature T for
〈n〉= 0.93 and 0.85. The negative sign reflects the d-wave nature of
the pairfield correlations. In the absence of a PG, these correlations
continue to increase as the temperature decreases, while if there is a
PG, they saturate
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‣ Amplitude of local pair-field limited  by 
opening of pseudogap 

‣ Increase in pairfield susceptibility reflects 
increase in phase coherence
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This can be measured!
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We suggest a method of using the average pair field of one superconductor to probe the
fluctuation pair field of a second metal at temperatures above the latter's superconduct-
ing transition point. The two metals should be fabricated as a strongly coupled tunnel
junction and the dc I-V characteristic measured as a function of both the bias voltage V
and the amplitude of a magnetic field H parallel to the junction interface. The resultant
I-V characteristic is predicted to give a direct measurement of the frequency and wave-
vector dependence of the 4 susceptibility characteristic of the superconducting transi-
tion.

In most second-order phase transitions the or-
der parameter can be directly coupled to an ex-
ternal field and the response of the order param-
eter to this coupling determines the characteris-
tic susceptibility associated with the onset of or-
der. The frequency and wave-vector dependence
of this characteristic susceptibility provide the
most direct probe of the fluctuations associated
with the phase transition. Two well-known ex-
amples of this are magnetic transitions, where
the magnetization is coupled to a magnetic field
giving the magnetic susceptibility, and the liquid-
gas transition, in which the density is coupled to
the pressure giving the compressibility. In a su-
perconducting system, the analogous characteris-
tic susceptibility involves coupling to the pair
field 6 which is off-diagonal in electron number
space. For this reason one cannot couple to 4
with a classical field, and the question of wheth-
er, in principle, the 6 susceptibility of a super-
conductor can be directly measured has been
raised. ' The electrical conductivity' and rnagnet-
ic susceptibility, ' which have been observed near
the super conducting transition temperature, in-
volve convolutions of b, susceptibilities. Recent-
ly, however, Ferrell' has suggested that the 6
susceptibility could be obtained by measuring the
frequency-dependent conductivity of a Josephson

junction in which one side of the junction is near
its transition temperature while the other is well
below its transition temperature. In this case,
the average pair field of the higher transition
temperature superconductor provides the neces-
sary off-diagonal coupling.
Here we explore this idea of using the average

pair-field amplitude of one superconductor to
probe the fluctuation pair field of a second metal
at temperatures above its superconducting transi-
tion temperature. We show that a measurement
of the dc I-V characteristic can provide a direct
determination of frequency and wave-vector de-
pendence of the 6 susceptibility. The frequency
is set by the bias voltage and the wave vector is
determined by the application of a magnetic field
parallel to the junction interface. Whether this
proposed experiment will in fact provide a useful
probe of the 6, fluctuations depends critically
upon the ability to fabricate strongly coupled tun-
nel junctions. Some estimates of the parameters
which enter this type of measurement are dis-
cussed in the conclusion.
Although a direct microscopic calculation

starting from the tunneling Hamiltonian can be
carried out, the following phenomenological ap-
proach introduced by Ferrell' provides more in-
sight into the underlying physics. In particular

1052

Tunnel junction between S and S’ 
with Tc(S) < T < Tc(S’)

Scalapino, PRL 24, 1052 (1970) 
Ferrell, Low Temp. Phys. 1, 423 (1969)

Δ
✕

✕

SS’

V

I

Junction pair tunneling current 
 

Ginzburg-Landau (ladder) approximation 

 

 

Generally 
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Superconductivity in 2D Hubbard Model: Summary

‣ Cluster dynamical mean field theory finds robust d-wave superconductivity in 

the doped 2D Hubbard model (as well as a pseudogap) 

‣ The pairing interaction carries spin S=1, increases with momentum transfer, 

and its dynamics reflects the spin fluctuation spectrum 

‣ In the overdoped region, the superconducting instability arises from the 
conventional Cooper log divergence of the pair propagator 

‣ In the underdoped pseudogap region, the Cooper log instability is absent, 
and superconductivity arises from an increase in the pairing interaction as the 

temperature is lowered and the development of long range phase coherence
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