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▪ Directly interaction with light, with 
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▪ Directly interaction with light, with  
▪ Charge-neutral constituents, short-range tunable interactions
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▪ Charge-neutral constituents, short-range tunable interactions
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C. Chin, et al, Rev. Mod. Phys 82 1225 (2010)
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▪ Charge-neutral constituents, short-range tunable interactions
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Strongly interacting regime 
BEC-BCS crossover



Q
ua

nt
um

 m
at

te
r: 

co
m

pu
ta

tio
n 

m
ee

ts
 e

xp
er

im
en

ts
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Controlled quantum material !
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▪ Directly interaction with light, with  
▪ Charge-neutral constituents, short-range tunable interactions 

▪ Knowns*: phase-diagram, thermodynamics, response functions, 
collective modes…

�F ⇠ �L

* in free space (no lattice) JILA, ENS, Rice, Innsbrück, MIT…
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▪ Directly interaction with light, with  
▪ Charge-neutral constituents, short-range tunable interactions
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Tunable Fermi gas 8

▪ Device-like systems: mesoscopic 
lattice

▪ Quantum interfacing with photons

M. Lebrat et al, Phys. Rev. X 8  011053 (2018) K. Roux et al, arXiv:1911.11151
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▪ Directly interaction with light, with  
▪ Charge-neutral constituents, short-range tunable interactions
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Quantum transport in 
a mesoscopic lattice

ETHZ/EPFL: 
T. Esslinger, D. Husmann, JPB, L. Corman, 
M. Lebrat, S. Häusler 

Geneva: 
P. Grisins, T. Giamarchi

9

M. Lebrat et al, Phys. Rev. X 8  011053 (2018)
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▪ Landauer two-terminal configuration 

▪ Conductance measurements 

▪ Single-mode QPC and quantum wires

Quantum transport 10
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▪ Landauer two-terminal configuration 

▪ Conductance measurements 

▪ Single-mode QPC and quantum wires

Quantum transport 11

S. Krinner, T. Esslinger and JPB,  
J. Phys.: Condens. Matter 29 343003 (2017)
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S. Krinner et al, Nature 517, 64-67 (2015)
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▪ Projection of a mesoscopic lattice 
▪ Site-by-site control 
▪ Low depth < ER

12Quantum transport (a) (b)
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M. Lebrat et al, Phys. Rev. X 8  011053 (2018)
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▪ Projection of a mesoscopic lattice 
▪ Site-by-site control 
▪ Low depth 

▪ Onset of band structure

13Quantum transport (a) (b)
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▪ Projection of a mesoscopic lattice 
▪ Site-by-site control 
▪ Low depth 

▪ Onset of band structure

14Quantum transport 
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Vl. The experimental data are in very good agreement with
finite-temperature, noninteracting theory shown as inset in
Fig. 3 except in the two-mode regime at large Vg, where
conductance is larger than two conductance quanta 2=h.
This excess, already visible in Fig. 2(a) and previously
observed in Ref. [14], can be attributed to the presence of
attractive interactions.
The experimental data shown in Fig. 3 provide an

estimate of the centers of the band and gap, visible as
local maxima and minima of conductance. To locate more
precisely the band conductor-to-insulator transition, we
monitor the variation of conductance with increasing
temperature, which is positive for an insulator and negative
for a conductor. For this purpose, we use a six-barrier lattice
of height Vl ¼ 0.46ð2Þ μK, and perform an adiabatic
compression of the reservoirs in the transverse direction,
in order to vary temperature from 67 to 109 nK. This
process also changes the chemical potential of the reservoir
μres; hence, the variation of local chemical potential in the

wire is no longer given by the variation of Vg alone but by
the variation of μres þ Vg. Figure 4 shows conductance
curves as a function of the gate potential Vg corrected by
the chemical potential variation, such that the band and gap
positions can be directly compared. The local maximum
and minimum are clearly visible at the lowest temperatures,
and are blurred into a monotonically increasing curve at
T ¼ 109 nK. This also highlights the role played by finite
temperature inside the gap in Fig. 2, where conductance
is nonzero. Within our measurement accuracy, the
curves intersect at Vg þ μres ¼ 1.44 μK, which separates
a region where conductance decreases with temperature,
dG=dT < 0, from a region where conductance increases,
dG=dT > 0. This variation dG=dT can be accessed from a
linear fit on the conductance and is shown as an inset. The
point where dG=dT ¼ 0 agrees with noninteracting theory
and differs from the transition between the ballistic and
nonballistic regimes studied in Fig. 2 [which occurs there at
a corrected value Vg;c þ μres ¼ 1.32ð2Þ μK]. It is little
sensitive to the details of the one-dimensional lattice
potential (Appendix C) and is therefore a more faithful
estimation of the band-to-gap boundary. While the temper-
ature dependence of conductance is the traditional defi-
nition of an insulator adopted in condensed-matter physics,
the existence of a conductance minimum is a more practical
criterion in our cold-atom realization and the results of
Figs. 2 and 4 show the intimate link between the two

