
WÜRZBURG

AG Sangiovanni

Engineering correlated orbitals: metal-insulator and topological phase transitions

In collaboration with

- Severino Adler Philipp Eck

- Domenico Di Sante (Würzburg)
- Alessandro Toschi Karsten Held (Vienna)
- Tim Wehling (Bremen)

Roser Valentí (Frankfurt)

- Adriano Amaricci

Massimo Capone (Trieste)

- Jan Budich (Dresden) Björn Trauzettel (Würzburg)

UNIVERSITÄT wÜrzBurg

AG Sangiovanni

Engineering correlated orbitals: metal-insulator and topological phase transitions

In collaboration with

- Severino Adler Philipp Eck

- Domenico Di Sante (Würzburg)
- Alessandro Toschi Karsten Held (Vienna)
- Tim Wehling (Bremen) Roser Valentí (Frankfurt)
- Adriano Amaricci

Massimo Capone (Trieste)

- Jan Budich (Dresden)

Björn Trauzettel (Würzburg)

Julius-Maximilians-

UNIVERSITÄT

 outline- example of nickelate heterostructures (pre-d ${ }^{9}$ nickel-age of superconductivity -H . Hwang)
- splitting of two e_{g} orbitals, $\mathrm{d}^{7}-\mathrm{d}^{8}$ physics
J. Chaloupka, et al., PRL (2007)
A. Poteryaev, , et al., PRB (2008)
P. Hansmann, et al., PRL (2009)
N. Parragh, et al., PRB (2013)
H. Park, et al., PRB (2014)
A. Rüegg, et al., PRB (2014)
O. Peil, et al., PRB (2014)

UNIVERSITÄT wURZBURG

outline

- example of nickelate heterostructures (pre-d ${ }^{9}$ nickel-age of superconductivity -H . Hwang)
- splitting of two e_{g} orbitals, $\mathrm{d}^{7}-\mathrm{d}^{8}$ physics
- inclusion of many-body effects \Longrightarrow two possible results
J. Chaloupka, et al., PRL (2007)
A. Poteryaev, , et al., PRB (2008)
P. Hansmann, et al., PRL (2009)
N. Parragh, et al., PRB (2013)
H. Park, et al., PRB (2014)
A. Rüegg, et al., PRB (2014)
O. Peil, et al., PRB (2014)

"effective" crystal-field splitting
$\Delta_{\mathrm{eff}}^{e_{g}}=\Delta_{\mathrm{DFT}}^{e_{g}}+\operatorname{Re} \Sigma_{3 z^{2}-r^{2}}(\omega \rightarrow 0)-\operatorname{Re} \Sigma_{x^{2}-y^{2}}(\omega \rightarrow 0)$

UNIVERSITÄT WÜZZBURG

outline

- example of nickelate heterostructures (pre-d ${ }^{9}$ nickel-age of superconductivity -H . Hwang)
- splitting of two e_{g} orbitals, $\mathrm{d}^{7}-\mathrm{d}^{8}$ physics
- inclusion of many-body effects \Longrightarrow two possible results
J. Chaloupka, et al., PRL (2007)
A. Poteryaev, , et al., PRB (2008)
P. Hansmann, et al., PRL (2009)
N. Parragh, et al., PRB (2013)
H. Park, et al., PRB (2014)
A. Rüegg, et al., PRB (2014)
O. Peil, et al., PRB (2014)

"effective" crystal-field splitting
$\Delta_{\mathrm{eff}}^{e_{g}}=\Delta_{\mathrm{DFT}}^{e_{g}}+\operatorname{Re} \Sigma_{3 z^{2}-r^{2}}(\omega \rightarrow 0)-\operatorname{Re} \Sigma_{x^{2}-y^{2}}(\omega \rightarrow 0)$

UNIVERSITÄT WÜZZBURG

outline

- example of nickelate heterostructures (pre-d ${ }^{9}$ nickel-age of superconductivity -H . Hwang)
- splitting of two e_{g} orbitals, $\mathrm{d}^{7}-\mathrm{d}^{8}$ physics
- inclusion of many-body effects \Longrightarrow two possible results
J. Chaloupka, et al., PRL (2007)
A. Poteryaev, , et al., PRB (2008)
P. Hansmann, et al., PRL (2009)
N. Parragh, et al., PRB (2013)
H. Park, et al., PRB (2014)
A. Rüegg, et al., PRB (2014)
O. Peil, et al., PRB (2014)

"effective" crystal-field splitting
$\Delta_{\mathrm{eff}}^{e_{g}}=\Delta_{\mathrm{DFT}}^{e_{g}}+\operatorname{Re} \Sigma_{3 z^{2}-r^{2}}(\omega \rightarrow 0)-\operatorname{Re} \Sigma_{x^{2}-y^{2}}(\omega \rightarrow 0)$

UNIVERSITÄT WÜRZBURG

outline

- example of nickelate heterostructures (pre-d ${ }^{9}$ nickel-age of superconductivity -H . Hwang)
- splitting of two e_{g} orbitals, $\mathrm{d}^{7}-\mathrm{d}^{8}$ physics
- inclusion of many-body effects \Longrightarrow two possible results
J. Chaloupka, et al., PRL (2007)
A. Poteryaev, , et al., PRB (2008)
P. Hansmann, et al., PRL (2009)
N. Parragh, et al., PRB (2013)
H. Park, et al., PRB (2014)
A. Rüegg, et al., PRB (2014)
O. Peil, et al., PRB (2014)

