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high-temperature superconductors

be the most important open problem in the understanding of quantum
materials, and it is here that radically new ideas, including those derived
from recently developed non-perturbative studies in string theory, may
be useful.

More unique to the copper oxides is the behaviour observed in a range
of temperatures immediately above Tc in what is referred to as the
‘pseudogap’ regime. It is characterized by a substantial suppression of the
electronic density of states at low energies that cannot be simply related to
the occurrence of any form of broken symmetry. Although much about
this regime is still unclear, convincing experimental evidence has recently
emerged that there are strong and ubiquitous tendencies towards several
sorts of order or incipient order, including various forms of charge-
density-wave, spin-density-wave, and electron-nematic order. There is
also suggestive, but far from definitive, evidence of several sorts of novel
order—that is, never before documented patterns of broken symmetry—
including orbital loop current order and a spatially modulated super-
conducting phase referred to as a ‘pair-density wave’. There are many
fascinating aspects of these ‘intertwined orders’ that remain to be under-
stood, but their existence and many aspects of their general structure were
anticipated by theory7. Superconducting fluctuations also have an important
role in part of this regime, although to an extent that is still much debated.

The high-temperature superconducting phase itself has a pattern of
broken symmetry that is distinct from that of conventional superconduc-
tors. Unlike in conventional s-wave superconductors, the superconduct-
ing wavefunction in the copper oxides has d-wave symmetry8,9, that is, it
changes sign upon rotation by 90u. Associated with this ‘unconventional
pairing’ is the existence of zero energy (gapless) quasiparticle excitations
at the lowest temperatures, which make even the thermodynamic prop-
erties entirely distinct from those of conventional superconductors (which
are fully gapped). The reasons for this, and its relation to a proximate anti-
ferromagnetic phase, are now well understood, and indeed were also anti-
cipated early on by some theories10–12. However, while various attempts

to obtain a semiquantitative estimate of Tc have had some success13, there
are important reasons to consider this problem still substantially unsolved.

Highly correlated electrons in the copper oxides
The chemistry of the copper oxides amplifies the Coulomb repulsions
between electrons. The two-dimensional copper oxide layers (Fig. 3) are
separated by ionic, electronically inert, buffer layers. The stoichiometric
‘parent’ compound (Fig. 2, zero doping) has an odd-integer number of
electrons per CuO2 unit cell (Fig. 3). The states formed in the CuO2 unit
cells are sufficiently well localized that, as would be the case in a collec-
tion of well-separated atoms, it takes a large energy (the Hubbard U) to
remove an electron from one site and add it to another. This effect pro-
duces a ‘traffic jam’ of electrons14. An insulator produced by this classical
jamming effect is referred to as a ‘‘Mott insulator’’15. However, even a
localized electron has a spin whose orientation remains a dynamical degree
of freedom. Virtual hopping of these electrons produces, via the Pauli
exclusion principle, an antiferromagnetic interaction between neighbour-
ing spins. This, in turn, leads to a simple (Néel) ordered phase below room
temperature, in which there are static magnetic moments on the Cu sites
with a direction that reverses from one Cu to the next16,17.

The Cu-O planes are ‘doped’ by changing the chemical makeup of
interleaved ‘charge-reservoir’ layers so that electrons are removed (hole-
doped) or added (electron-doped) to the copper oxide planes (see the
horizontal axis of Fig. 2). In the interest of brevity, we will confine our
discussion to hole-doped systems. Hole doping rapidly suppresses the
antiferromagnetic order. At a critical doping of pmin, superconductivity
sets in, with a transition temperature that grows to a maximum at popt,
then declines for higher dopings and vanishes for pmax (Fig. 2). Materials
with p , popt are referred to as underdoped and those with popt , p are
referred to as overdoped.

It is important to recognize that the strong electron repulsions that
cause the undoped system to be an insulator (with an energy gap of 2 eV)
are still the dominant microscopic interactions, even in optimally doped
copper oxide superconductors. This has several general consequences. The
resulting electron fluid is ‘highly correlated’, in the sense that for an elec-
tron to move through the crystal, other electrons must shift to get out of
its way. In contrast, in the Fermi liquid description of simple metals, the
quasiparticles (which can be thought of as ‘dressed’ electrons) propagate
freely through an effective medium defined by the rest of the electrons.
The failure of the quasiparticle paradigm is most acute in the ‘strange metal’
regime, that is, the ‘normal’ state out of which the pseudogap and the
superconducting phases emerge when the temperature is lowered. None-
theless, in some cases, despite the strong correlations, an emergent Fermi
liquid arises at low temperatures. This is especially clear in the overdoped
regime (Fig. 2). But recently it has been shown that even in underdoped
materials, at temperatures low enough to quench superconductivity by
the application of a high magnetic field, emergent Fermi liquid behaviour
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Figure 2 | Phase diagram. Temperature versus hole doping level for the
copper oxides, indicating where various phases occur. The subscript ‘onset’
marks the temperature at which the precursor order or fluctuations become
apparent. TS, onset (dotted green line), TC, onset and TSC, onset (dotted red line for
both) refer to the onset temperatures of spin-, charge and superconducting
fluctuations, while T* indicates the temperature where the crossover to the
pseudogap regime occurs. The blue and green regions indicate fully developed
antiferromagnetic order (AF) and d-wave superconducting order (d-SC)
setting in at the Néel and superconducting transition temperatures TN and Tc,
respectively. The red striped area indicates the presence of fully developed
charge order setting in at TCDW. TSDW represents the same for incommensurate
spin density wave order. Quantum critical points for superconductivity and
charge order are indicated by the arrows.
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Figure 3 | Crystal structure. Layered copper oxides are composed of CuO2