FIG. 3. Opening a gap by increasing the lattice height.
Experimental conductance through a six-barrier lattice as a
function of lattice height Vl and gate potential Vg (normalized
by the recoil energy Er ¼ 0.42 μK in the right and top axes). Two
conduction regions (tapered zones in light green and yellow) are
separated by an insulating region that broadens upon increasing
the lattice height. Inset: Conductance obtained from Landauer-
Büttiker theory as a function of lattice height Vl and mean
chemical potential in the reservoirs μres at a temperature T ¼
60 nK through a realistic six-barrier lattice.

FIG. 4. Smearing conductance by thermal decoherence. Ex-
perimental conductance G through a six-barrier lattice of height
Vl ¼ 0.46ð2Þ μK for three different temperatures as a function of
gate potential Vg, shifted by the reservoir chemical potential μres
to account for different optical trap frequencies. Inset: Variation
of conductance with temperature obtained from a linear fit to
temperatures T ¼ 67, 84, 97, and 109 nK. The sign of dG=dT
changes across the critical value Vg þ μres ¼ 1.44 μK.

BAND AND CORRELATED INSULATORS OF COLD … PHYS. REV. X 8, 011053 (2018)
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▪ Evolution of transport as interactions are increased

Interactions 15
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FIG. 3. Opening a gap by increasing the lattice height.
Experimental conductance through a 6-scatterer lattice as a
function of lattice height Vl and gate potential Vg (normalized
by the recoil energy Er = 0.42 K in the right and top axes).
Two conduction regions (tapered zones in light blue and yel-
low) are separated by an insulating region that broadens upon
increasing the lattice height. Inset: theoretical conductance
as a function of lattice height Vl and mean chemical poten-
tial in the reservoirs µres at a temperature of 60 nK through
a realistic 6-scatterer lattice.

governed by the reservoir-induced proximity e↵ect. The
wire with the periodic potential is then described by a
sine-Gordon equation, for which the interaction deter-
mine the parameters of the model. We compute these
parameters (Appendix H) as a function of the interac-
tion.

We evaluate the resistance using numerical simulations
based on the solution of the classical sine-Gordon equa-
tion in a noisy thermal background. This description
is only approximately able to take account for the de-
tailed complexity of the lattice potential shape and ne-
glects the change of interactions between the wire and
the reservoirs. It thus gives only a qualitative descrip-
tion (see supplementary material). We expect however
that it does correctly capture the main e↵ects of the in-
teractions.

The results are in good qualitative agreement with the
experiment (inset in Fig. 5) and correctly predict the for-

FIG. 4. Smearing conductance by thermal decoher-
ence. Experimental conductance G through a 6-scatterer lat-
tice of height Vl = 0.46(2) K for three di↵erent temperatures
as a function of gate potential Vg, shifted by the reservoir
chemical potential µres to account for di↵erent optical trap
frequencies. Inset: Variation of conductance with tempera-
ture obtained from a linear fit to temperatures T = 63, 82, 97
and 113 nK. The sign of dG/dT changes across the critical
value Vg + µres = 1.42 K.

FIG. 5. Robustness of the gap with increasing interac-
tions. Conductance G through a 6-scatterer lattice of height
Vl = 0.46(2) K as a function of gate potential Vg for di↵erent
scattering lengths ranging from moderately attractive (BCS,
yellow) to resonant interactions (unitary, black). Inset: pre-
dictions of the Tomonaga-Luttinger model (T ⇠ 110 nK) for
the dip in conductance due to formation of the band insulator,
the axes are the same as in the main panel.
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▪ No effect of strong interactions 
▪ No effect of the superfluid character 

of the leads

M. Lebrat et al, Phys. Rev. X 8  011053 (2018)
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FIG. 3. Opening a gap by increasing the lattice height.
Experimental conductance through a 6-scatterer lattice as a
function of lattice height Vl and gate potential Vg (normalized
by the recoil energy Er = 0.42 K in the right and top axes).
Two conduction regions (tapered zones in light blue and yel-
low) are separated by an insulating region that broadens upon
increasing the lattice height. Inset: theoretical conductance
as a function of lattice height Vl and mean chemical poten-
tial in the reservoirs µres at a temperature of 60 nK through
a realistic 6-scatterer lattice.
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conductance plateau, discernible as a green area, shrinks gradually
when the interaction strength is increased from 1=ðkF,resaÞ< − 2 to
1=ðkF,resaÞ< − 1. In this regime the plateau width is well predicted
by a mean-field model accounting for intra- and intermode attrac-
tion in the QPC (SI Appendix). Furthermore, we observe little dif-
ference between the unitary and the molecular regime in the
experimentally accessible region, 0< 1=ðkF,resaÞ< 0.5, where the
reservoirs form a condensate of molecules (35).

