High Temperature Superconductivity in Dense Hydrogen Systems

Russell J. Hemley

University of Illinois at Chicago Chicago, IL 60607 USA

Quantum Matter: Computation Meets Experiments Aspen Center for Physics - Mar. 10, 2020

OUTLINE

- 1. Background/Context
- 2. Superconductivity and Pressure
- 3. Dense Hydrogen
- 4. Superhydrides
- **5. New Materials**

THEMES

- Hydrogen in Extremes
- Computation/Experiment Synergy
- 'Materials by Design'

1

Materials at High Pressure

Exploring Energy Landscapes in the Search for New Materials and Phenomena

>100's GPa (to ~TPa) ~ eV energies valence electrons

$$P = -\frac{\partial E}{\partial V}$$

EXPERIMENTS COMPRESSION TECHNIQUES

Static

Dynamic

>100's GPa (to ~TPa) ~ eV energies

>100's Mbars (1 Gbar) ~ keV energies

COMPUTATIONS

- Density Functional
- Path Integral, Quantum Monte Carlo
- Structure Search Methods

<text>

Pressure Effects on Superconductors

Sn and In

[Sizoo and Kamerlingh Onnes, *Commun. Phys. Lab. Univ. Leiden* (1925)]

 $HgBa_2Ca_2Cu_3O_{8+\delta}$

 $T_c = 164 K$ (30 GPa)

[Gao *et al*., (1994); Lokshin *et al.* (2002)]

Electrical Conductivity Magnetic Susceptibility X-ray Diffraction

Electrical Conductivity Magnetic Susceptibility X-ray Diffraction Mossbauer Spectroscopy Nuclear Forward Scattering

Low P-T Phase Diagram

Fe_{1.01}Se T_c = 36.7 K (8.9 GPa)

[Medevdev et al., Nature Mat. (2009)]

[Fradkin & Kivelson (2012)]

[Kothapalli et al, Nature Comm. (2016)]

High Pressure and Superconductivity

Superconductivity at Megabar Pressures

Niobium

Sulfur

Boron

300

250

 $T_{c} = 9.8 \text{ K} \text{ at } 80 \text{ GPa}$ (magnet. suscept.) [Struzhkin et al., Phys. Rev. Lett. (1997]

$T_{c} = 17 \text{ K} \text{ at } 160 \text{ GPa}$

(magnet. suscept.) [Struzhkin et al., Nature (1997)] $T_{c} = 11 \text{ K} \text{ at } 250 \text{ GPa}$ (electrical conductivity) [Eremets et al., Science (2001)]

ELEMENT ONE

"Let's start at the very beginning, a very good place to start..."

Starting point

for chemistry

<u>The Sound of Music</u> Rogers and Hammerstein

Metallic and Superconducting Hydrogen VOLUME 3 DECEMBER, 1935 JOURNAL OF CHEMICAL PHYSICS On the Possibility of a Metallic Modification of Hydrogen E. WIGNER AND H. B. HUNTINGTON, Princeton University (Received October 14, 1935) VOLUME 21, NUMBER 26 PHYSICAL REVIEW LETTERS **23 DECEMBER 1968** 0-0 METALLIC HYDROGEN: A HIGH-TEMPERATURE SUPERCONDUCTOR? N. W. Ashcroft Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14850 (Received 3 May 1968) Bardeen-Cooper-Shrieffer (BCS) **Phonon-mediated;** high $\Theta_{\rm D}$ $T_c = 0.85\Theta_{\rm D} \exp(-1/N_0 V),$ > 25 GPa T_c >> 300 K?

Dense Molecular Hydrogen

C-graphene

0.01750

0.03500 0.05250 0.07000 0.08750

0.1050

0.1225 0.1400

Is Hydrogen Metallic at these *P-T* Conditions?

>200 GPa, 77 K [Mao & Hemley, *Science* (1989)]

[Dias & Silvera, Science (2017)]

360 GPa, 100 K [Zha et al., *Phys. Rev. Lett.* (2012)]

Semiconducting/ Semimetallic

۲

Atomic Metallic?

Hydrogen at Higher Pressures

[Babaev et al., *Nature* (2004); *Phys. Rev. Lett.* (2005)]

[Geng et al., Phys. Rep. (2016)]

'Utrahigh' T_c Superconductor (e.g., >700 K)?
Superfluidity/Superconductivity?

Breaking the Bond with Compression and Chemistry

Novel Dense Molecular Compounds

CH₄(H₂)₄ 33.4 wt% H₂ [Somayazulu *et al., Science* (1996); W. Mao *et al. Chem. Phys. Lett.* (2005)]

 $Xe(H_2)_8$

[Somayazulu et al., *Nature Chem.* (2009)]

 $(H_2O)_2H_2$ Quartz-type ice

[Strobel et al., J. Am. Chem. Soc. (2016)]

 $(H_2S)_2H_2$

Al₂Cu type [Strobel et al., *Phys. Rev. Lett.* (2010)] > PRECURSOR TO H₃S

 $Xe_3(N_4)_n$

[Somayazulu et al., in preparation]

Drozdov et al. arXiv (2016)]

Success of Structure Search Methods

Predicted Very High-T_c Superconductors at 100-300 GPa

[e.g., Ma, Oganov, Pickard, Zurek]

[Zhong *et al., PRL* (2010)]

CaH₆ T_c = 235 K

[Wang et al., PNAS (2012)]

[Jin et al., PNAS (2010)]

ΥH₆ T_c = 251 K

[Li et al., Sci. Rep. (2015)]

[Li et al., PNAS (2010)]

[Lu et al., Phys. Rev. B (2016)]

