

European Research Council Established by the European Commission

FONDS NATIONAL SUISSE DE LA RECHERCHE SCIENTIFIQUE

Quantum-optical devices with interacting Fermi gases

Jean-Philippe Brantut Institute of Physics EPFL

Quantum matter: computation meets experiments

• Directly interaction with light, with $\lambda_F \sim \lambda_L$

$$\vec{d}(\omega) = \alpha(\omega)\vec{E}(\omega)$$
 $V_{\rm dip} = \frac{1}{2}\alpha(\omega)E^2(\omega)$

- Directly interaction with light, with $\lambda_F \sim \lambda_L$
- Charge-neutral constituents, short-range tunable interactions

- Directly interaction with light, with $\lambda_F \sim \lambda_L$
- Charge-neutral constituents, short-range tunable interactions

- Directly interaction with light, with $\lambda_F \sim \lambda_L$
- Charge-neutral constituents, short-range tunable interactions

- Directly interaction with light, with $\lambda_F \sim \lambda_L$
- Charge-neutral constituents, short-range tunable interactions

Controlled quantum material !

Knowns*: phase-diagram, thermodynamics, response functions, collective modes...

- Directly interaction with light, with $\lambda_F \sim \lambda_L$
- Charge-neutral constituents, short-range tunable interactions

- Directly interaction with light, with $\lambda_F \sim \lambda_L$
- Charge-neutral constituents, short-range tunable interactions

Quantum matter:

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Quantum transport in a mesoscopic lattice

ETHZ/EPFL:

T. Esslinger, D. Husmann, JPB, L. Corman, M. Lebrat, S. Häusler

Geneva: P. Grisins, T. Giamarchi

M. Lebrat et al, Phys. Rev. X 8 011053 (2018)

- Landauer two-terminal configuration
- Conductance measurements
- Single-mode QPC and quantum wires

- Landauer two-terminal configuration
- Conductance measurements
- Single-mode QPC and quantum wires

S. Krinner et al, Nature 517, 64-67 (2015)

S. Krinner, T. Esslinger and **JPB**, J. Phys.: Condens. Matter **29** 343003 (2017)

Quantum matter: computation meets experiments

- Projection of a mesoscopic lattice
 - Site-by-site control
 - Low depth
 - Onset of band structure

M. Lebrat et al, Phys. Rev. X 8 011053 (2018)

EPFL Interactions

Evolution of transport as interactions are increased

- No effect of strong interactions
- No effect of the superfluid character of the leads

EPFL Interactions

Quantum matter: computation meets experiments

Evolution of transport as interactions are increased

EPFL Interactions: model

- Luther-Emery liquid:
 - Spin-gap formation due to interactions + confinement

EPFL Interactions: model

- Luther-Emery liquid:
 - Spin-gap formation due to interactions + confinement
 - Pinning of pairs in the weak lattice at commensurability

VÓ.

Smooth crossover from Mott gap to band gap !

EPFL Interactions: model

 Agreement with theory close to commensurability

Includes:

- Finite size
- Inhomogeneity
- Finite temperature

Strongly interacting Fermions strongly coupled with light

EPFL

K. Roux, H. Konishi, V. Helson, T. Zwettler, JPB

09.2016

K. Roux, H. Konishi, V. Helson, T. Zwettler, JPB

EPFL

Strongly interacting Fermions strongly coupled with light

EPFL

K. Roux, H. Konishi, V. Helson, T. Zwettler, JPB

 High finesse cavity for strong light-matter coupling

	671 nm	1064 nm / 532 nm
Linewidth	77 kHz	1.4 MHz
Finesse	47'000	2'800
Cooperativity	2	
Waist	45 µm	50 µm / 38 µm

High finesse cavity for strong light-matter coupling

	671 nm	1064 nm / 532 nm
Linewidth	77 kHz	1.4 MHz
Finesse	47'000	2'800
Cooperativity	2	
Waist	45 µm	50 µm / 38 µm

- Combined with unitary Fermi gases
 - Compact bulk-machined electromagnets

K. Roux, B. Cilenti, V. Helson , H. Konishi and JPB SciPost Phys. 6 048 (2019)

Strong light-matter coupling for the unitary Fermi gas

Transmission spectroscopy in the linear regim
Mixture of tv erfine states

Coupled photon-Fermion spectrum

Coupled photon-Fermion spectrum

- Theory for light-matter interactions
- No fit parameter

K. Roux, H. Konishi, V. Helson and **JPB** arXiv:1911.11151

Coupled photon-Fermion spectrum

Quantum matter: computation meets experiments

Signatures of interactions in the spectrum

Two-atoms optical spectrum: photoassociation

E. Abraham, N. Ritchie, W. McAlexander, and R. Hulet The Journal of Chemical Physics **103** 7773 (1995)

Signatures of interactions in the spectrum

- Two-atoms optical spectrum: photoassociation
- Light-matter interaction:

$$\hat{H}_{\text{at-field}} = \frac{\Omega_m}{2} \left(\int dRg(R) \hat{\psi}_m^{\dagger}(R) \int dr f(r) \hat{\psi}_{\uparrow}(R + \frac{r}{2}) \hat{\psi}_{\downarrow}(R - \frac{r}{2}) \hat{a} + hc \right)^6 \text{Li}(\uparrow) + {}^6 \text{Li}(\downarrow) + \gamma \longrightarrow {}^6 \text{Li}_2$$

Signatures of interactions in the spectrum

 Two-atoms optical spectrum: photoassociation

Signatures of interactions in the spectrum

 Two-atoms optical spectrum: photoassociation

$$\bar{\Omega}^2 = \Omega_m^2 \int dR dr_1 dr_2 |g(R)|^2 \cdot f(r_1) f^*(r_2) \left\langle \hat{\psi}_{\downarrow}^{\dagger}(R - \frac{r_2}{2}) \hat{\psi}_{\uparrow}^{\dagger}(R + \frac{r_2}{2}) \hat{\psi}_{\uparrow}(R + \frac{r_1}{2}) \hat{\psi}_{\downarrow}(R - \frac{r_1}{2}) \right\rangle$$

Short range two-body correlation function

Single photons directly coupled to pairs

Fermion-pair polaritons

EPFL Conclusions

Quantum devices with cold atoms

Extend controls to spin, heat Search for new states of matter

Phys. Rev. X 8 011053 (2018) S. Krinner, T. Esslinger and JPB, J. Phys.: Condens. Matter 29 343003 (2017)

Cavity QED with strongly correlated Fermions

Pair polaritons: quantum Feshbach resonances Cavity induced long-range interactions Quantum-limited particle current measurements

EPFL Conclusions

Quantum limits to current measurements

- Full-counting statistics of particle transfer
- Universal back-action heating
- In the QND regime: standard quantum limit to current measurements

$$\mathcal{S}_{ii}^{\mathrm{imp}}(\omega) = \mathrm{sinc}^2 \left(\frac{\omega\tau}{2}\right) \left[\frac{\omega^2\kappa}{4g^2} + |Y(\omega)|^2 \frac{g^2}{\kappa} \frac{1}{1 + \frac{4\omega^2}{\kappa^2}}\right]$$

Discussions:

T. Donner, T. Esslinger, R. Hulet, S. Uchino, P.S. Julienne

Fonds national suisse de la recherche scientifique

erc

Thanks for your attention