Superfluid Transition. In the strongly interacting regime (dark purple
regions in Fig. 3 C and D), deviations from a linear response to the
bias are observed (36, 37) in agreement with our previous mea-
surements for a QPC in a unitary superfluid (31) (SI Appendix).
Indeed, for the temperature imposed by the reservoirs, increasing
Vg or the interactions leads to the onset of superfluidity in the
minima of the effective potential (Fig. 1C), i.e., at the entrance and
exit of the QPC. The local critical temperature at those points thus
corresponds to the maximum critical temperature over the entire
cloud, and we refer to it as Tc for the remainder of this article. To
extract it, we use the state-of-the-art calculation of Tc=~TFð1=ð~kFaÞÞ
(38) in local density approximation, with kB ~TF = Z2~k

2
F=ð2mÞ=

Z2ð6π2nÞ2=3=ð2mÞ being the Fermi energy of a homogeneous gas

with density n. We estimate n at the entrance and exit of the
QPC from the trap geometry and the equation of state of the
low-temperature, tunable Fermi gas (SI Appendix). The resulting
critical line is displayed in Figs. 2B and 3 C and D. It closely tracks
the maxima of the spin conductance in Fig. 2B, as well as the
disappearance of the conductance plateaus in Fig. 3.

Conductances in the Single-Mode Regime. We now focus on the
conductances in the single-mode regime, where universal quanti-
zation is observed for weak interactions. For this purpose, we dis-
play in Fig. 4 the conductances as a function of T=Tc, measured at
the position of the plateau center in the weakly interacting regime.
These are extracted from Fig. 3C for fixed νx = 14.5 kHz and from
Fig. 3D for fixed Vg = 0.64 μK. We observe that the resulting con-
ductances now coincide within error bars. This demonstrates that
T=Tc is a key control parameter of the transition, despite the fact
that the two datasets correspond to different geometries in the
single-mode regime. The fast increase of particle conductance co-
incides with a sharp drop in the spin conductance around T=Tc = 1,
demonstrating directly the intimate connection between pairing and
superfluidity. The regime of nonuniversal quantization, with a
conductance larger than 1=h as identified by our measurement

A B

C D

Fig. 3. Particle conductance of the attractively interacting Fermi gas. (A and B) Particle conductance GN as a function of the horizontal confinement frequency νx of
the QPC, at fixed gate potential Vg = 0.42  μK (A) and as a function of the gate potentialVg at fixed confinement frequency νx = 23.2 kHz (B), for different interaction
strengths 1=ðkF,resaÞ in the reservoirs. The solid lines are theoretical predictions for 1=ðkF,resaÞ=2.1 and 1.9, respectively, based on the Landauer formula including
mean-field attraction (SI Appendix). Each data point represents the mean over five measurements and error bars indicate 1 SD. (C and D) Two-dimensional color plot
of GN as a function of interaction strength 1=ðkF,resaÞ and horizontal confinement (C) or gate potential (D). Both plots contain the cuts of A and B (gray dotted lines)
and an estimation of the local superfluid transition at the QPC exits (black dashed line).

Krinner et al. PNAS | July 19, 2016 | vol. 113 | no. 29 | 8147
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▪ Luther-Emery liquid: 
▪ Spin-gap formation due to interactions + confinement

Interactions: model 17

A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).
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In this appendix, we show that in the absence of a periodic
potential a fermionic gas in Luther-Emery phase can be
mapped to a so-called super-Tonks-Girardeau gas, a gas of
bosons featuring long-range repulsion and a Luttinger
parameter Kb < 1 (the subscript b stands for bosonic).
First, we note that as long as the spin sector is ordered

(gapped) at hϕsi ¼ 0, we need to deal with the Luttinger
liquid of spinless fermions in the charge sector only,
described by the bosonized fields ϕcðyÞ, θcðyÞ to obtain
correctly the low-energy physics of the full model.
The bosonized density operator of 1D spinless bosons is

given by [33]

ρbðyÞ ¼
!
ρ̄b −

1

π
∇ϕbðyÞ

" X∞

l¼−∞
e2il½πρ̄by−ϕbðyÞ%; ðF1Þ

where ρ̄b is the average bosonic density.
Then, comparing Eq. (F1) with the one for 1D attractive

fermions, Eq. (D4), and taking into account only the
relevant harmonics l ¼ f0;&1;&2g, we can establish an

approximate correspondence of our attractive fermions and
interacting bosons:

ρ0 ↔ 2ρ̄b;

ϕc ↔
ffiffiffi
2

p
ϕb;

kF ↔ πρ̄b; ðF2Þ
from which it follows that Kc ↔ 2Kb and enables us to
draw a concurrent phase diagram of the 1D bosons and
fermions; see Fig. 11.
Experimentally, attractive interactions between fermions

stronger than jaj > 104a0 are routinely achieved, which
corresponds to the fermionic Luttinger parameter Kc ≈ 1.4;
see Fig. 8. This allows us to map our system to a STG
bosonic gas of Kb ≈ 0.7. Through this mapping, all long-
wavelength correlation functions for the Cooper pairs can
be directly mapped to the bosonic ones for the STG gas.
This correspondence holds only as long as the

spin sector is well locked in its minimum [implying that
fs ¼ hcos

ffiffiffi
2

p
ϕsð0Þi≲ 1], so that the Fermi gas is

described by one density mode. For instance, this is
fulfilled in the Tonks-Girardeau gas, where fs ¼ 1 and
our mapping, Eq. (F2), of Cooper pairs to bosons is exact.
If the interaction becomes too weak, the spin gap becomes
lower than the energy scale at which the system is probed,
and then it is necessary to include the two modes (spin and
charge). In this regime, one cannot map the system to a
single-mode bosonic STG gas anymore.
We estimate the pair size as ξ ¼ ℏ=

ffiffiffiffiffiffiffiffi
mϵ0

p
, where ϵ0 is the

energy of the bound state [49]; see Fig. 12. At moderately
strong attraction and densities ρ ≈ 2 atoms=μm, the pair
size ξ ≈ 0.4 μm is comparable but smaller than the inter-
particle separation ρ−1 ≈ 0.5 μm, and it becomes mean-
ingful to interpret the pairs as localized bosons. However,
we note that the mapping to a STG gas continues to hold
when the pair size is larger than the interparticle spacing, as
it relies only on the locking of the spin field. In the latter
case, the excitations are density waves and cannot be
interpreted as tightly bound pairs.

Kb

free

1

GTS USGT
bosons

0.5

Kc

2LE

attractive
fermions

1

free

FIG. 11. Phase diagram of 1D bosons (top) and 1D spinless
attractive fermions (bottom) with respect to the Luttinger param-
eter Kb;c. The vertical arrow represents the mapping of the
attractive fermions in the Luther-Emery (LE) phase to the super-
Tonks-Girardeau gas (STG) discussed in the text. Bosons realize
the STG phase at Kb < 1, hard-core Tonks-Girardeau (TG) phase
at Kb ¼ 1, and a superfluid of weakly repulsive bosons (SU) at
Kb ≫ 1; the free boson limit is realized atKb → ∞. The fermions
are repulsive for Kc < 1, free at Kc ¼ 1, and attractive at Kc > 1.
The dashed region of the phase diagram corresponds to the
regime where the boson-to-fermion mapping breaks down due to
fluctuations of the spin field.
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FIG. 12. Pair size ξ as a function of the scattering length. Linear densities ρ0 from 1 to 3 atoms=μm correspond to interparticle
spacings from 1 to about 0.3 μm, which is of the order of the pair size. For higher densities and/or weaker interactions the pairs become
larger than the interparticle separation and the mapping to a super-Tonks-Girardeau gas fails. Left and right panels correspond to positive
and negative scattering lengths a.
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▪ Luther-Emery liquid: 
▪ Spin-gap formation due to interactions + confinement 
▪ Pinning of pairs in the weak lattice at commensurability

Interactions: model 18

▪ Smooth crossover from Mott gap to band gap ! 

M. Lebrat et al, Phys. Rev. X 8  011053 (2018)

Je
an

-P
hi

lip
pe

 B
ra

nt
ut



Q
ua

nt
um

 m
at

te
r: 

co
m

pu
ta

tio
n 

m
ee

ts
 e

xp
er

im
en

ts

▪ Agreement with theory close to 
commensurability 

▪ Includes:  
▪ Finite size 
▪ Inhomogeneity 
▪ Finite temperature

Interactions: model 19

5

FIG. 3. Opening a gap by increasing the lattice height.
Experimental conductance through a 6-scatterer lattice as a
function of lattice height Vl and gate potential Vg (normalized
by the recoil energy Er = 0.42 K in the right and top axes).
Two conduction regions (tapered zones in light blue and yel-
low) are separated by an insulating region that broadens upon
increasing the lattice height. Inset: theoretical conductance
as a function of lattice height Vl and mean chemical poten-
tial in the reservoirs µres at a temperature of 60 nK through
a realistic 6-scatterer lattice.

governed by the reservoir-induced proximity e↵ect. The
wire with the periodic potential is then described by a
sine-Gordon equation, for which the interaction deter-
mine the parameters of the model. We compute these
parameters (Appendix H) as a function of the interac-
tion.