planes, typically separated by insulating spacer layers. The electronic structure
of these planes primarily involves hybridization of a 3dx2 { y2 hole on the
copper sites with planar-coordinated 2px and 2py oxygen orbitals.
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stood, but their existence and many aspects of their general structure were
anticipated by theory7. Superconducting fluctuations also have an important
role in part of this regime, although to an extent that is still much debated.
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broken symmetry that is distinct from that of conventional superconduc-
tors. Unlike in conventional s-wave superconductors, the superconduct-
ing wavefunction in the copper oxides has d-wave symmetry8,9, that is, it
changes sign upon rotation by 90u. Associated with this ‘unconventional
pairing’ is the existence of zero energy (gapless) quasiparticle excitations
at the lowest temperatures, which make even the thermodynamic prop-
erties entirely distinct from those of conventional superconductors (which
are fully gapped). The reasons for this, and its relation to a proximate anti-
ferromagnetic phase, are now well understood, and indeed were also anti-
cipated early on by some theories10–12. However, while various attempts

to obtain a semiquantitative estimate of Tc have had some success13, there
are important reasons to consider this problem still substantially unsolved.

Highly correlated electrons in the copper oxides
The chemistry of the copper oxides amplifies the Coulomb repulsions
between electrons. The two-dimensional copper oxide layers (Fig. 3) are
separated by ionic, electronically inert, buffer layers. The stoichiometric
‘parent’ compound (Fig. 2, zero doping) has an odd-integer number of
electrons per CuO2 unit cell (Fig. 3). The states formed in the CuO2 unit
cells are sufficiently well localized that, as would be the case in a collec-
tion of well-separated atoms, it takes a large energy (the Hubbard U) to
remove an electron from one site and add it to another. This effect pro-
duces a ‘traffic jam’ of electrons14. An insulator produced by this classical
jamming effect is referred to as a ‘‘Mott insulator’’15. However, even a
localized electron has a spin whose orientation remains a dynamical degree
of freedom. Virtual hopping of these electrons produces, via the Pauli
exclusion principle, an antiferromagnetic interaction between neighbour-
ing spins. This, in turn, leads to a simple (Néel) ordered phase below room
temperature, in which there are static magnetic moments on the Cu sites
with a direction that reverses from one Cu to the next16,17.

The Cu-O planes are ‘doped’ by changing the chemical makeup of
interleaved ‘charge-reservoir’ layers so that electrons are removed (hole-
doped) or added (electron-doped) to the copper oxide planes (see the
horizontal axis of Fig. 2). In the interest of brevity, we will confine our
discussion to hole-doped systems. Hole doping rapidly suppresses the
antiferromagnetic order. At a critical doping of pmin, superconductivity
sets in, with a transition temperature that grows to a maximum at popt,
then declines for higher dopings and vanishes for pmax (Fig. 2). Materials
with p , popt are referred to as underdoped and those with popt , p are
referred to as overdoped.

It is important to recognize that the strong electron repulsions that
cause the undoped system to be an insulator (with an energy gap of 2 eV)
are still the dominant microscopic interactions, even in optimally doped
copper oxide superconductors. This has several general consequences. The
resulting electron fluid is ‘highly correlated’, in the sense that for an elec-
tron to move through the crystal, other electrons must shift to get out of
its way. In contrast, in the Fermi liquid description of simple metals, the
quasiparticles (which can be thought of as ‘dressed’ electrons) propagate
freely through an effective medium defined by the rest of the electrons.
The failure of the quasiparticle paradigm is most acute in the ‘strange metal’
regime, that is, the ‘normal’ state out of which the pseudogap and the
superconducting phases emerge when the temperature is lowered. None-
theless, in some cases, despite the strong correlations, an emergent Fermi
liquid arises at low temperatures. This is especially clear in the overdoped
regime (Fig. 2). But recently it has been shown that even in underdoped
materials, at temperatures low enough to quench superconductivity by
the application of a high magnetic field, emergent Fermi liquid behaviour
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Figure 2 | Phase diagram. Temperature versus hole doping level for the
copper oxides, indicating where various phases occur. The subscript ‘onset’
marks the temperature at which the precursor order or fluctuations become
apparent. TS, onset (dotted green line), TC, onset and TSC, onset (dotted red line for
both) refer to the onset temperatures of spin-, charge and superconducting
fluctuations, while T* indicates the temperature where the crossover to the
pseudogap regime occurs. The blue and green regions indicate fully developed
antiferromagnetic order (AF) and d-wave superconducting order (d-SC)
setting in at the Néel and superconducting transition temperatures TN and Tc,
respectively. The red striped area indicates the presence of fully developed
charge order setting in at TCDW. TSDW represents the same for incommensurate
spin density wave order. Quantum critical points for superconductivity and
charge order are indicated by the arrows.
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planes, typically separated by insulating spacer layers. The electronic structure
of these planes primarily involves hybridization of a 3dx2 { y2 hole on the
copper sites with planar-coordinated 2px and 2py oxygen orbitals.
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(Keimer et al., Nature 15)

typical structure generic phase diagram



modeling high-Tc SCs

Hubbard model

[RevModPhys.66.763]

[RevModPhys.78.17]

Three-band Single-band

Motivation: superconductivity in cuprates.