"effective" crystal-field splitting
$\Delta_{\mathrm{eff}}^{e_{g}}=\Delta_{\mathrm{DFT}}^{e_{g}}+\operatorname{Re} \Sigma_{3 z^{2}-r^{2}}(\omega \rightarrow 0)-\operatorname{Re} \Sigma_{x^{2}-y^{2}}(\omega \rightarrow 0)$

outline

- example of nickelate heterostructures (pre-d ${ }^{9}$ nickel-age of superconductivity -H . Hwang)
- splitting of two e_{g} orbitals, $\mathrm{d}^{7}-\mathrm{d}^{8}$ physics

1st part of my talk oxide heterostructures
J. Chaloupka, et al., PRL (2007) A. Poteryaev, , et al., PRB (2008)
P. Hansmann, et al., PRL (2009)
N. Parragh, et al., PRB (2013)
H. Park, et al., PRB (2014)
A. Rüegg, et al., PRB (2014)
O. Peil, et al., PRB (2014)

"effective" crystal-field splitting

$2^{\text {nd }}$ part of my talk correlated Tls twisted-bilayer TMD

$\Delta_{\mathrm{eff}}^{e_{g}}=\Delta_{\mathrm{DFT}}^{e_{g}}+\operatorname{Re} \Sigma_{3 z^{2}-r^{2}}(\omega \rightarrow 0)-\operatorname{Re} \Sigma_{x^{2}-y^{2}}(\omega \rightarrow 0)$

outline

- example of nickelate heterostructures (pre-d ${ }^{9}$ nickel-age of superconductivity -H . Hwang)
- splitting of two e_{g} orbitals, $\mathrm{d}^{7}-\mathrm{d}^{8}$ physics

1st part of my talk oxide heterostructures
J. Chaloupka, et al., PRL (2007) A. Poteryaev, , et al., PRB (2008)
P. Hansmann, et al., PRL (2009)
N. Parragh, et al., PRB (2013)
H. Park, et al., PRB (2014)
A. Rüegg, et al., PRB (2014)
O. Peil, et al., PRB (2014)

"effective" crystal-field splitting
$\Delta_{\mathrm{eff}}^{e_{g}}=\Delta_{\mathrm{DFT}}^{e_{g}}+\operatorname{Re} \Sigma_{3 z^{2}-r^{2}}(\omega \rightarrow 0)-\operatorname{Re} \Sigma_{x^{2}-y^{2}}(\omega \rightarrow 0)$

- always useful/meaningful?
- what happens when we lose such simple single-particle picture?
- inclusion of many-body effects \Longrightarrow two possible results

Oxide Heterostructures

- highly active field, even several years after the first pioneering contributions by H. Hwang, A. Millis, etc... [previous talk by Divine Kumah]
- platform for superconductivity and magnetism
- d-electrons: strong responses beyond bulk phase diagrams

$\mathrm{LaTiO}_{3} / \mathrm{SrTiO}_{3}$

Okamoto, et al. PRL (2006)

Mannhart et al. MRS Bull. (2008)

Bert et al. Nature Phys. (2011)

Oxide Heterostructures

- highly active field, even several years after the first pioneering contributions by H. Hwang, A. Millis, etc... [previous talk by Divine Kumah]
- platform for superconductivity and magnetism
- d-electrons: strong responses beyond bulk phase diagrams

Bert et al. Nature Phys. (2011)

UNIVERSITÄT WURZBURG

Oxide Heterostructures

- highly active field, even several years after the first pioneering contributions by H. Hwang, A. Millis, etc... [previous talk by Divine Kumah]
- platform for superconductivity and magnetism
- d-electrons: strong responses beyond bulk phase diagrams
$\mathrm{LaTiO}_{3} / \mathrm{SrTiO}_{3}$
Okamoto, et al. PRL (2006)
thickness-induced metal-insulator transitions

Mannhart et al. MRS Bull. (2008)

- thin films of good-old-friend SrVO_{3} on SrTiO_{3}
- weight at E_{F} disappears for small values of n

Yoshimatsu, et al., PRL (2010)

Julius-Maximilians
 UNIVERSITÅT WÜRZBURG

- thin films of good-old-friend SrVO_{3} on SrTiO_{3}
- weight at E_{F} disappears for small values of n
- SVO thin films in DFT ($\mathrm{n}=2$)
- splitting of the $\mathrm{t}_{2 g}$

Yoshimatsu, et al., PRL (2010)

Julius-Maximilians
 UNIVVERSITÅT WÜRZBURG

- thin films of good-old-friend SrVO_{3} on SrTiO_{3}
- weight at E_{F} disappears for small values of n

- SVO thin films in DFT ($\mathrm{n}=2$)
- splitting of the $\mathrm{t}_{2 g}$

Yoshimatsu, et al., PRL (2010)

UNIVERSITÄT WÜRZBURG

Device concept?

RL 114, 246401 (2015)
PHYSICAL REVIEW LETTERS

Electronics with Correlated Oxides: $\mathrm{SrVO}_{3} / \mathrm{SrTiO}_{3}$ as a Mott Transistor

 Zhicheng Zhong, ${ }^{1}$ Markus Wallerberger, ${ }^{1}$ Jan M. Tomczak, ${ }^{1}$ Ciro Taranto, ${ }^{1}$ Nicolaus Parragh, ${ }^{2}$ Alessandro Toschi, ${ }^{1}$ Giorgio Sangiovanni, ${ }^{2}$ and Karsten Held ${ }^{1}$- 2 V-layers ($\mathrm{n}=2$): insulating in DFT+DMFT
- $\mathrm{n}=3$ already metallic

$$
\Delta_{\mathrm{eff}}^{t_{2 g}}=\Delta_{\mathrm{DFT}}^{t_{2 g}}+\operatorname{Re} \Sigma_{y z / x z}(\omega \rightarrow 0)-\operatorname{Re} \Sigma_{x y}(\omega \rightarrow 0)
$$

UNIVERSITÄT WÜRZBURG

Device concept?