We evaluate the resistance using numerical simulations
based on the solution of the classical sine-Gordon equa-
tion in a noisy thermal background. This description
is only approximately able to take account for the de-
tailed complexity of the lattice potential shape and ne-
glects the change of interactions between the wire and
the reservoirs. It thus gives only a qualitative descrip-
tion (see supplementary material). We expect however
that it does correctly capture the main e↵ects of the in-
teractions.

The results are in good qualitative agreement with the
experiment (inset in Fig. 5) and correctly predict the for-

FIG. 4. Smearing conductance by thermal decoher-
ence. Experimental conductance G through a 6-scatterer lat-
tice of height Vl = 0.46(2) K for three di↵erent temperatures
as a function of gate potential Vg, shifted by the reservoir
chemical potential µres to account for di↵erent optical trap
frequencies. Inset: Variation of conductance with tempera-
ture obtained from a linear fit to temperatures T = 63, 82, 97
and 113 nK. The sign of dG/dT changes across the critical
value Vg + µres = 1.42 K.

FIG. 5. Robustness of the gap with increasing interac-
tions. Conductance G through a 6-scatterer lattice of height
Vl = 0.46(2) K as a function of gate potential Vg for di↵erent
scattering lengths ranging from moderately attractive (BCS,
yellow) to resonant interactions (unitary, black). Inset: pre-
dictions of the Tomonaga-Luttinger model (T ⇠ 110 nK) for
the dip in conductance due to formation of the band insulator,
the axes are the same as in the main panel.
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Gaudin-Yang Hamiltonian [27, 28]

HGY = �
~2
2m

X

i

@
2

@y
2
i

+ g1

X

i<j

�(yi � yj), (2)

where yi is the position of the i-th atom in the wire and
g1 is the strength of the short-range interaction. The
influence of the optical lattice is taken into account by

Hlattice =

Z
dy V (y)⇢(y), (3)

where V (y) is the potential of the lattice and ⇢(y) is the
total local density of fermions.

We proceed by treating the experimentally relevant
low-energy degrees of freedom of the Gaudin-Yang model
(2) with the Tomonaga-Luttinger liquid theory [21, 29].
This provides the description of the gap in the spin sector,
and the transformation to the Luther-Emery liquid made
of bound pairs of finite extent, strongly repelling each
other as a result of the exclusion principle between their
fermionic constituents. The resulting system is described
by a sine-Gordon equation, whose parameters can be ob-
tained as a function of the strength of the short-range
interaction (Appendix D).

We then compute the transport properties of the sys-
tem by attaching this one-dimensional system to two
reservoirs. The choice of a one-dimensional model is jus-
tified here by the fact that the 9µm-wire is longer than
the superfluid coherence length ~vF /kBT ⇡ 3 µm in the
reservoirs, where vF is the Fermi velocity. This situation
is di↵erent from previous works with a short quantum
point contact [3] where the physics is governed by the
reservoir-induced proximity e↵ect. We neglect the con-
tact resistance compared to the resistance of the scatter-
ing potential in the wire, and use the approximation of
one-dimensional leads [30].

We evaluate the conductance by numerically solving
the sine-Gordon equation mentioned above in a noisy
thermal background (Appendix E). The results, shown
as inset of Fig. 5, are in good qualitative agreement with
the experiment and correctly predict a conductance mini-
mum compatible with the formation of an insulator. This
occurs at lattice filling of two fermions per site, which can
be translated into gate potentials Vg ⇡ 0.8 µK using an
approximate description of the wire potential. A better
quantitative agreement for the value of the conductance
is found by increasing the e↵ective temperatures used in
the simulations (110 nK in the inset of Fig. 5, compared
to about 70 nK in the experiment). This discrepancy may
stem from neglecting the influence of the reservoirs and
from taking into account only classical fluctuations of the
bosonized fields.