[RevModPhys.78.17]

Experimental phase diagram:

● Ground state of Hubbard model

● SC in the Hubbard model

● Ground state and SC in t’-Hubbard model on 4-leg cylinder

Outline

Hubbard model

[RevModPhys.66.763]

[RevModPhys.78.17]

Three-band Single-band

Motivation: superconductivity in cuprates.

[RevModPhys.78.17]

Experimental phase diagram:

● Ground state of Hubbard model

● SC in the Hubbard model

● Ground state and SC in t’-Hubbard model on 4-leg cylinder

Outline

„complete“ description unfeasible and probably uninformative

modeling to capture essential concepts and mechanism

„a theory should be as simple as possible, but not simpler“ 

single-band Hubbard model:  
square lattice, hole doping, nearest neighbor hopping, on-site repulsion



too simple?

Hubbard model

[RevModPhys.66.763]

[RevModPhys.78.17]

Three-band Single-band

Motivation: superconductivity in cuprates.

[RevModPhys.78.17]

Experimental phase diagram:

● Ground state of Hubbard model

● SC in the Hubbard model

● Ground state and SC in t’-Hubbard model on 4-leg cylinder

Outline
antiferromagnetism?

pseudogap behavior? previous talks!

in this talk: at T=0

presence of stripes?

presence of power-law d-wave superconducting correlations? 
(„superconducting order“) 

„complexification“ of Hubbard model

t’=0: no next-nearest neighbor hopping

t’ non-zero

ultracold atom experiments cannot do t′ ≠ 0



naive picture of stripes & SC

  

Dope the AFM

AFM order Dope a hole

hopping

High energy

To lower the energy:

1. Superconductivity: two holes hop together

2. Stripe: holes line up in rows / columns

Superconductivity Stripe

competition of hopping and 
interaction (AFM)

lowering of energy by

correlated (pair) hopping 
(forming SC at low T)

stripe formation: 
high hole density 
low magnetic moment cooperation or competition?



enormous amount of studies …

uniform d-wave superconductor

[Gros, et al., PRB 38, 931 (1988)]

[Halboth, et al., PRL 85, 5162 (2000)]

[Maier, et al., PRL 95, 237001 (2005)]

[Sénéchal, et al., PRL 94, 156404 (2005)]

[Gull, et al., PRL 110, 216405 (2013)]

……...and a lot of more!

new orders: CDW+SDW

[Zaanen, et al., PRB 40, 7391 (1989)]

[Poilblanc, et al., PRB 39, 9749 (1989)]

[White, et al., PRL 91, 136403 (2003)]

[Hager, et al., PRB 71, 075108 (2005)]

[Chang et al., PRL 104, 116402 (2010)]

……...and a lot of more!

phase separation

[Misawa, et al., PRB 90, 115137 (2014)]

[Otsuki, et al., PRB 90, 235132 (2014)]

……...and a lot of more!

[Raczkowski, et al., Phys. Stat. Sol. 376 (2003)]

[Miyazaki, et al., J. Phys. Soc. Jpn. 73, 1643 (2004)]

……...and a lot of more!

Introduction – 2D Hubbard model

What is the ground state under doping?

All induced by the competing 

between t and U



back to the drawing board: t’=0

(Zheng, Chung et al., Science 358, 1155 (2017)

Collaboration

Focus on the same parameters

using different methods:

AFQMC, DMET, DMRG, iPEPS

DMRG

iPEPS

AFQMC

DMET

U = 8t,  1/8 hole doping

B. Zheng, C. Chung*, et al., Science 358, 1155 (2017)

Collaboration

Focus on the same parameters

using different methods:

AFQMC, DMET, DMRG, iPEPS

DMRG

iPEPS

AFQMC

DMET

U = 8t,  1/8 hole doping

B. Zheng, C. Chung*, et al., Science 358, 1155 (2017)

each numerical method has its own methodological shortcomings

believe only results where methods mutually support each other



methods overview
Uncontrolled error in each method

doped 2D 
Hubbard model

DMRG

DMET

iPEPS

AFQMC

variational size entanglement preferred U/t
uncontrolled 

error

AFQMC NO finite NO small constraint error

DMET NO ∞ YES small cluster size

DMRG YES finite YES large cylinder width

iPEPS YES ∞ YES large cluster size

(Zheng, Chung et al., Science 358, 1155 (2017)



ground state energies at doping 1/8

(Zheng, Chung et al., Science 358, 1155 (2017)  

