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Correlated electrons out of equilibrium:
Short-time dynamics to quasi-steady states

Martin Eckstein
"Quantum Matter: Computation Meets Experiments”
Aspen, March 12, 2020
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# Controlling materials out of equilibrium

Field-induced phenomena
Distributional engineering

Non-equilibrium steady states
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Direct hopping modulations and
Floquet engineering

image from Basov et al., Nature Materi

This talk: Overview of attempts to compute electronic structure of
correlated electrons under non-equilibrium conditions
(following ultra-short excitations or in non-thermal steady states.



# Real-time dynamics of correlated electrons

Hubbard model = —¢{ Z cwcjg + U Z Nip1; |
,o=T,4
@ —i b — @
I U I plus electric fields (Peierls substitution)
‘<—>‘<—>‘ tij = tijei(bij(t)
L Ak WD G(0) 2 cAURG

Q ‘ ‘ (plus possibly dissipation, phonons)

Aim: Unitary time-evolution or dissipative steady states



# Real-time dynamics of correlated electrons

Example: single-band Hubbard
model after / during laser
excitation; U=3, bandwidth=4

Intertwined evolution of spectrum and occupation
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# Non-equilibrium Green'’s functions

Keldysh formalism:
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# Non-equilibrium Green'’s functions

Keldysh formalism:
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# Non-equilibrium Green'’s functions

Computational challenges (l): Long-time-memory in Quantum kinetic equations

G_GO
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/dtldtQGo(t,tl)E(tl,tQ)G(tQ,t)
P

revious times

open source code: nessi.tuxfamily.org
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# Non-equilibrium Green'’s functions

Computational challenges (l): Long-time-memory in Quantum kinetic equations

G t
. =i 5 *
S— G(t,t")
/ dtldtQGO L tl)Z(tl,tQ)G(tQ,t) At
previous times t’

,causal“ time-propagation:

Memory: eg. GW simulation
6 orbitals, 400 k-points, W=10eV
At=0.01/W=0.06fs = >1TB for 100fs

open source code: nessi.tuxfamily.org



http://nessi.tuxfamily.org

# Non-equilibrium Green'’s functions

Computational challenges (l): Long-time-memory in Quantum kinetic equations

G 3 GO t
-
N e G(t,t")
/ dtldtQGO L tl)Z(tl,tQ)G(tg,t) At
previous times t*
,causal® time-propagation:
Memory: eg. GW simulation Sometimes overcome by
6 orbitals, 400 k-points, W=10eV Truncation of memory

integrals: Possible if there is
time-scale separation

/ /
Y(t,t") =~ 0 for [t —t'| > t.
Schueler et al, PRB 2018,
open source code: nessi.tuxfamily.org PGl e e

At=0.01/W=0.06fs = >1TB for 100fs
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# Non-equilibrium Green'’s functions

Computational challenges (ll):

DMFT: Quantum impurity problem = impurity in time-dependent bath

‘4_,.4_;‘ p=1 DN 23
OO @
3 Lt N NaT
®@—0—0 Gimp = Gloc O—@—0
i;/t\i I Ziimp = 2loc A/"t N
O—0—@ L

(numerically unbiased) impurity solvers:

MPS Wolf, et al. et Schollwdck, et al. (2014), Bauernfeid et al. et Evertz (2017)
CTQMC Gulletal. (2012, ... ), Cohen et al. (2018)

Keldysh QMC  Parcollet e al.

Here: Still NCA



# Real-time dynamics of correlated electrons

Example: single-band Hubbard
model after / during laser
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# Real-time dynamics of correlated electrons
T A

Example: single-band Hubbard
model after / during laser

excitation; U=3, bandwidth=4
FL \ Mott
Intertwined evolution of spectrum and occupation >
U/bandwidth
1 frqm Eclfstein{&Werper, PBB 2012
. Here: Thermalization at T>Tin N(w) = f(w)A(w) [ =
U, bandwith, T of same order: thermalization within |
N few inverse hoppings
o« (Non-equilibrium DMFT: Quantum kinetic theory for strongly g

correlated electrons without quasiparticle or relaxation time
approximations)

induced band narrowing
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# Lifetime of photo-doped states
[time] = 1/hopping
b T =05/

Thermalization of the double occupancy
after (pretty much any kind of) excitation:

d(t) = d(Teg) + Ae™ /7

|

Teft determined by total energy

_ Long-lived non-thermal population
in the upper Hubbard band

Mott trénsition

Eckstein & Werner, PRB (2010)



# Internal relaxation

electron

m >.b:’~:":f: m

time

= Phonons (quasi external heat bath)

= Non-local charge and spin fluctuations (beyond DMFT)
= Shornt range (Cluster DMFT) Eckstein & Werner, Sci. Rep 2016

= Longrange (extended DMFT, DMFT+GW)

Golez, Eckstein, Werner PRB 2015, PRL 2017, PRB 2019
Golez, Boenke Eckstein, Werner PRB 2019
Bittner, Golez, Eckstein, Werner PRB 2019



# (Short-range) spin correlations Eckstein & Werner, Sci. Rep 2016
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# (Short-range) spin correlations Eckstein & Werner, Sci. Rep 2016

¢ ¢ ? i 1 ¢ Hole motion:

= defects in AFM order
? E>¢ ? iC>T = transfer of energy to spin
v +1

i T ¢ Active also in paramagnetic phase?

single band 2d Hubbard model U/t=12; 2x2 cluster DCA, NCA solver

NN Spin correlations
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# (Short-range) spin correlations Eckstein & Werner, Sci. Rep 2016

single band 2d Hubbard model U/t=12; 2x2 cluster DCA, NCA solver
NN Spin correlations Occupied DOS Ny (w, t)
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# (Short-range) spin correlations Eckstein & Werner, Sci. Rep 2016

single band 2d Hubbard model U/t=12; 2x2 cluster DCA, NCA solver

NN Spin correlations Occupied DOS N (w, t)
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# Long-lived steady states

Spins, phonons, etc ...