PRL 114, 246401 (2015

Electronics with Correlated Oxides: $\mathrm{SrVO}_{3} / \mathrm{SrTiO}_{3}$ as a Mott Transistor

 Zhicheng Zhong, ${ }^{1}$ Markus Wallerberger, ${ }^{1}$ Jan M. Tomczak, ${ }^{1}$ Ciro Taranto, ${ }^{1}$ Nicolaus Parragh, ${ }^{2}$ Alessandro Toschi, ${ }^{1}$ Giorgio Sangiovanni, ${ }^{2}$ and Karsten Held ${ }^{1}$- 2 V-layers ($\mathrm{n}=2$): insulating in DFT+DMFT
- $\mathrm{n}=3$ already metallic

$$
\Delta_{\mathrm{eff}}^{t_{2 g}}=\Delta_{\mathrm{DFT}}^{t_{2 g}}+\operatorname{Re} \Sigma_{y z / x z}(\omega \rightarrow 0)-\operatorname{Re} \Sigma_{x y}(\omega \rightarrow 0)
$$

- smooth correction within Hartree-Fock ($\mathrm{Re} \mathbf{\Sigma} \sim \mathrm{Un}$)
- DMFT: non-linear effects/first-order behavior

UNIVERSITÄT WURZBURG

Device concept?

PRL 114, 246401 (2015

- orbital polarization easy to switch ON and OFF!
(thickness, pressure, strain, temperature, gating,...)
- 2 V-layers ($\mathrm{n}=2$): insulating in DFT+DMFT
- $\mathrm{n}=3$ already metallic

$$
\Delta_{\mathrm{eff}}^{t_{2 g}}=\Delta_{\mathrm{DFT}}^{t_{2 g}}+\operatorname{Re} \Sigma_{y z / x z}(\omega \rightarrow 0)-\operatorname{Re} \Sigma_{x y}(\omega \rightarrow 0)
$$

- smooth correction within Hartree-Fock ($\mathrm{Re} \mathbf{\Sigma} \sim \mathrm{Un}$)
- DMFT: non-linear effects/first-order behavior

- termination for SrVO_{3} fims on SrTiO_{3}
- $\mathrm{VO}_{2}+\sqrt{ } 2 \times \sqrt{ } 2$ oxygen reconstruction
- solution: capping!

- surprising result:
critical thickness much bigger than
Yoshimatsu, et al. and DFT+DMFT

Surface of SVO thin films

- termination for SrVO_{3} fims on SrTiO_{3}
- $\mathrm{VO}_{2}+\sqrt{ } 2 \times \sqrt{ } 2$ oxygen reconstruction
- solution: capping!

- surprising result:
critical thickness much bigger than
Yoshimatsu, et al. and DFT+DMFT
- many-body correction to $\Delta_{\mathrm{DFT}}^{t_{2 g}}$ determines orbital polarization
- enhancement, but in which direction? importance of the sign of $\Delta_{\mathrm{DFT}}^{t_{2 g}}$
- work in progress (Würzburg + Vienna)

Surface of SVO thin films

- termination for SrVO_{3} fims on SrTiO_{3}
- $\mathrm{VO}_{2}+\sqrt{ } 2 \times \sqrt{ } 2$ oxygen reconstruction
- solution: capping!

- surprising result:
critical thickness much bigger than
Yoshimatsu, et al. and DFT+DMFT

STO cap

- 。 . . • Ti ${ }^{4+}$
- ••••• V^{4+}
- ••••• V^{4+}

$\mathrm{O} \cdot \mathrm{Ti} \cdot \mathrm{Sr} \bullet \mathrm{V}$
- many-body correction to $\Delta_{\mathrm{DFT}}^{t_{2 g}}$ determines orbital polarization
- enhancement, but in which direction? importance of the sign of $\Delta_{\mathrm{DFT}}^{t_{2 g}}$
- work in progress (Würzburg + Vienna)

UNIVERSITÄT WÜRZBURG

Surface of SVO thin films

- termination for SrVO_{3} fims on SrTiO_{3}
- $\mathrm{VO}_{2}+\sqrt{ } 2 \times \sqrt{ } 2$ oxygen reconstruction
- solution: capping!