The robustness of the insulating state even at uni-
tarity provides strong indication that we indeed realize
the Luther-Emery state inside the wire. An alternative
way to understand the Luther-Emery liquid is to con-
sider a one-dimensional theory where the elementary con-
stituents are not the fermionic atoms, but instead weakly-

FIG. 5. Robustness of the gap with increasing interac-
tions. Conductance G through a 6-barrier lattice of height
Vl = 0.46(2) µK as a function of gate potential Vg for dif-
ferent scattering lengths ranging from moderately attractive
(yellow) to resonant interactions (dark purple). For a one-
dimensional density of two particles per site, where the con-
ductance minimum is observed, the Gaudin-Yang parameter
at the wire center is equal to �1.7,�1.9,�2.3,�2.6 and �3.0
for the five values of the scattering ranging from �7.5·103a0 to
�1; it increases upon decreasing density or equivalently gate
potential (Appendix D). Inset: predictions of the Tomonaga-
Luttinger model (T ⇡ 110 nK) around the conductance dip.

bound bosonic pairs with an e↵ective finite-range repul-
sion (Appendix F). These pairs form a so-called super-
Tonks-Girardeau gas (STG). The insulating state can be
identified with a Mott-type insulator of bosons [21, 29].
We emphasize that in contrast to previous works, where
STG-gases were theoretically predicted [31] and experi-
mentally realized [32] as a highly-excited and strongly-
correlated metastable gas-like state of attractive bosons,
in our case the STG phase is realized with spin-half
fermions [33]. The finite size of the pairs, which is a key
ingredient to the finite-range repulsion, allows to obtain
the essential properties of the STG-gas as a stable ground
state. This demonstrates the potential of our fermionic
setup to simulate novel one-dimensional bosonic phases
as well.

VI. CONCLUSIONS

In this work, we demonstrated local control of the po-
tential landscape in a ballistic quantum wire by project-
ing optical barriers varying on distances of the order of
the Fermi wavelength. We were thus able to build a one-
dimensional lattice one site at a time and to explore its
transport properties. Our study shows that conductance

M. Lebrat et al, Phys. Rev. X 8  011053 (2018)
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▪ High finesse cavity for strong light-matter 
coupling

23Cavity QED with Fermi gases

671 nm 1064 nm / 532 nm

Linewidth 77 kHz 1.4 MHz

Finesse 47’000 2’800

Cooperativity 2

Waist 45 µm 50 µm / 38 µm

K. Roux, H. Konishi, V. Helson and JPB 
arXiv:1911.11151
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▪ High finesse cavity for strong light-matter 
coupling

24Cavity QED with Fermi gases

▪ Combined with unitary Fermi gases 
▪ Compact bulk-machined 

electromagnets 
K. Roux, B. Cilenti, V. Helson , H. Konishi and JPB 

SciPost Phys. 6 048 (2019) 
K. Roux, H. Konishi, V. Helson and JPB 

arXiv:1911.11151
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▪ Transmission spectroscopy in the 
linear regime 

▪ Mixture of two hyperfine states

▪ Strong light-matter coupling for the unitary Fermi gas

25Cavity QED with Fermi gases

K. Roux, H. Konishi, V. Helson and JPB 
arXiv:1911.11151
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▪ Coupled photon-Fermion spectrum

26Cavity QED with Fermi gases
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▪ Coupled photon-Fermion spectrum 
▪ Theory for light-matter interactions 
▪ No fit parameter

27Cavity QED with Fermi gases
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▪ Coupled photon-Fermion spectrum

28Cavity QED with Fermi gases
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▪ Signatures of interactions in the spectrum 
▪ Two-atoms optical spectrum: photoassociation

29Cavity QED with Fermi gases
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II. EXPERIMENT

The sample of ultracold lithium atoms was held in a
magneto-optical trap,20 which was loaded from a laser-
slowed atomic beam. The apparatus and methods we use to
slow and trap lithium have been described in prior
publications.21,22 In the present work, either 6Li or 7Li could
be trapped by compensating the laser frequencies for the iso-
tope shift of the 2s1/2$2p3/2 resonance transition frequency
(;10 GHz!. The six trap laser beams and the slowing laser
beam were derived from a single stabilized ring dye laser
offset frequency locked to the lithium resonance line using
saturated absorption in a lithium vapor cell. The trap laser
beams were frequency modulated using a LiTaO3 standing-
wave electric-optic modulator23 to produce sideband fre-
quencies resonant with transitions from both ground-state
hyperfine levels of the Li atom. For 7Li, the modulation fre-
quency of 406.4 MHz produced lower and upper first-order
sidebands which were detuned 24 MHz below the 2s1/2 ,
F52!2p3/2 , F53 and 2s1/2 , F51!2p3/2 , F52 transition
frequencies, respectively. For 6Li the modulation frequency
of 115.8 MHz produced first-order sidebands which were
detuned 37 MHz below the 2s1/2 , F53/2!2p3/2 , F55/2
and the 2s1/2 , F51/2!2p3/2 , F53/2 transition frequencies,
respectively. The combined power in the six trap beams in
each of the first-order sideband components was approxi-
mately 75 mW, and the Gaussian waist (e22 intensity radius!
of each beam was approximately 3 mm. The density distri-
bution of trapped atoms was near Gaussian, with a Gaussian
radius of 400 mm and a central density of approximately

831010 cm23 for 7Li, while for 6Li the Gaussian radius was
approximately 900 mm with a central density of approxi-
mately 531010 cm23. The temperature of the trapped atoms
was estimated to be 1–2 mK.