Ground state energy with different methods

Bo-Xiao Zheng, Chia-Min Chung, Philippe Corboz, Georg Ehlers, Ming-Pu Qin, Reinhard M. 
Noack, Hao Shi, Steven R. White, Shiwei Zhang, Garnet Kin-Lic Chan, Science 358, 1155 (2017)



stripe phase as ground state

Ground state – stripes

U = 8t,  1/8 hole doping

What is the ground state → stripes

hole density

spin moment

● Stripe order:
coexistence of SDW and CDW

● Holes line up in one direction

● Hole stripes as domain walls of AFM

B. Zheng, C. Chung*, et al., Science 358, 1155 (2017)Hubbard model – stripes

simulations: 
almost degenerate stripes 

pure d-wave quite a bit higher in energy

λ = 5...8

● Ground state: λ=8

● Nearly degenerate for λ between 5 and 8

Hubbard model – stripes

La
2-x

Sr
x
CuO

4

[Tranquada, Nature 375, 15 (1995)]

Experiment → λ=4 stripes

Small perturbation can change the ground state

● Ground state: λ=8

● Nearly degenerate for λ between 5 and 8

Hubbard model – stripes

La
2-x

Sr
x
CuO

4

[Tranquada, Nature 375, 15 (1995)]

Experiment → λ=4 stripes

Small perturbation can change the ground state

experiment:  (half-filled stripe)λ = 4



„pure“ (t’=0) Hubbard model

so far: focus on stripe order

d-wave pairing order?

superconducting correlations exist (power laws…)? 
 
 

stripes and SC: cooperation or competition?

AFQMC DMRG

● Question:

● Is there superconducting order coexisting or competing with stripes?

➔ Use two complementary methods: AFQMC and DMRG

Mingpu Qin H. Shi E. Vitali S. Zhang C. Hubig U. Schollwöck S.R. White

Superconductivity in stripes

C.-M. Chung

AFQMC meets DMRG

Qin, Chung, …, US, White, Zhang, arXiv:1910.08931

● Question:

● Is there superconducting order coexisting or competing with stripes?

(much more difficult than spin and charge orders...)

Superconductivity in stripes

● No:

[S. Zhang, et al., Phys. Rev. Lett. 78, 4486 (1997)]

[M. Guerrero, et al., Phys. Rev. B 59, 1706 (1999)]

[C. T. Shih, et al., Phys. Rev. Lett. 81, 1294 (1998)]

● Yes:

[Andrew S. Darmawan, et al., Phys. 

Rev. B 98, 205132 (2018)]

[Vanhala, et al., PRB 97, 075112 (2018)]

[Zhao, et al., PRB 96, 085103 (2017)]

...many more



DMRG/MPS in two dimensions
map 2D lattice to 1D (vertical) „snake“ with long-ranged interactions

horizontally: ansatz obeys area law: easy axis, long at linear cost

vertically: ansatz violates area law: hard axis, long at exponential cost

consider long cylinders of small circumference c: mixed BC

vertically OBC
vertically PBC: extra cost!

circumference c

length L

S ∼ log2 D
→ D ∼ 2L



AFQMC

ground state by imaginary time evolution of trial state  
 

  using Slater determinants

evolution requires quadratic Hamiltonian: Hubbard-Stratonovich! 
 

auxiliary fields are sampled stochastically: quantum Monte Carlo! 

⟨0 |O |0⟩
⟨0 |0⟩

= lim
β→∞

⟨ψT |e−βHOe−βH |ψT⟩
⟨ψT |e−β2H |ψT⟩

e−ΔτUn↑n↓ = e−ΔτU(n↑+n↓−1) ∑
x=±1

1
2 eγx(n↑+n↓−1)

  

Minus sign problem

“Solutions”:

1. Engineering special model Hamiltonians. Need to be relevant to real 
    physical systems.

2. Deal with the sign problem with certain approximation. Diffusion or
    constrained path QMC.

4 x 4, n = 0.875, U = 8 sign problem!!!



constrained path-AFQMC

  

Results with constraint

4 x 4, n = 0.875, U = 8

  

Introduce a constraint to control the sign

Projection time

Node of the exact ground state

Sign problem results from the cancellation of positive and negative
trajectories.

constrained path AFQMC:

 Keep only the positive trajectories, approximate the node structure
 with a trial wave-function.

Shiwei Zhang, J. Carlson, J.E. Gubernatis, Phys. Rev. Lett. 74, 3652 (1995) 

sign problem:  
exact analytical cancellation  
not captured by sampling

keep only the positive-weight paths 
(constrained path)

approximate nodal structure by 
trial wave function

Zhang, Carlson, Gubernatis, PRL 1995



algorithmic improvements and checks

single-site DMRG: approximately 4x more efficient 
 

convergence to true state

error monitoring: two-site variance 

CP-AFQMC

BCS-type trial wave function

OP from total energy calculations 

our strategy

quasiexact DMRG results on cylinders up to width 6 check AFQMC

AFQMC then taken to the “thermodynamic limit“

σ1 σL σ1 σL

Hubig, McCulloch, US, Wolf, PRB 2015

Hubig, Haegeman, US, PRB 2018

Vitali, Rosenberg, Zhang, PRA 2019



what we measure

apply bulk (global) pairing field and observe pairing response 
 
 
 

             

apply boundary (edge) pairing field and observe decay of pairing in bulk 
 

   only on edge

calculate decay of pair-pair correlations 
 

Δij = ⟨Δ̂ij + Δ̂†
ij⟩/2 Hp = − ∑

⟨ij⟩

hij
p

1
2 (Δ̂ij + Δ̂†

ij)