- surprising result:
critical thickness much bigger than
Yoshimatsu, et al. and DFT+DMFT
Yoshimatsu, et al. and DFT+DMFT
- many-body correction to $\Delta_{\text {DFT }}^{t_{2 g}}$ determines orbital polarization
- enhancement, but in which direction? importance of the sign of $\Delta_{\mathrm{DFT}}^{t_{2 g}}$
- work in progress (Würzburg + Vienna)

UNIVERSITÄT WÜRZBURG

- iridium thin films (spin-orbit)
$5 \underline{\underline{\underline{\underline{\underline{D}}}}}$

week ending 22 DECEMBER 201

Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO_{3}

$$
\text { P. Schütz, }{ }^{1} \text { D. Di Sante, }{ }^{2} \text { L. Dudy, }{ }^{1} \text { J. Gabel, }{ }^{1} \text { M. Stübinger, }{ }^{1} \text { M. Kamp, }{ }^{1} \text { Y. Huang, }{ }^{3} \text { M. Capone, }{ }^{4}
$$

$$
\text { M.-A. Husanu, }{ }^{5,6} \text { V. N. Strocov, }{ }^{6} \text { G. Sangiovanni, }{ }^{2} \text { M. Sing, }{ }^{1} \text { and R. Claessen }{ }^{1}
$$

UNIVERSITÄT wURZBURG

- iridium thin films (spin-orbit)

- mimicking the Ruddlesden-Popper series:
H. Zhang, et al. PRL (2013)

PRL 119, 256404 (2017)

Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO ${ }_{3}$

UNIVERSITÄT wURZEURG

- iridium thin films (spin-orbit)

- mimicking the Ruddlesden-Popper series:
H. Zhang, et al. PRL (2013)

PRL 119, 256404 (2017)

Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO_{3}

$$
\text { P. Schütz, }{ }^{1} \text { D. Di Sante, }{ }^{2} \text { L. Dudy, }{ }^{1} \text { J. Gabel, }{ }^{1} \text { M. Stübinger, }{ }^{1} \text { M. Kamp, }{ }^{1} \text { Y. Huang, }{ }^{3} \text { M. Capone, }{ }^{4}
$$

$$
\text { M.-A. Husanu, }{ }^{5,6} \text { V. N. Strocov, }{ }^{6} \text { G. Sangiovanni, }{ }^{2} \text { M. Sing, }{ }^{1} \text { and R. Claessen }{ }^{1}
$$

- interplay between SOC, structural distortions and magnetism
- see poster by Severino Adler on 5d3 Osmates

UNIVERSITÄT WÜRZBURG

- iridium thin films (spin-orbit)

- mimicking the Ruddlesden-Popper series:
H. Zhang, et al. PRL (2013)

Termination conservation

$$
2 \cdot \mathrm{IrO}_{2}(\text { solid })+\mathrm{O}
$$

Termination conversion
confirmed by DFT+U calculations (Domenico Di Sante)
P. Schütz, et al. submitted

Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO_{3}
P. Schütz, ${ }^{1}$ D. Di Sante, ${ }^{2}$ L. Dudy, ${ }^{1}$ J. Gabel, ${ }^{1}$ M. Stübinger, ${ }^{1}$ M. Kamp, ${ }^{1}$ Y. Huang, ${ }^{3}$ M. Capone, ${ }^{4}$ M.-A. Husanu, ${ }^{5,6}$ V. N. Strocov, ${ }^{6}$ G. Sangiovanni, ${ }^{2}$ M. Sing, ${ }^{1}$ and R. Claessen ${ }^{1}$

- interplay between SOC, structural distortions and magnetism
- see poster by Severino Adler on 5d³ Osmates

Julius-Maximilians-
UNIVERSITÄT WÜRZBURG

- in nickel heterostructures: when the d-shell gets closer to d^{8}
- Hund's tendecy to high-spin triplet Mott insulator in the e_{g} doublet

Julius-Maximilians-
UNIVERSITÄT WÜRZBURG

- in nickel heterostructures: when the d-shell gets closer to d^{8}
- Hund's tendecy to high-spin triplet Mott insulator in the e_{g} doublet

- in nickel heterostructures: when the d-shell gets closer to d^{8}
- Hund's tendecy to high-spin triplet Mott insulator in the e_{g} doublet

- HgTe (BHZ model) A. Bernevig, et al. Science (2006)
- Two orbitals ($\mathbf{s} \mathbf{p}$) and spin 1/2
- Time-reversal

$$
\mathbf{H}_{4 \times 4}(\mathbf{k})=\left(\begin{array}{c:c}
\hat{h}_{0}(\mathbf{k}) & \uparrow \downarrow \\
\hdashline \downarrow \ldots \ldots \ldots \ldots \ldots \ldots \\
\hdashline \downarrow & \hat{h}_{0}^{*}(-\mathbf{k})
\end{array}\right) \quad \hat{h}_{0}(\mathbf{k})=\vec{d}(\mathbf{k}) \cdot \vec{\tau}
$$

- $\mathrm{U}(1)_{\text {spin }}$ symmetry

$$
\vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
M-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

- in nickel heterostructures: when the d-shell gets closer to d^{8}
- Hund's tendecy to high-spin triplet Mott insulator in the e_{g} doublet

- HgTe (BHZ model) A. Bernevig, etal. Science (2006)
- Two orbitals ($\mathbf{s} \mathbf{p}$) and spin 1/2
- Time-reversal
$\mathbf{H}_{4 \times 4}(\mathbf{k})=\left(\begin{array}{c:c}\hat{h}_{0}(\mathbf{k}) & \uparrow \downarrow \\ \hdashline \downarrow \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\ \hdashline \downarrow \uparrow & \hat{h}_{0}^{*}(-\mathbf{k})\end{array}\right)$
Pauli matrices in orbital space
- $\mathrm{U}(1)_{\text {spin }}$ symmetry

$$
\vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
M-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

UNIVERSITÄT WURZBURG

- in nickel heterostructures: when the d-shell gets closer to d^{8}
- Hund's tendecy to high-spin triplet Mott insulator in the e_{g} doublet

- HgTe (BHZ model) A. Bernevig, et al. Science (2006)
- Two orbitals ($\mathbf{s} \mathbf{p}$) and spin 1/2
- Time-reversal