DFT Structure-Search (CALYPSO)

[Liu et al., PNAS (2017)]

Higher Hydrides? Rare Earth – Hydrogen System 0 0 AH₂ AH_4 0 \bigcirc

AH₃

AH₆

Predicted La and Y Superhydrides

'Novel' Clathrate Structure Type

B 1,078,1078 1,078 1,078 1,076 2,1,1,5 0 0

LaH₁₀

Atomic H

FCC-LaH₁₀ at 300 GPa H-H distances ~ 1.1 A

1.03

CsIV

CsIV at 300 GPa

0.75

0.5

Predicted Stable >500 GPa

[McMahon et al., *Rev. Mod. Phys*. (2012)]

> Electron Localization Function

similar s-p hybridization

[Liu *et al., Phys. Rev. B* (2018)]

LaH₁₀

Predicted La and Y Superhydride Superconductors

Synthesis of Lanthanum Superhydride

Lanthanum Superhydride Resistance Measurements

SCHEMATIC

OPTICAL MICROSCOPY

X-RAY RADIOGRAPHY

[Hemley et al., Superconductivity and Pressure, Madrid (May 2018)] [Somayazulu et al., Phys. Rev. Lett. (2019)]

Lanthanum Superhydride Resistance Measurements

Subsequent Experimental Work

Phase Transition and Dynamics in LaH₁₀

Displacive Transition

[Geballe et al., Angew. Chem. (2018)]

Quantum (PI) MD

(a) 300 K

(b) 800 K

- Highly quantum H-lattice: rms $\delta H = 20\%$ of r(H-H)
- Sublattice melting at higher temperature [Liu et al., Phys. Rev. B (2018)]
- 'Giant' H ZPM (H₃S): breakdown of Migdal

[Jarlborg & Bianconi, Sci. Rep. (2016)]

[Errea et al., Nature (2020)]

- Strongly anharmonic in *Fm3m*
- Lowers *Fm3m-R3m* transition pressure

[Liu et al., Phys. Rev. B (2018)]

Recent Developments: Other Superhydrides

Emerging Systematics

- H-cage structures
 - Higher T_c in larger cages
- Electron-doping of H lattice
 - La δ + charge transfer to H cages
 - Laδ- mixed H⁻H⁺ [Liu et al., *Phys. Rev. B* (2019)]
 - Why La (Y, rare earths)?

[Liu et al., *PNAS* (2017); Peng et al., *Phys. Rev. Lett.* (2017); Zurek and Bi, *J. Chem. Phys.* (2019)]

- Dominant role of H
 - All high T_c hydrides [Quan et al., arXiv (2019)]
- Fully quantum system
 - Phase stability
 - [Liu et al., *Phys. Rev. B* (2018); Errea et al. *Nature* (2020)] - Pairing

[Jarlborg & Bianconi, Sci.. Rep. (2016)]

Towards Hot Superconductivity

Ternary and More Complex Hydrides

S-Se-H, Li-La-H...

C-'X'-H Sodalite-based

NaC₆ Predicted T_c = 116 K 1 bar stability

[Lu et al., Phys. Rev. B (2016)]

C-S-H Ternary: Structure Search

CH₄-H₃S (CSH₇)

Hydride Perovskites: A New Class of High T_c Superconductors?

H₃S Im3m

CH₄-H₃S (CSH₇) R3m

Hydride Perovskites: A New Class of High T_c Superconductors?

Стса

Pnma

H₃S Hydride Perovskites

From H-S to H-O:

'The Shape of Water' Under Pressure

Extreme Hydrogen-rich Quantum Materials: H₃O

Structure Search / DFT Methods

Explains anomalous magnetic fields: 'thin-shell' dynamos

[Huang et al., *PNAS* (2020)]

Towards Hot Superconductivity/Superfluidity in Dense Hydrogen

PRL 95, 105301 (2005)

PHYSICAL REVIEW LETTERS

week ending 2 SEPTEMBER 2005

Observability of a Projected New State of Matter: A Metallic Superfluid

E. Babaev Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

A. Sudbø Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

N. W. Ashcroft Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA (Received 13 June 2005; published 1 September 2005)

CONCLUSIONS AND OUTLOOK

- 1. High pressure studies are revealing a variety of phenomena in quantum materials over a range of *P-T* conditions as a result of the close synergy between experiments and computation
- 2. Recent experiments on hydrogen provide evidence for a series of transitions to metallic phases at >300 GPa based on both static and dynamic compression, in good agreement with theory
- 3. Studies of hydrogen-rich simple hydrides reveal high $T_{\rm c}$ approaching room temperature, and new classes of novel phases continue to be found.

ACKNOWLEDGEMENTS

Principal Collaborators

Maddury Somayazulu (ANL) **Muhtaer Ahart (UIC)** Zachary Geballe (Carnegie) Hanyu Liu (Jilin) **Ravhi Kumar (UIC)** Ajay Mishra (BARC) Maria Baldini (Fermilab) Yue Meng (ANL) Viktor Struzhkin (Carnegie) Ivan Naumov (Howard) N. W. Ashcroft (Cornell) **Roald Hoffmann (Cornell)**

Financial Support

Yanming Ma (Jilin) Wenwen Cui (JNU) **Zhenxian Liu (UIC) Eric Rod (ANL) Jesse Smith (ANL) Rich Ferry (ANL) Curtis Kenney-Benson (ANL) Eva Zurek (Buffalo)** John Tse (Saskatoon) **Reini Boehler (ORNL) Ronald Cohen (Carnegie)** Siyu Lu (Jilin) **Stan Tozer (FSU) Peihao Huang (Jilin)**

THANK YOU!