

Our Research Group

Graduate Students:

Sanaz Koohfar, Physics

Tongjie Chen, Physics

Athby Al-Tawhid, Physics

Undergraduate Students:

Jacob Mauthe, Sophomore, Engineering
Caroline Kirkland, Sophomore, Engineering
Sayam Patel, Physics

High School Students •Mason Farasay, Senior, Broughton High School **Collaborators** Elke Arenholz, LBNL Alexandru Georgscu, Flatiron Institute James Lebeau, NCSU MSE/ MIT Aubrey Penn, NCSU MSE

NSF DMR1751455

Complex Oxide Materials

Talk Outline

• Two Dimensional complex oxides and interfaces

- Structural and Magnetic Interfacial interactions
 - Synthesis \rightarrow Molecular beam epitaxy
 - − Characterization → SQUID, synchrotron diffraction and spectroscopy, electron microscopy, theory
- Application → Understanding thickness-dependent transitions

Tuning parameters

- Magnetic and electronic ordering depends on TM d-O p orbital interactions
- Rotate octahedra
- Stretch/compress unit cell
- Electronic/Chemical doping

Hwang, Phys. Rev. B, 52, **15046**, (1995). *Millis, Nature*, **392**, **147**,

Going beyond epitaxial strain

Polar Oxide interfaces and surfaces

Ohtomo, Hwang, *Nature* 427, 423 (2004)

A new route to tune functionality

• Can polar discontinuities be used to tune structure and functionality in thin oxide films?

- How are thickness-dependent properties related to polar interfaces?
 - <u>Magnetic transitions in LaSrMnO₃</u>

<u>S. Koohfar et al. Phys. Rev. B 96, 024108 (2017)</u> <u>Koohfar et al, npj Quantum Materials 4, 25(2019)</u> <u>arXiv:1710.07592</u> <u>Koohfar, et al. Phys. Rev B 101, 064420 (2020)</u>

THICKNESS-DEPENDENT MAGNETIC TRANSITIONS IN LSMO

Phys. Rev. B 96, 024108 (2017)

Bulk Rare Earth Manganites

 $FM-M \rightarrow$ Ferromagnetic Metal AFM-I \rightarrow Antiferromagnetic Insulator

Hemberger, PRB **66**, 094410 (2002) *Tokura, Reports on Progress in Physics* 69, 797 (2006)

Properties

- x=0.3, Tc ~ 350 K
- Colossal Magnetoresistance
- Spin polarized half-metal

•

0

• **Atomic Layer Synthesis** 55 Intensity 50 45 40 ¹⁰⁰ ²⁰⁰ **Time (s)** 300 0 RHEED Diffracted Beam RHEED Beam

•

Custom Oxide Molecular beam epitaxy system with in-situ reflective high energy electron diffraction

Magnetic Properties

- < 5 unit cells
 - Non-magnetic
 - Insulating

Dead Layer Effects in LSMO

- PLD grown LSMO films (300 mTorr O₂) insulating below 10 unit cells
- Non-magnetic below 5 unit cells

Huijben, PRB **78**, 094413 Sun, APL, 74, **3017**, (1999)

The polar LSMO/STO interface

 $[Mn^{3+} Mn^{4+}O_2^{4-}]^{-0.7}$ $[La^{3+} Sr^{2+}O^{2-}]^{+0.7}$ $[Mn^{3+} Mn^{4+}O_2^{4-}]^{-0.7}$

 $[La^{3+} Sr^{2+}O^{2-}]^{+0.7}$ $[Mn^{3+} Mn^{4+}O_{2}{}^{4-}]^{-0.7}$ $[La^{3+} Sr^{2+}O^{2-}]^{+0.7}$ $[Ti^{4+} O_{2}{}^{4-}]^{-0}$

Polar surface

• Polar Interface

<u>S. Koohfar, Phys. Rev. B 96, 024108 (2017)</u> Boscheker, *Adv. Func. Mat*, 22, **2235**, (2012) Kourkoutis, PNAS 107, 11682 (2010)

Synchrotron X-ray diffraction

- Direct <u>quantitative</u> determination of <u>atomic-scale</u> structure from x-ray intensities along crystal truncation rods

Kumah et al. PRL116 (10), 106101

Atomic-Scale Structure Determination from

•

•

•

•

•

0

•

•

•

•

•

•

•

•

•

Synchrotron Diffraction

Ferrodistortive surface and interfacial instabilities

- Interfacial and surface lattice out-of-plane dilation
- Interfacial and surface out-of-plane polar distortions
- Distortions extend into nominal SrTiO₃ substrate (2-3 unit cells (0.8-1.2nm)
 Pruneda, PRL 99, 226101 (2007)
 Burton, PRB, 82, 161407, (2010)

Herger, PRB, 77, 085401(2008)

<u>S. Koohfar et al. Phys. Rev. B 96, 024108</u> (2017)

Structural changes \rightarrow **Paramagnetic Insulator**

Bulk-like structure/composition → FM-Metal

Compositional+Structural → Paramagnetic Insulator

• If t<4

- Nonmagnetic, Insulating
- If t>4
 - Interface, non-magnetic
 - Middle layers, magnetic

S. Koohfar et al. Phys. Rev. B 96, 024108 (2017)

Interface-Engineered 2D magnetism

Modify Interface/Surface to remove polar discontinuity!