Hp = − ∑
⟨ij⟩

hij
p

1
2 (Δ̂ij + Δ̂†

ij)

Pi′ j′ ,ij = ⟨Δ̂†
i′ j′ 

Δ̂ij⟩

● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931

nearest-neighbor pairing

pairing order parameter

bulk pairing field
taken to zero



edge pairing field

bulk decay and correlation decay

● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931

● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931

● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931

● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931

pair-pair correlations (no field)

up to 70,000 DMRG states
(SU(2) reps vs. U(1))



bulk pairing field: AFQMC/DMRG 

Validate on finite sizes that the 

constraint error in AFQMC is small

d-wave field of amplitude h
p

SC order in the TD limit (AFQMC) – the constraint errors
Validate on finite sizes that the 

constraint error in AFQMC is small

d-wave field of amplitude h
p

SC order in the TD limit (AFQMC) – the constraint errors

ground state energies of cylinders with applied pairing fields

pairing correlator via Hellmann-Feynman theorem (derivative)

Doping dependence

● Apply d-wave pairing 7eld of amplitude 0.05 on the whole system

(Strong enough to induce SC order)

(Not strong enough to drive the system far away from the ground states)

U = 8t

M. Qin, Chia-Min Chung*, arXiv:1910.08931

response to pairing field  
strongest around doping 1/8



bulk pairing fields

Superconductivity in stripes

Prob 3: Apply d-wave pairing field h
p 
on the whole system,

     and see the pairing order when h
p
→0

finite sizes thermodynamic limit

No long-range SC in thermodynamic limit

M. Qin, Chia-Min Chung*, arXiv:1910.08931

Superconductivity in stripes

Prob 3: Apply d-wave pairing field h
p 
on the whole system,

     and see the pairing order when h
p
→0

finite sizes thermodynamic limit

No long-range SC in thermodynamic limit

M. Qin, Chia-Min Chung*, arXiv:1910.08931
order of extrapolations matters

for each pairing field, take TD limit

then take field to zero

no pairing order survives



stripe vs pairing: in competition
Competing between stripe order and SC order

stronger pairing due to pairing field suppresses stripe amplitude



U=4, doping 1/8

U = 4t,  1/8 hole doping

48�4

● Stripe order disappear

● Both exponential and 
power-law decays are 
reasonable

Superconductivity in stripes M. Qin, Chia-Min Chung*, arXiv:1910.08931

pair-pair correlation on 48x4 cylinder

stripe order disappears (not shown)

both exponential and power-law reasonable



U=4, doping 1/8
Superconductivity in stripes

U = 4t,  1/6 hole doping Apply d-wave pairing field h
p 
on the whole 

system, and see the pairing order when h
p
→0

Thermodynamic limit

Maybe weak SC order 
for U=4

M. Qin, Chia-Min Chung*, arXiv:1910.08931

bulk pairing fields



t’=0 summary

U=8, doping 1/8: 

period 8 stripes

d-wave pairing

no long-ranged superconductivity 

U=4, doping 1/6:

no stripes

possibly very weak superconductivity



switching on t’

electronic structure suggests weak negative t’ (-0.2, -0.25, -0.33,…)

does it generate power-law SC correlations?

AFQMC DMRG

● Question:

● Is there superconducting order coexisting or competing with stripes?

➔ Use two complementary methods: AFQMC and DMRG

Mingpu Qin H. Shi E. Vitali S. Zhang C. Hubig U. Schollwöck S.R. White

Superconductivity in stripes

C.-M. Chung

our DMRG/AFQMC results:
Qin, Chung, …, US, White, Zhang,  work in progress …



iPEPS at t’=-0.2

t’-Hubbard model

[B. Ponsioen, et al., arXiv: 1907.01909 (2019)]

t’=-0.2, iPEPS
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FIG. 1. Example stripe with a period 6 in the charge order and
period 12 in the spin order obtained with iPEPS using a 12 × 2
supercell, for U/t = 10, t ′/t = 0, D = 12. The sizes of the red disks
and the black arrows scale with the local hole density and the local
magnetic moment, respectively, with average values indicated in the
top and bottom rows. The width of a bond is proportional to the local
singlet pairing amplitude on the corresponding bond, with different
signs in x and y direction represented by the two different colors.

III. METHOD

For our simulations, we apply the fermionic implementa-
tion [87–89] of iPEPS—a tensor network variational ansatz
[81,82,90,91] for 2D lattice systems in the thermodynamic
limit—which has gained recognition as a reliable and versatile
numerical technique for 2D strongly correlated systems (see,
e.g., Refs. [73,92–100] and references therein). The ansatz
consists of a supercell of tensors that is periodically repeated
on the lattice, with one tensor per lattice site. Each tensor has
one physical index carrying the local Hilbert space of a lattice
site and four auxiliary indices connecting neighboring tensors.
The accuracy of the ansatz can be systematically controlled by
the bond dimension D of the auxiliary indices. Translationally
invariant states can be represented by an iPEPS with a single-
tensor supercell. If translational symmetry is spontaneously
broken, a larger supercell compatible with the symmetry
breaking pattern is required.