A 4
* New orders,
- non-thermal symmetry
broken states?
W W
Pre-thermal states Quasi-steady states due to

relaxation bottlenecks and constraints

—> Controlled by few macroscopic variables?
Non-equilibrium steady states External driving and dissipation

Stabilize non-thermal pre-thermal state through weak driving?

see also talk by Z.Lenarzic



# Long-lived steady states



# Long-lived steady states

Directly targeting a non-equilibrium steady state

dissipation + continuous driving (bias) = Non-equilibrium steady state

G(t,t') = Gt —t',tay = (t+1)/2) =  G(w) = A(w)F(w)
Keldysh formalism:

Ele) = Calunak Go (w)%(w)é(w)

Interaction & dissipation



# Photo-doping by bath

Non-equilibrium steady state: Two bath coupled to every site of the lattice:
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Non-equilibrium steady state: Two bath coupled to every site of the lattice:
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Steady state with occupation in upper band
largely independent of bath details if state is
controlled by few bottlenecks
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# Photo-doping by bath

Non-equilibrium steady state: Two bath coupled to every site of the lattice:

W
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A, eq.
s S
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# Photo-doping by bath

Non-equilibrium steady state: Two bath coupled to every site of the lattice:

0.2

0.15 r

0.05 |

Hout
Aout (w)
State characterized by two (self-consistently
determined) state variables:
Temperature, double occupancy (photo-doping)




# Phase-diagram of photodoped system

Scan for different upatn:

20
15
10
°c° o,
S
0
0 0.1 0.2 0.3 0.4 0.5

Photo-doping (doublon and hole filling) \



# Phase-diagram of photodoped system

Scan for different upatn:
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# n-pairing superconductivity
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# n-pairing superconductivity

Inverse temperature

Singly-occupied Only doublons
sites: AFM & holes: n

?

—>

0 0.1 0.2 0.3 0.4 0.t
Photo-doping (doublon and hole filling)

Large U limit:  only doubly occupied/empty sites

SU(2)c symmetry  per _ > JexSi-Si - |Long-range x-pairing: <77]+> = A
=> Staggered phase Superconductivity

+ _ w2l . R .
N, = (_1)jcj’*cj¢ (exact excited state on bipartite lattice,

773-_ — (—1)jcjvch (‘ |T%>> Yang, PRL 63, 2144 (1989)
0

1 -
N; = i(nj — 1)



# n-pairing superconductivity

Inverse temperature

Singly-occupied Only doublons
sites: AFM & holes: n

?

—>

0 0.1 0.2 0.3 0.4 0.t
Photo-doping (doublon and hole filling)

= photo-excitation to populate doublons?

finite size (ED): Enhancing #n-correlations Kaneko et al, 2018,2019

Pumping doublons d>1/4 by driving Peronacci, Schiro, Parcollet 2019



# n-pairing superconductivity

n-susceptibility

4 inverse temperature I 10°
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Photo-doping (doublon and hole filling) I
0T

Extended region of non-thermal
superconductivity in the Hubbard model



a real steady state



# CDW in attractive Hubbard model

Attractive interaction (U<0) at half filling:
s-wave superconductivity and charge density wave order degenerate
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Can one stabilize superconductivity under non-equilibrium conditions?



# Model Hamiltonians

environment at given temperature

o—®—©
I N

‘ current J

I ‘/t\ I I Non-equilibrium steady state:
- ‘ - . ‘ Balance of power input JV
" d - and dissipation to bath

voltage bias V



# 1-VV Characteristics

Attractive HM at half filing: U = —2.5; bandwidth = 4v/2
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V V

Coexisting steady state solutions = first-order transition

1) Melting of CDW through charge excitations

2) Metal unstable against infinitesimal CDW fluctuations:
= close to thermal mechanism?



# 1-VV Characteristics

Attractive HM at half filing: U = —2.5; bandwidth = 4v/2

Distribution functions:

0.1 I I |

forward -©-
backward -+ g
0.08 [ -
0.06 [ -
™~

0.04 F -
0.02 F -

O | |

Only slight deviations from Fermi function (due to el.-el. scattering)

= in the following analysis, first use Test to characterize steady state



# 1-VV Characteristics

Attractive HM at half filling: U/ = —2.5; bandwidth = 4v/2

CDW in steady state as function of effective temperature

0.4, H 'J order parameter in stead state lowered
with respect to equilibrium
| h

0.3 L
E CDW susceptibility reduced
0 0.2 F in steady-state metal

%‘ ," 1/Xeq - .
0.1 | . 1/Xneq —
0

0.2 0.3

0 0.1
Lot effective temperature at transition
reduced with respect to equilibrium




# Non-equilibrium phase diagram

Attractive HM at half filling:

= CDW suppressed by current beyond the Joule heating effect

= robust “supercooled metallic phase”
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# Summary & Outlook
Long-lived non-thermal orders through population engineering

Probing non-equilibrium phase-diagram as auxiliary steady state

= Multi-orbital systems

=> Hidden states is systems with spin-orbital order
(Include feedback on lattice?)
= Ideal for unbiased impurity solvers:

MPS, CTQMC, Keldysh QMC
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