Guo et al. Adv. Func. Mat. **1800922**, (2018) Peng, Appl. Phys. Lett. 104, **081606 (2014)** Boscheker, Adv. Func. Mat, 22, **2235**, (2012) **Kourkoutis, PNAS 107, 11682 (2010) Li, APL** 105, **202401**, (2014). *Kumigashira, APL*, 84, **5353**, (2004)

LSCO/LSMO/LSCO heterostructures

•

0

LSCO Structure: G-AF, R3⁻c symmetry with a-a-a- rotations (160° Cr-O-Cr bond angle) *Tezuka, J. of Solid State Chemistry*, 141, **404**, (1998)

Why LaSrCrO₃

- Valence matched to LaSrMnO₃
 - Tune La/Sr ratio
- Lattice matched to LSMO
 - Pseudocubic lattice constant LSCO ~3.88 A
- Oxygen-octahedral rotations matched to LSMO

 Cr-O-Cr bond angles ~160° (166° for LSMO)
- Suppress Interfacial charge transfer Kumigashira, APL, 84, 5353, (2004)

Interface-Engineered 2D magnetism

0

•

Magnetic properties controlled by interfacial structural engineering!

Koohfar et al, npj Quantum Materials 4, 25(2019)

Interface-Engineered 2D magnetism

0

•

•

•

0

0

Are we removing polar distortions?

•

•

Compare atomic structures of 4uc LSMO and 3LSCO/4LSMO/3LSCO

Are we removing polar distortions?

No polar distortions in LSMO layer!

• Bulk-like Mn-O bonds in 3/4/3 heterostructure

Koohfar et al, npj Quantum Materials 4, 25(2019)

Verifying Magnetism by XMCD

0

•

•

Spin and Orbital Moments: X-Ray Magnetic Circular Dichroism

Element-Specific Magnetic Measurements

•

•

•

• XMCD indicates Ferromagnetic LSMO

•

Element-Specific Magnetic Measurements

- XMCD indicates 1.0 S150 Ferromagnetic = 15K Mn ions **Applied Field** 3 LSCO 3 LSMC 3 I SCO SCO Mn sto -Cr -1.0 **FM LSMO** 0.2 -0.2 0.0 0.4 H (T)
 - Anti-Ferromagnetic exchange interaction between Cr and Mn at interface

Temperature dependence of Cr and Mn XMCD

- SQUID measures net magnetization
- Theory predicts -2.0 μ_B /Cr and 3.4 μ_B /Mn

Koohfar et al, npj Quantum Materials 4, 25(2019)

Determining LSMO and LSCO moments

- Squid measures total (LSMO+LSCO) magnetization
- XMCD shows LSCO has a negative magnetization
- Can we determine LSMO and LSCO moments separately?

Determining LSMO and LSCO moments

•

•

•

•

- Create repeats of LSMO/LSCO bilayers
- Determine magnetization as a function of ratio of LSMO/LSCO thickness

m*=total SQUID magnetization/N_{LSMO} = m^{Cr} $M_{LSCO}/N_{LSMO} + m^{Mn}$

 $m^{Mn} \rightarrow$ magnetization per Mn ion $m^{Cr} \rightarrow$ magnetization per Cr ion

High-Resolution Electron Microscopy

•

•

•

•

•

•

•

•

•

•

•

.

•

•

•

•

Koohfar et al, npj Quantum Materials 4, 25(2019)

[M LSCO/N LSMO] superlattices

- Determine Cr and Mn spins from fitting SQUID magnetization as a function of LSCO thickness/LSMO thickness
- Extract from linear fit Mn (3.4 uB/Mn) and Cr(-2.1 uB/Mn) moments.
- Moments agree with DFT predictions

m*=total SQUID magnetization/N_{LSMO} = **m**^{Cr} M_{LSCO}/N_{LSMO} + **m**^{Mn} m^{Mn} → magnetization per Mn ion m^{Cr} → magnetization per Cr ion

Why AFM coupling between Cr and Mn on STO?

Kanamori, J. of Phys. Chem. Solids, 10, 87, (1959)

Effect of Epitaxial Strain

•

•

•

•

•

•

•

0

•

•

۰

•

۰

•

۲

0

•

•

•

•

0

•

•

•

•

Strain Engineering

•

•

•

•

•

•

0

•

•

•

Compresively strained LSCO/LSMO

•

•

•

FM ground state independent on strain

0

•

•

•

0

•

•

•

•

Koohfar, et al. Phys. Rev B 101, 064420 (2020)

•

•

0

DFT Magnetic ground states

0

0

•

Cr-Mn AF coupling

•

- AF Mn-Cr exchange confirmed for both compressive (LAO) and tensile (STO) strain

Strain-dependent Orbital ordering

•

•

Strain dependent orbital polarization

Tokura, Nagaosa, Science, 288, 462 (2000)

Summary

- Demonstrated atomic scale control of magnetism in 2D oxide films
- Strong interplay of electronic/magnetic properties with atomic scale structural distortion in thin LaSrMnO₃ films .
- Important implications for the design of optimized complex oxide materials

Koohfar, et al. Phys. Rev B 101, 064420 (2020)

- Ferromagnetism in quasi-2D LaSrMnO₃ with bulk-like Mn moments
- Magnetic ground state related to interfacial orbital and structural interactions

•	- •	••	- •	• •	• •	• •	• •	• •	• • •	• •	- • •	•
•	- •	• •	• •	••	•	••	•	• •	•	• •	- •	۰

Atomic structure of 3/3/3

 LSMO bond-angles close to bulk (166°)
 Suppressed polar distortions in LSMO

The absorption edges (first peak for each curve) occur at 5.9922 ± -0.0005 keV for Cr metal and 6.0035 ± -0.0005 keV for the superlattice. The energy shift of ~ 12 eV corresponds to a Cr valence of $\pm 3.3 \pm -0.1$ eV

The absorption edges for the 3 samples occurs at $\sim 6.5526 \pm -0.0005$ keV.

0

- No chemical shift observed.