Pauli matrices in orbital space
- $\mathrm{U}(1)_{\text {spin }}$ symmetry

$\mathscr{C}_{1}=0$

$$
\vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
M-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

$\mathscr{C}_{1}=1$

Julius-Maximilians-
UNIVERSITÄT

BHZ-Hubbard model

- orbital structure of interaction for the BHZ + Hubbard U, Hund J
- simplest local interaction term
[see A. Georges, L. de’ Medici and J. Mravlje, Annu. Rev. Condens. Matter Phys. (2013)]

$$
\vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
M-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

$$
\mathcal{H}_{\text {int }}(\mathrm{i})=(U-J) \frac{N_{\mathrm{i}}\left(N_{\mathrm{i}}-1\right)}{2}-J\left(\frac{N_{\mathrm{i}}^{2}}{4}+S_{z \mathrm{i}}^{2}-2 T_{z \mathrm{i}}^{2}\right)
$$

UNIVERSITÄT WÜRZBURG

BHZ-Hubbard model

- orbital structure of interaction for the BHZ + Hubbard U, Hund J
- simplest local interaction term
[see A. Georges, L. de’ Medici and J. Mravlje, Annu. Rev. Condens. Matter Phys. (2013)]

$$
\vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
M-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

$$
\mathcal{H}_{\text {int }}(\mathrm{i})=(U-J) \frac{N_{\mathrm{i}}\left(N_{\mathrm{i}}-1\right)}{2}-J\left(\frac{N_{\mathrm{i}}^{2}}{4}+S_{z \mathrm{i}}^{2}-2 T_{z \mathrm{i}}^{2}\right)
$$

UNIVERSITÄT WÜRZBURG

BHZ-Hubbard model

- orbital structure of interaction for the BHZ + Hubbard U, Hund J
- simplest local interaction term [see A. Georges, L. de’ Medici and J. Mravlje, Annu. Rev. Condens. Matter Phys. (2013)]

$$
\mathcal{H}_{\mathrm{int}}(\mathrm{i})=(U-J) \frac{N_{\mathrm{i}}\left(N_{\mathrm{i}}-1\right)}{2}-J\left(\frac{N_{\mathrm{i}}^{2}}{4}+S_{z \mathrm{i}}^{2}-2 T_{z \mathrm{i}}^{2}\right)
$$

$$
\vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
\underbrace{M-\operatorname{Re} \Sigma(0)}-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

zeroth-order correction: $M_{\text {eff }}$
Y. Tada, et al. PRB (2012) T. Yoshida, et al. PRB (2012) L. Wang, et al. EPL (2012) J. Budich, et al. PRB (2012) J. Budich, et al. PRB (2013)

- Intra- + inter-orbital J (Hund) interaction
- U suppresses double occupancies \Longrightarrow reduced effective orbital splitting $M_{\text {eff }}$

UNIVERSITÄT WURZBURG

BHZ-Hubbard model

- orbital structure of interaction for the BHZ + Hubbard U, Hund J
- simplest local interaction term
[see A. Georges, L. de’ Medici and J. Mravlje, Annu. Rev. Condens. Matter Phys. (2013)]

$$
\mathcal{H}_{\mathrm{int}}(\mathrm{i})=(U-J) \frac{N_{\mathrm{i}}\left(N_{\mathrm{i}}-1\right)}{2}-J\left(\frac{N_{\mathrm{i}}^{2}}{4}+S_{z \mathrm{i}}^{2}-2 T_{z \mathrm{i}}^{2}\right)
$$

$$
\vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
{\text { zeroth-order correction: } M_{\text {eff }}}_{M-\operatorname{Re} \Sigma(0)}-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

- Intra- + inter-orbital J (Hund) interaction
- U suppresses double occupancies \Longrightarrow reduced effective orbital splitting $M_{\text {eff }}$
- QSH extends at large- U and large $-M$, as a "precursor" of the high-spin phase

 solver: CT-HYB
antiferromagnetic insulator

UNIVERSITÄT WÜRZBURG

BHZ-Hubbard model

- orbital structure of interaction for the BHZ + Hubbard U, Hund J
- simplest local interaction term
[see A. Georges, L. de’ Medici and J. Mravlje, Annu. Rev. Condens. Matter Phys. (2013)]

$$
\mathcal{H}_{\mathrm{int}}(\mathrm{i})=(U-J) \frac{N_{\mathrm{i}}\left(N_{\mathrm{i}}-1\right)}{2}-J\left(\frac{N_{\mathrm{i}}^{2}}{4}+S_{z \mathrm{i}}^{2}-2 T_{z \mathrm{i}}^{2}\right)
$$

UB"

- Intra- + inter-orbital J (Hund) interaction
- U suppresses double occupancies \Longrightarrow reduced effective orbital splitting $M_{\text {eff }}$
- QSH extends at large- U and large- M, as a "precursor" of the high-spin phase
- ...but there is more to that: see color coding in the phase diagram!

$$
\vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
{\text { zeroth-order correction: } M_{\text {eff }}}^{\operatorname{Re} \Sigma(0)-\cos k_{x}-\cos k_{y}}
\end{array}\right)
$$

Julius-Maximilians
UNIVERSITÅT WÜRZBURG

BHZ-Hubbard model

- where do the colors come from?