For technical details on iPEPS we refer to Refs. [87,101].
For the experts, we note that the optimization of the iPEPS
wave function (i.e., finding the optimal variational parame-
ters) is done using an imaginary time evolution based on a
3-site cluster update [102,103], in which the 2D wave function
is only taken into account in an effective way during the
optimization [104]. This allows us to reach large bond dimen-
sions of up to D = 18 even in the presence of a next-nearest
neighbor hopping. Observables are computed by contracting
the two-dimensional tensor network using the corner transfer
matrix method [105,106] generalized to arbitrary supercell
sizes [73,107]. To increase the efficiency, we exploit Abelian
U (1) symmetries of the model [108,109].

To identify the ground state, energies of various compet-
ing low-energy states obtained with different supercell sizes
are compared, including a uniform d-wave SC state with
coexisting antiferromagnetic (AF) order, obtained in a 2 × 2
supercell, and stripe states with different periods in the charge
order. Stripes with odd periods 3, 5, 7 (designated W3, W5,
W7) are described by 3 × 2, 5 × 2, and 7 × 2 supercells,
respectively. For even period stripes (W4, W6, W8), 8 × 2,
12 × 2, and 16 × 2 supercells are used, since in these cases
the period of the spin order is twice the period of the charge
order due to the π -phase shift in the AF order across the sites
with maximal hole density.

An example stripe with period 6 (W6) is shown in Fig. 1,
which visualizes the local hole density δi = 1 − ni and the
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FIG. 2. Phase diagram for U/t = 10, δ=1/8, for a fixed bond
dimension D = 12 as a function of the next-nearest neighbor hop-
ping strength t ′/t . Each region in the phase diagram is defined
by the corresponding lowest energy state, including stripe states
with periods between 3 and 8 (W3–W8) or a uniform d-wave SC
state (U).

local magnetic moment sz
i = 1

2 〈n̂i↑ − n̂i↓〉 on each site i, and
the singlet pairing amplitude #s

i j = 〈ĉi↑ĉ j↓ − ĉ j↑ĉi↓〉/
√

2 be-
tween neighboring sites i and j within the supercell.

IV. RESULTS

A. Shift of stripe period as a function of t ′/t

Previously, in Ref. [58], it was found that for U/t = 8,
δ = 1/8, and t ′ = 0 stripe states have lower energies than the
uniform d-wave SC state. A close competition in energies
between stripes with periods 5 to 8 was found, with a slight
preference towards the period 8 stripe (W8), while the exper-
imentally observed period 4 stripe (W4) was clearly higher in
energy. In the following, we study the effect of an additional
next-nearest neighbor hopping on the preferred stripe period,
using iPEPS simulations for a fixed bond dimension D = 12.

In Fig. 2 we present the energies of the competing states
and the resulting phase diagram for U/t = 10, δ=1/8 as a
function of t ′/t . In agreement with the previous results for
U/t = 8 [58], we find several closely competing stripe states
with periods 5–8 around t ′/t ∼ 0. For t ′/t = 0, we find a
slight preference towards W6/W7 stripes instead of the W8
stripe [58]. This can be attributed to the larger value of U/t
used here, leading to favor smaller periods [58], and also to
the finite bond dimension D = 12, which may lead to slight
relative shifts in the energies.

For negative t ′, as we increase |t ′/t |, we observe a gradual
shift of the preferred stripe period to smaller periods. In
particular, the period 4 (W4) stripe becomes the ground state
in a large region of the phase diagram, between −0.43 !
t ′/t ! −0.09 for D = 12. We will discuss the D dependence
of the W4 phase boundaries in the next section. We note that
a shift to smaller stripe periods was also found recently with
DMRG on width-4 cylinders [62,86] and VMC [61].

It is interesting to observe that while various stripe peri-
ods are very close in energies for t ′/t = 0, the competition
between several states becomes less strong for negative t ′/t ,
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FIG. 1. Example stripe with a period 6 in the charge order and
period 12 in the spin order obtained with iPEPS using a 12 × 2
supercell, for U/t = 10, t ′/t = 0, D = 12. The sizes of the red disks
and the black arrows scale with the local hole density and the local
magnetic moment, respectively, with average values indicated in the
top and bottom rows. The width of a bond is proportional to the local
singlet pairing amplitude on the corresponding bond, with different
signs in x and y direction represented by the two different colors.

III. METHOD

For our simulations, we apply the fermionic implementa-
tion [87–89] of iPEPS—a tensor network variational ansatz
[81,82,90,91] for 2D lattice systems in the thermodynamic
limit—which has gained recognition as a reliable and versatile
numerical technique for 2D strongly correlated systems (see,
e.g., Refs. [73,92–100] and references therein). The ansatz
consists of a supercell of tensors that is periodically repeated
on the lattice, with one tensor per lattice site. Each tensor has
one physical index carrying the local Hilbert space of a lattice
site and four auxiliary indices connecting neighboring tensors.
The accuracy of the ansatz can be systematically controlled by
the bond dimension D of the auxiliary indices. Translationally
invariant states can be represented by an iPEPS with a single-
tensor supercell. If translational symmetry is spontaneously
broken, a larger supercell compatible with the symmetry
breaking pattern is required.