A second dye laser was used to produce a laser beam of
frequency vP which was directed through, and retroreflected
back through the trapped atom cloud to induce photoassocia-
tion. The photoassociating laser beam had a power of be-
tween 450–600 mW and Gaussian waist of between 500–
750 mm over the span of time the data were taken. A
spectrum was obtained by slowly sweeping vP red of the
2s1/2$2p3/2 atomic transition while simultaneously moni-
toring the trap-laser induced atomic fluorescence with a pho-
todiode. A molecular resonance caused a reduction in the
steady-state number of trapped atoms, and a corresponding
reduction in detected fluorescence.

A relative frequency scale was obtained by directing a
portion of both the photoassociation beam and the trap beam
into a calibrated Fabry–Perot etalon. As vP was scanned,
markers separated by the 1.499 935~85! GHz free spectral
range of the etalon were recorded simultaneous with the pho-

FIG. 1. Schematic showing photoassociation of alkali atoms. As two atoms
collide, they absorb a photon of frequency vP which is resonant with the
free ground state and bound vibrational level of an excited molecular state.
The excited molecule can spontaneously decay into an unbound free state by
emitting a photon of frequency vF , or into a bound ground-state molecule
by emitting a photon of frequency vB . Since either process leads to a loss
of trapped atoms, photoassociation can be observed by monitoring the trap
laser induced atomic fluorescence. Potential curves are not given to scale.

FIG. 2. Photoassociative spectrum of 7Li2 . A molecular resonance causes a
reduction in the trap laser induced fluorescence. The frequency scale is
relative to the 2s1/2 $ 2p1/2 atomic resonance frequency, adjusted to the
hyperfine center of gravity. This spectrum is a composite of several indi-
vidual scans, which have been scaled to display a common fluorescence
offset. The relative intensities of lines from different scans are not quantita-
tively comparable. At larger binding energies, the scans were not continu-
ous. Vibrational levels v562 to v590 are observed for the 13Sg

1 state;
vibrational levels v583 to v596 are evident for the A1Su

1 state. Eigenval-
ues of a model potential are indicated by ‘‘u’s’’ for the 13Sg

1 levels and
‘‘1’s’’ for the A1Su

1 levels. Additional levels have been observed, and bind-
ing energies for all are given in Table I.

7774 Abraham et al.: Spectroscopy of 6Li2 and 7Li2

J. Chem. Phys., Vol. 103, No. 18, 8 November 1995
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.33.103.123 On: Fri, 05 Jun 2015 06:43:43
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▪ Signatures of interactions in the spectrum 
▪ Two-atoms optical spectrum: photoassociation 

▪ Light-matter interaction: 
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The sample of ultracold lithium atoms was held in a
magneto-optical trap,20 which was loaded from a laser-
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tope shift of the 2s1/2$2p3/2 resonance transition frequency
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approximately 900 mm with a central density of approxi-
mately 531010 cm23. The temperature of the trapped atoms
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markers separated by the 1.499 935~85! GHz free spectral
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emitting a photon of frequency vF , or into a bound ground-state molecule
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laser induced atomic fluorescence. Potential curves are not given to scale.
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relative to the 2s1/2 $ 2p1/2 atomic resonance frequency, adjusted to the
hyperfine center of gravity. This spectrum is a composite of several indi-
vidual scans, which have been scaled to display a common fluorescence
offset. The relative intensities of lines from different scans are not quantita-
tively comparable. At larger binding energies, the scans were not continu-
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▪ Two-atoms optical spectrum: 
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▪ Signatures of interactions in the spectrum 
▪ Two-atoms optical spectrum: 

photoassociation 

▪ Single photons directly coupled to pairs
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▪ Fermion-pair polaritons
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Quantum devices with cold atoms 
Extend controls to spin, heat 
Search for new states of matter
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▪ Quantum limits to current measurements 

▪ Full-counting statistics of particle transfer 
▪ Universal back-action heating 
▪ In the QND regime: standard quantum 

limit to current measurements
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4

the fact that F̂ is independent of the atomic evolution in
the reservoirs, the power spectrum of the phase fluctua-
tions is then S��(!) = S0

��(!) +
SFF (!)
42!2 , where S0

��(!)
describes the fluctuations in the absence of measurement,
in particular all dynamical back-action phenomena such
as dynamical Coulomb blockade [35]. The atomic current
noise spectrum is then given by

SII(!) = |Y (!)|2
✓

2
!
2S0

��(!) +
SFF (!)