$$
\mathcal{H}_{\mathrm{int}}(\mathrm{i})=(U-J) \frac{N_{\mathrm{i}}\left(N_{\mathrm{i}}-1\right)}{2}-J\left(\frac{N_{\mathrm{i}}^{2}}{4}+S_{z \mathrm{i}}^{2}-2 T_{z \mathrm{i}}^{2}\right) \quad \vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
M-\operatorname{Re} \Sigma(0)-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

UNIVERSITÄT wÜRZBURG

BHZ-Hubbard model

- where do the colors come from?

$$
\mathcal{H}_{\mathrm{int}}(\mathrm{i})=(U-J) \frac{N_{\mathrm{i}}\left(N_{\mathrm{i}}-1\right)}{2}-J\left(\frac{N_{\mathrm{i}}^{2}}{4}+S_{z \mathrm{i}}^{2}-2 T_{z \mathrm{i}}^{2}\right) \quad \vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
M-\operatorname{Re} \Sigma(0)-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

- distinction between flat "Hartree-Fock" and
- pronounced ω-structure of many-body nature

UNIVERSITÄT WÜZZBURG

BHZ-Hubbard model

- where do the colors come from?

$$
\mathcal{H}_{\mathrm{int}}(\mathrm{i})=(U-J) \frac{N_{\mathrm{i}}\left(N_{\mathrm{i}}-1\right)}{2}-J\left(\frac{N_{\mathrm{i}}^{2}}{4}+S_{z \mathrm{i}}^{2}-2 T_{z \mathrm{i}}^{2}\right) \quad \vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
M-\operatorname{Re} \Sigma(0)-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

- distinction between flat "Hartree-Fock" and
- pronounced ω-structure of many-body nature

UNIVERSITÄT WÜZZBURG

BHZ-Hubbard model

- where do the colors come from?

$$
\mathcal{H}_{\mathrm{int}}(\mathrm{i})=(U-J) \frac{N_{\mathrm{i}}\left(N_{\mathrm{i}}-1\right)}{2}-J\left(\frac{N_{\mathrm{i}}^{2}}{4}+S_{z \mathrm{i}}^{2}-2 T_{z \mathrm{i}}^{2}\right) \quad \vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
M-\operatorname{Re} \Sigma(0)-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

- distinction between flat "Hartree-Fock" and
- pronounced ω-structure of many-body nature
color scale:
$|\operatorname{Re} \Sigma(\omega=0)-\operatorname{Re} \Sigma(\omega=\infty)| \stackrel{\uparrow}{+}$

UNIVERSITÄT WÜZZBURG

BHZ-Hubbard model

- where do the colors come from?

$$
\mathcal{H}_{\mathrm{int}}(\mathrm{i})=(U-J) \frac{N_{\mathrm{i}}\left(N_{\mathrm{i}}-1\right)}{2}-J\left(\frac{N_{\mathrm{i}}^{2}}{4}+S_{z \mathrm{i}}^{2}-2 T_{z \mathrm{i}}^{2}\right) \quad \vec{d}(\mathbf{k})=\left(\begin{array}{c}
\lambda \sin k_{x} \\
\lambda \sin k_{y} \\
M-\operatorname{Re} \Sigma(0)-\cos k_{x}-\cos k_{y}
\end{array}\right)
$$

- distinction between flat "Hartree-Fock" and
- pronounced ω-structure of many-body nature
- QSHI and BI no longer smoothly connected
- Gap inversion occurring via a jump

1st-order QSH transition also in Xue\&MacDonald PRL (2018)

Consequences on the topological phase transition

- gap closing: for $U<U_{c}$ smooth topological phase transition (green \rightarrow green)
- no semimetal for $U \backslash U_{c}$ when the \mathbb{Z}_{2} topological invariant changes (green \rightarrow red)!
- new termodynamics, beyond single-particle effective description

Consequences on the topological phase transition

- gap closing: for $U<U_{c}$ smooth topological phase transition (green \rightarrow green)
- no semimetal for $U \backslash U_{c}$ when the \mathbb{Z}_{2} topological invariant changes (green \rightarrow red)!
- new termodynamics, beyond single-particle effective description

Consequences on the topological phase transition

- gap closing: for $U<U_{c}$ smooth topological phase transition (green \rightarrow green)
- no semimetal for $U S U_{c}$ when the \mathbb{Z}_{2} topological invariant changes (green \rightarrow red)!
- new termodynamics, beyond single-particle effective description

Consequences on the topological phase transition

- gap closing: for $U<U_{c}$ smooth topological phase transition (green \rightarrow green)
- no semimetal for $U \backslash U_{c}$ when the \mathbb{Z}_{2} topological invariant changes (green \rightarrow red)!
- new termodynamics, beyond single-particle effective description
- analogy with the Kane-Mele-Hubbard and Haldane-Hubbard models

$$
H=t \sum_{\langle i j\rangle, \alpha} c_{i, \alpha}^{\dagger} c_{j, \alpha}+i \lambda_{\mathrm{SO}} \sum_{\langle\langle i j\rangle\rangle, \alpha \alpha^{\prime}} \nu_{i j} c_{i, \alpha}^{\dagger} s_{\alpha \alpha^{\prime}}^{z} c_{j, \alpha^{\prime}}+i \lambda_{R} \sum_{\langle i j\rangle, \alpha \alpha^{\prime}} c_{i, \alpha}^{\dagger}\left(\mathbf{s} \times \hat{\mathbf{d}}_{i j}\right)_{\alpha \alpha^{\prime}}^{z} c_{j, \alpha^{\prime}}
$$