For technical details on iPEPS we refer to Refs. [87,101].
For the experts, we note that the optimization of the iPEPS
wave function (i.e., finding the optimal variational parame-
ters) is done using an imaginary time evolution based on a
3-site cluster update [102,103], in which the 2D wave function
is only taken into account in an effective way during the
optimization [104]. This allows us to reach large bond dimen-
sions of up to D = 18 even in the presence of a next-nearest
neighbor hopping. Observables are computed by contracting
the two-dimensional tensor network using the corner transfer
matrix method [105,106] generalized to arbitrary supercell
sizes [73,107]. To increase the efficiency, we exploit Abelian
U (1) symmetries of the model [108,109].

To identify the ground state, energies of various compet-
ing low-energy states obtained with different supercell sizes
are compared, including a uniform d-wave SC state with
coexisting antiferromagnetic (AF) order, obtained in a 2 × 2
supercell, and stripe states with different periods in the charge
order. Stripes with odd periods 3, 5, 7 (designated W3, W5,
W7) are described by 3 × 2, 5 × 2, and 7 × 2 supercells,
respectively. For even period stripes (W4, W6, W8), 8 × 2,
12 × 2, and 16 × 2 supercells are used, since in these cases
the period of the spin order is twice the period of the charge
order due to the π -phase shift in the AF order across the sites
with maximal hole density.

An example stripe with period 6 (W6) is shown in Fig. 1,
which visualizes the local hole density δi = 1 − ni and the
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FIG. 2. Phase diagram for U/t = 10, δ=1/8, for a fixed bond
dimension D = 12 as a function of the next-nearest neighbor hop-
ping strength t ′/t . Each region in the phase diagram is defined
by the corresponding lowest energy state, including stripe states
with periods between 3 and 8 (W3–W8) or a uniform d-wave SC
state (U).

local magnetic moment sz
i = 1

2 〈n̂i↑ − n̂i↓〉 on each site i, and
the singlet pairing amplitude #s

i j = 〈ĉi↑ĉ j↓ − ĉ j↑ĉi↓〉/
√

2 be-
tween neighboring sites i and j within the supercell.

IV. RESULTS

A. Shift of stripe period as a function of t ′/t

Previously, in Ref. [58], it was found that for U/t = 8,
δ = 1/8, and t ′ = 0 stripe states have lower energies than the
uniform d-wave SC state. A close competition in energies
between stripes with periods 5 to 8 was found, with a slight
preference towards the period 8 stripe (W8), while the exper-
imentally observed period 4 stripe (W4) was clearly higher in
energy. In the following, we study the effect of an additional
next-nearest neighbor hopping on the preferred stripe period,
using iPEPS simulations for a fixed bond dimension D = 12.

In Fig. 2 we present the energies of the competing states
and the resulting phase diagram for U/t = 10, δ=1/8 as a
function of t ′/t . In agreement with the previous results for
U/t = 8 [58], we find several closely competing stripe states
with periods 5–8 around t ′/t ∼ 0. For t ′/t = 0, we find a
slight preference towards W6/W7 stripes instead of the W8
stripe [58]. This can be attributed to the larger value of U/t
used here, leading to favor smaller periods [58], and also to
the finite bond dimension D = 12, which may lead to slight
relative shifts in the energies.

For negative t ′, as we increase |t ′/t |, we observe a gradual
shift of the preferred stripe period to smaller periods. In
particular, the period 4 (W4) stripe becomes the ground state
in a large region of the phase diagram, between −0.43 !
t ′/t ! −0.09 for D = 12. We will discuss the D dependence
of the W4 phase boundaries in the next section. We note that
a shift to smaller stripe periods was also found recently with
DMRG on width-4 cylinders [62,86] and VMC [61].

It is interesting to observe that while various stripe peri-
ods are very close in energies for t ′/t = 0, the competition
between several states becomes less strong for negative t ′/t ,
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supercells embedded in TD limit

bias results: stabilize different phases

period 4 stripes over wide range of t’

U=10, doping 1/8

d-wave pairing at doping > 0.14



DMRG on width-4 cylinders: t’=-0.25
Hong-Chen Jiang et al., Science 365, 1424 (2019)

t’-Hubbard model

[Jiang et al., Science 365, 1424–1428 (2019)]

Next nearest neighbor hopping t’=-0.25, 4-leg cylinder, DMRG

● stripe wavelength=4

● algebraic decay of SC correlation

C
yx

 correlation is much weaker → why?

t’<0 will induce long-range SC?
problem solved?

U=8, U=12, doping 1/8

period 4 stripes

power-law decay of pair-pair correlations



the special topology of width-4

d-wave pairing on 4-leg cylinder

2D d-wave

Hubbard model (t’=0)

plaque d-wave

d-wave pairing on 4-leg cylinder

2D d-wave

Hubbard model (t’=0)

plaque d-wave

White, Scalapino - late nineties …

Orwell, Animal Farm: „Four legs good, two legs bad“

really?

cylinder / surface d-wave 
two-dimensional nature

plaquette d-wave 
one-dimensional nature

two competing types of d-wave pairing correlations feasible

only one of them relevant for the TD limit in 2D



distinguishing d-wave correlations
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t’-Hubbard model on 4-leg cylinder

pair-pair correlation

t’= -0.25, U=8

48×4

1/8 hole doping

plaque d-wave pairing

U=8, t’=-0.25, doping 1/8

decay of pair-pair correlations ⟨Δ†
i′ j′ 

Δij⟩

(Chia-Min Chung, US, Steve White)

d-wave pairing on 4-leg cylinder

2D d-wave

Hubbard model (t’=0)

plaque d-wave

d-wave pairing on 4-leg cylinder

2D d-wave

Hubbard model (t’=0)

plaque d-wave
plaquette: power-law

surface: exponential

width-4 cylinder power-law decay one-dimensional effect …



„asymmetry“ in t’<0 t’-Hubbard model on 4-leg cylinder
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Response of edge pairing field h
p
=0.25. 32×4.