4

◆
(9)

where we have introduced the frequency dependent ad-
mittance of the channel Y (!) and noise spectral density
of F , SFF (!). This assumes that the response to small
fluctuations around the average bias is linear, but not the
linearity of the response to the bias itself.

Measurements of the current in the setup of Fig. ??
will proceed by measurements of the homodyne signal
separated in time by ⌧ , yielding an averaged current ob-
servable

î⌧ (t) =
N̂(t+ ⌧)� N̂(t)

⌧
=

1

⌧

Z
t+⌧

t

Îat(u)du. (10)

and the second equality is due to Kircho↵’s law. We as-
sume that ⌧ is much larger than 1/, and than the atoms
dwell time in the channel. The total imprecision on the
current measurement is then the sum of the imprecision
originating from detection and the measurement back-
action,

S imp
ii

(!) = sinc2
⇣
!⌧

2

⌘"
!
2


4g2
+ |Y (!)|2 g

2



1

1 + 4!2

2

#
.

(11)
where, consistently with the emergent QND operation we
have dropped the equilibrium fluctuations of the atoms
within the cavity mode, and we have expressed SFF (!)
in terms of the cavity parameters. This expression rep-
resents the tradeo↵ between noise and back-action as
measurement strength is varied, similar to the standard
quantum limit in cavity optomechanics [36, 37]. It repre-
sents the generalization of the concept of quantum limit
to transport measurements in quantum many-body sys-
tems.

We illustrate this on the example of a fully open quan-
tum point contact at low bias, using the universal con-
ductance quantum as the low frequency admittance. The
total noise �2

ii
obtained by integrating over the bandwidth

1/⌧ is presented in figure 3. The lower bound on the
current fluctuations is of the order of 1/⌧ , typically two
orders of magnitude below the technical noise of the state
of the art cold atoms measurements [38].

Discussion.— The result above is universal, in that it
does not rely on a Fermi liquid description of the reser-
voirs and thus applies both to the normal and super-
fluid state of interacting Fermions. It is a consequence
of the existence of the emergent QND measurement of a

FIG. 3: Total current noise for a fully open quantum point
contact over a bandwidth 1/⌧ , as a function of the measure-
ment parameter g2⌧/. The dashed red line represents the
contribution of photon shot noise, while the blue dashed-
dotted line represents the contribution of measurement back-
action.

reservoirs population, which is guaranteed regardless of
interaction strength by Tan’s relations. It provides a gen-
eral framework for the quantum simulation of mesoscopic
transport using tunable Fermi gases. This concept dif-
fers other proposals where the current operator couples
directly with the cavity field via photon assisted tunnel-
ing, which produces a dissipative current [39]. It also
di↵ers from mesosopic electronic devices, in that the two
terminals together form a closed system, without electro-
magnetic environment [35], thereby allowing for a simple
and universal analysis.
The most natural experimental platform would consist

in cold 6Li in the two-terminal configuration accessible in
the state of the art experiments[3], where the low mass
of the atom allows to easily reach the QND regime. In
practice, there will be a finite overlap of the reservoir
with the probe beam, which e↵ectively reduces the light
matter coupling in the reservoir. In the presence of a
finite  or finite cooperativity, the measurement is not
strictly QND. Phenomenologically, we can treat the en-
ergy increase in the reservoir as generating a temperature
bias across the channel, leading to an extra thermoelec-
tric contribution to the average current [40]. This can
be measured to provide further insight in transport pro-
cesses, or corrected for a posteriori.
The concept can be generalized to multi-terminal

cases, where several cavities or cavity modes monitor
several reservoirs simultaneously. Further generalizations
could describe continuous situations, where the cavity is
focused on a small region within a single cloud in order to
observe the dynamics of the gas. In addition, the quan-
tum optical measurement is in principle spin-sensitive,
such that spin currents as well as particle currents could
be monitored along the same principle [41].
We thank C. Galland and T. Donner for discussions

and a careful reading of the manuscript, and J. Hofmann
and S. Yoshida for discussions. JPB acknowledges fund-



Q
ua

nt
um

 m
at

te
r: 

co
m

pu
ta

tio
n 

m
ee

ts
 e

xp
er

im
en

ts

36

Thanks for your 
attention

Discussions:  
T. Donner, T. Esslinger, R. Hulet, S. Uchino, P.S. Julienne