Consequences on the topological phase transition

- gap closing: for $U<U_{c}$ smooth topological phase transition (green \rightarrow green)
- no semimetal for $U \backslash U_{c}$ when the \mathbb{Z}_{2} topological invariant changes (green \rightarrow red)!
- new termodynamics, beyond single-particle effective description
- analogy with the Kane-Mele-Hubbard and Haldane-Hubbard models

A/B splitting

$$
H=t \sum_{\langle i j\rangle, \alpha} c_{i, \alpha}^{\dagger} c_{j, \alpha}+i \lambda_{\mathrm{SO}} \sum_{\langle\langle i j\rangle\rangle, \alpha \alpha^{\prime}} v_{i j} c_{i, \alpha}^{\dagger} s_{\alpha \alpha^{\prime}}^{z} c_{j, \alpha^{\prime}}+i \lambda_{R} \sum_{\langle i j\rangle, \alpha \alpha^{\prime}} c_{i, \alpha}^{\dagger}\left(\mathbf{s} \times \hat{\mathbf{d}}_{i j}\right)_{\alpha \alpha^{\prime}}^{z} c_{j, \alpha^{\prime}}+\mathrm{M} \sum_{i, \alpha}^{\mathrm{A}, \mathrm{~B}} \xi_{i} c_{i, \alpha}^{\dagger} c_{i, \alpha}
$$

Consequences on the topological phase transition

- gap closing: for $U<U_{c}$ smooth topological phase transition (green \rightarrow green)
- no semimetal for $U \backslash U_{c}$ when the \mathbb{Z}_{2} topological invariant changes (green \rightarrow red)!
- new termodynamics, beyond single-particle effective description
- analogy with the Kane-Mele-Hubbard and Haldane-Hubbard models

$$
H=t \sum_{\langle i j\rangle, \alpha} c_{i, \alpha}^{\dagger} c_{j, \alpha}+i \lambda_{\mathrm{SO}} \sum_{\langle\langle i j\rangle\rangle, \alpha \alpha^{\prime}} v_{i j} c_{i, \alpha}^{\dagger} s_{\alpha \alpha^{\prime}}^{z} c_{j, \alpha^{\prime}}+i \lambda_{R} \sum_{\langle i j\rangle, \alpha \alpha^{\prime}} c_{i, \alpha}^{\dagger}\left(\mathbf{s} \times \hat{\mathbf{d}}_{i j} j_{\alpha \alpha^{\prime}}^{z} c_{j, \alpha^{\prime}}+\mathrm{M} \sum_{i, \alpha}^{\mathrm{A}, \mathrm{~B}} \xi_{i} c_{i, \alpha}^{\dagger} c_{i, \alpha}\right.
$$

Consequences on the topological phase transition

- gap closing: for $U<U_{c}$ smooth topological phase transition (green \rightarrow green)
- no semimetal for $U \backslash U_{c}$ when the \mathbb{Z}_{2} topological invariant changes (green \rightarrow red)!
- new termodynamics, beyond single-particle effective description
- analogy with the Kane-Mele-Hubbard and Haldane-Hubbard models

$$
H=t \sum_{\langle i j\rangle, \alpha} c_{i, \alpha}^{\dagger} c_{j, \alpha}+i \lambda_{\mathrm{SO}} \sum_{\langle\langle i j\rangle\rangle, \alpha \alpha^{\prime}} v_{i j} c_{i, \alpha}^{\dagger} s_{\alpha \alpha^{\prime}}^{z} c_{j, \alpha^{\prime}}+i \lambda_{R} \sum_{\langle i j\rangle, \alpha \alpha^{\prime}} c_{i, \alpha}^{\dagger}\left(\mathbf{s} \times \hat{\mathbf{d}}_{i j} j_{\alpha \alpha^{\prime}}^{z} c_{j, \alpha^{\prime}}+\mathrm{M} \sum_{i, \alpha}^{\mathrm{A}, \mathrm{~B}} \xi_{i} c_{i, \alpha}^{\dagger} c_{i, \alpha}\right.
$$

 PRL (2005)

UNIVERSITÄT WÜZZBURG

Consequences on the topological phase transition

- gap closing: for $U<U_{c}$ smooth topological phase transition (green \rightarrow green)
- no semimetal for $U \backslash U_{c}$ when the \mathbb{Z}_{2} topological invariant changes (green \rightarrow red)!
- new termodynamics, beyond single-particle effective description
- analogy with the Kane-Mele-Hubbard and Haldane-Hubbard models

A/B splitting

$$
H=t \sum_{\langle i j\rangle, \alpha} c_{i, \alpha}^{\dagger} c_{j, \alpha}+i \lambda_{\mathrm{SO}} \sum_{\langle\langle i j\rangle\rangle, \alpha \alpha^{\prime}} v_{i j} c_{i, \alpha}^{\dagger} s_{\alpha \alpha^{\prime}}^{z} c_{j, \alpha^{\prime}}+i \lambda_{R} \sum_{\langle i j\rangle, \alpha \alpha^{\prime}} c_{i, \alpha}^{\dagger}\left(\mathbf{s} \times \hat{\mathbf{d}}_{i j}\right)_{\alpha \alpha^{\prime}}^{z} c_{j, \alpha^{\prime}}+\mathrm{M} \sum_{i, \alpha}^{\mathrm{A}, \mathrm{~B}} \xi_{i} c_{i, \alpha}^{\dagger} c_{i, \alpha}
$$

Material realization?