t’-t-J model

[Steven R. White, PRB.60.R753 (1999)]

● t’<0 suppress SC

● t’>0 enhances SC

Effect of t’ on SC

t’<0(>0) suppresses  
(enhances) d-wave correlations

t’<0 on stack plaquettes  
favors „surface“ SC



width-6 cylinders
t’-Hubbard model on 6-leg cylinder
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Orwell, Animal Farm (adapted)  „Six legs good, four legs bad“



philosophy: only believe consistent results from several methods

again, building the DMRG-AFQMC connection

four legs: excellent 
 
 
 
 
 
 
 
 
 

six legs: disagreement! currently exploring why … to be continued!

DMRG and AFQMC

 
If we use only 4-leg cylinders to study the ground state for ƚ͛фϬ, we can detect signals which 
may not have anything to do with the true 2D systems:  
 

 
Therefore, 4-leg cylinders can be fundamentally different from the 2D system. One must 
reach at least 6-leg cylinders to study the pairing properties. In order to determine whether 
long-range order exists in the 2D thermodynamic limit, the scaling analysis carried out in our 
study is absolutely essential and is reqƵired͘ The ǁork bǇ Jiang eƚ al aƚ ƚ͛с-0.25 (which should 
be very similar to the ƚ͛с-0.32 case in Fig 3 above) was solely on 4-leg cylinders. To conclude 
based on it ƚhaƚ ƚhe HƵbbard model ǁiƚh ƚ͛с-0.25 is superconducting would be premature, 
as can be seen from our preliminary results.  
 
Summarizing points (a) and (b) above, we do not believe that the scientific impact of our 
paper should at all be diminished by the publication of Jiang et al in Science. That paper did 
not study ƚ͛сϬ͕ ǁhich is a fƵndamenƚal͕ long-standing question that the present manuscript 
addresses͘ The paper͛s resƵlƚs on ƚ͛фϬ are solelǇ from ϰ-leg cylinders, which are special 
because of the topology and may not be representative of the 2D system. The physics of the 
ƚ͛фϬ case is sƵbƚle͕ and ǁill reqƵire a carefƵl and much more extensive study to reach a 
conclusion with the level of rigor achieved in the present paper. We will return to the last 
point later in this reply.  
 
c). Regarding the AFQMC method, we respectfully cannot agree with the characterization 
that it is not well tested. We are very explicit in the paper about the presence of a possible 
systematic error from controlling the sign problem. This is the reason for the careful, 
painstaking comparisons and benchmark. The accuracy of the method has been 
demonstrated through a large body of work, including multiple community benchmark 
projects ;LeBlanc eƚ al PRX ͛ϭϱ͖ Moƚƚa eƚ al PRX ͛ϭϳ͖ Williams eƚ al͕ arXiǀ͗ϭϵϭϬ͘ϬϬϬϰϱ͕ 
accepƚed bǇ PRX͖ ͙Ϳ. On the Hubbard model, AFQMC has arguably been one of the most 
consistent methods and produced some of the most reliable results to date, including the 
prediction of the spin-density wave and stripe states from 2010 (Ref [51]) which was 
validated by the collaboration of 4 methods in 2017 (Ref [63]). The method has also been 
systematically improved over the years. In this paper, we introduced the approach to turn 
the computation of the pairing order parameter into total energy calculations, for which 
AFQMC is known to be very accurate.  

FigƵre ϯ͘ PreliminarǇ resƵlƚs of ƚhe dͲǁaǀe 
pairing order parameƚer͕  ǁiƚh ƚ͕͛  compƵƚed in ϰͲ
leg cǇlinders͘ A mƵch sƚronger signal for dͲǁaǀe 
pairing ;pƵrple cƵrǀeͿ is seen if one inclƵdes ƚhe 
plaqƵeƚƚe dͲǁaǀe order͕  ǁhich is special ƚo legͲ
ϰ cǇlinders͘ Noƚe ƚhaƚ ƚhe ƚrƵe dͲǁaǀe order 
;blƵe cƵrǀesͿ looks similar ƚo ƚhe ƚ͛сϬ case in 
oƵr paper͘  Also noƚe again eǆcellenƚ agreemenƚ 
beƚǁeen oƵr meƚhods͘    
 

response of pairing to 
pairing field



conclusion

adopt philosophy:  
only believe consistent results from several methods

pure (t’=0) Hubbard model shows period 8 [5…8] stripes 

pure (t’=0) Hubbard model does not show d-wave SC for  
experimentally relevant parameters 

seems insufficient model for high-Tc: cold atom experiments! 
 

switch on t’<0:

iPEPS finds period 4 stripes, pairing order (for larger doping)

DMRG results for width 4 cylinders probably irrelevant

DMRG/AFQMC comparisons not consistent so far