- TaSe_{2} [arXiv:2001.04102] in cooperation with S. Adler, P. Barone (Rome) + group of R. Valentí (Frankfurt) and J. M. Pizarro and T. Wehling (Bremen)
- 1T-monolayer: "star-of-David" $\sqrt{ } 13 \times \sqrt{ } 13$ CDW reconstructions

Material realization?

- TaSe_{2} [arXiv:2001.04102] in cooperation with S. Adler, P. Barone (Rome) + group of R. Valentí (Frankfurt) and J. M. Pizarro and T. Wehling (Bremen)
- 1T-monolayer: "star-of-David" $\sqrt{ } 13 \times \sqrt{ } 13$ CDW reconstructions

flat Ta d-band

UNIVERSITÄT wÜRZBURG

Material realization?

- TaSe 2 [arXiv:2001.04102] in cooperation with S. Adler, P. Barone (Rome) + group of R. Valentí (Frankfurt) and J. M. Pizarro and T. Wehling (Bremen)
- 1T-monolayer: "star-of-David" $\sqrt{ } 13 \times \sqrt{ } 13$ CDW reconstructions
- bilayer: shifted triangular layers $\boldsymbol{\Rightarrow}$ buckled honeycomb!

UNIVERSITÄT WÜZZBURG

Material realization?

- TaSe_{2} [arXiv:2001.04102] in cooperation with S. Adler, P. Barone (Rome) + group of R. Valentí (Frankfurt) and J. M. Pizarro and T. Wehling (Bremen)
- 1T-monolayer: "star-of-David" $\sqrt{ } 13 \times \sqrt{ } 13$ CDW reconstructions

- "deconfinement" of Mott localized electrons into correlated Dirac fermions

opposite strategy w.r.t. twisted bilayer graphene

UNIVERSITÄT WÜRZBURG

Material realization?

- TaSe_{2} [arXiv:2001.04102] in cooperation with S. Adler, P. Barone (Rome) + group of R. Valentí (Frankfurt) and J. M. Pizarro and T. Wehling (Bremen)
- 1T-monolayer: "star-of-David" $\sqrt{ } 13 \times \sqrt{ } 13$ CDW reconstructions

- "deconfinement" of Mott localized electrons into correlated Dirac fermions

opposite strategy w.r.t. twisted bilayer graphene

honeycomb dispersion

UNIVERSITÄT WÜRZBURG

Material realization?

- we can tune M by means of electric field along $z(\sim 1-4 \mathrm{meV} / \AA ̊)$

UNIVERSITÄT wÜRZBURG

Material realization?

- we can tune M by means of electric field along $z(\sim 1-4 \mathrm{meV} / \mathrm{A})$

UNIVERSITÄT wÜRZBURG

Material realization?

- we can tune M by means of electric field along $z(\sim 1-4 \mathrm{meV} / \mathrm{A})$

UNIVERSITÄT WÜZZBURG

Material realization?

- we can tune M by means of electric field along $z(\sim 1-4 \mathrm{meV} / \mathrm{A})$
- from $\boldsymbol{D}_{6 n}$ to $\boldsymbol{C}_{3 \mathrm{v}}$

$$
\begin{array}{r}
\lambda_{\mathrm{SOO}} \\
\quad B
\end{array}
$$

$$
B \cdot \tau_{z}^{\mathrm{K}, \mathrm{~K}^{\prime}} \cdot \sigma_{z}^{\text {spin }} \cdot S^{\text {sulatt }}
$$

UNIVERSITÄT WÜRZBURG

Material realization?

- we can tune M by means of electric field along $z(\sim 1-4 \mathrm{meV} / \AA ̊)$
- from $D_{6 n}$ to $C_{3 v}$

Strong correlations and orbital texture in single-layer 1T-TaSe ${ }_{2}$
 nature physics

strong correlation

Side view

Yi Chen ${ }^{(1), 2,13}$, Wei Ruan ${ }^{1,2,13}$, Meng Wu ${ }^{1,2,13}$, Shujie Tang ${ }^{\left({ }^{(1)}\right.}{ }^{3,4,5,6,7,13}$, Hyejin Ryu ${ }^{5,8}$, Hsin-Zon Tsai ${ }^{1,9}$, Ryan Lee ${ }^{1}$, Salman Kahn ${ }^{1}$, Franklin Liou ${ }^{1}$, Caihong Jia ${ }^{1,2,10}$, Oliver R. Albertini ${ }^{11}$, Hongyu Xiong ${ }^{()^{3,4}}$, Tao Jia ${ }^{3,4}$, Zhi Liu ${ }^{6}$, Jonathan A. Sobota ${ }^{(1)}{ }^{3,5}$, Amy Y. Liu ${ }^{11}$, Joel E. Moore ${ }^{1,2}$, Zhi-Xun Shen $\mathbb{D}^{3,4}$,

ARTICLES

https://doi.org/10.1038/s41567-019-0744-9

Conclusions

- many-body correction to the orbital splitting: either favoring or opposing the bare tendency

Conclusions

- many-body correction to the orbital splitting: either favoring or opposing the bare tendency
- thickness-induced metal-insulator transition in oxide heterostructures

UNIVERSITÄT WÜRZBURG

Conclusions

- many-body correction to the orbital splitting: either favoring or opposing the bare tendency
- thickness-induced metal-insulator transition in oxide heterostructures
- local criticality of orbital fluctuations in correlated topological insulators
- possible material realization and tuning in transition-metal dichalcogenides

