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Correlated electrons out of equilibrium:
Short-time dynamics to quasi-steady states
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This talk: Overview of attempts to compute electronic structure of 
correlated electrons under non-equilibrium conditions 
(following ultra-short excitations or in non-thermal steady states.
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Aim: Unitary time-evolution or dissipative steady states

 # Real-time dynamics of correlated electrons

(plus possibly dissipation, phonons)



Example: single-band Hubbard 
model after / during laser 
excitation; U=3, bandwidth=4

from Eckstein & Werner, PRB 2012

SpectrumOccupation
A(!, t)N(!, t)

Relaxationcharge transfer, field-
induced  band narrowing

U/bandwidth

T

FL Mott

bad metal

 # Real-time dynamics of correlated electrons

Intertwined evolution of spectrum and occupation



 # Non-equilibrium Green’s functions
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Keldysh formalism:
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, DMFT, ...time-dep. mean-field solution
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Keldysh formalism:
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Long-time-memory in Quantum kinetic equations

Schueler et al, PRB 2018, 
Stahl et al., in preparation

Sometimes overcome by 
Truncation of memory 
integrals:  Possible if there is 
time-scale separation

open source code: nessi.tuxfamily.org

⌃(t, t0) ⇡ 0 for |t� t0| > tc

Computational challenges (I):

http://nessi.tuxfamily.org


 # Non-equilibrium Green’s functions

DMFT: Quantum impurity problem = impurity in time-dependent bath

t
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imp
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loc

⌃
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loc

(numerically unbiased) impurity solvers:

MPS Wolf, et al. et Schollwöck, et al. (2014), Bauernfeid et al. et Evertz (2017)

CTQMC Gull et al. (2012, … ), Cohen et al. (2018)

Keldysh QMC Parcollet e al.

U

Vp(t)

p = 1 p = 2 ...

Computational challenges (II):

Here: Still NCA
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 # Real-time dynamics of correlated electrons

Intertwined evolution of spectrum and occupation

N(!) = f(!)A(!)

(Non-equilibrium DMFT:  Quantum kinetic theory for strongly 
correlated electrons  without quasiparticle or relaxation time 
approximations)

Here: Thermalization at T>Tin

U, bandwith, T of same order: thermalization within 
                                                 few inverse hoppings



 # Lifetime of photo-doped states
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 # Lifetime of photo-doped states

Eckstein & Werner, PRB (2010)

Te↵ = 0.5

[time] = 1/hopping

!

!

Mott transition

Thermalization of the double occupancy
after (pretty much any kind of) excitation:

d(t) = d(Te↵) +Ae�t/⌧

Te↵ determined by total energy

Long-lived non-thermal population 
in the upper Hubbard band



! !

   Short range  (Cluster DMFT)

   Long range  (extended DMFT, DMFT+GW)

Phonons (quasi external heat bath)

electron

boson

Non-local charge and spin fluctuations

# Internal relaxation

Eckstein & Werner, Sci. Rep 2016

Golez, Eckstein, Werner PRB 2015, PRL 2017, PRB 2019
Golez, Boenke Eckstein, Werner PRB 2019
Bittner, Golez, Eckstein, Werner PRB 2019

(beyond DMFT)

time
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Hole motion: 
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Hole motion: 
 defects in AFM order
 transfer of energy to spin

Active also in paramagnetic phase?
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⌃0,0

⌃0,⇡
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single band 2d Hubbard model U/t=12; 2x2 cluster DCA, NCA solver

NN Spin correlations
(in the cluster) 
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single band 2d Hubbard model U/t=12; 2x2 cluster DCA, NCA solver
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# Long-lived steady states

New orders, 
non-thermal symmetry 
broken states?

Spins, phonons, etc …

Pre-thermal states Quasi-steady states due to 
relaxation bottlenecks and constraints

Non-equilibrium steady states External driving and dissipation

Stabilize non-thermal pre-thermal state through weak driving?
see also talk by Z.Lenarzic

Controlled by few macroscopic variables?



# Long-lived steady states



Directly targeting a non-equilibrium steady state

dissipation + continuous  driving (bias)  Non-equilibrium steady state

G(!) = A(!)F (!)G(t, t0) ! G(t� t0, tav = (t+ t0)/2) ! G(!, tav) = A(!, tav)F (!, tav)! G(!, tav) = A(!, tav)F (!, tav)

Ĝ(!) = Ĝ0(!) + Ĝ0(!)⌃̂(!)Ĝ(!)

Interaction & dissipation 

Keldysh formalism:

# Long-lived steady states
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!

A(!)

Ain(!)

A
out

(!)

µ
out

µin

Non-equilibrium steady state:

Steady state with occupation in upper band
largely independent of bath details if state is 
controlled by few bottlenecks
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(b)

1
 /

 χ

d

η SC
s-wave SCState characterized by two (self-consistently 

determined) state variables:
Temperature, double occupancy (photo-doping)

A<
ness(!) =

Aness(!)

1 + e(!�µ)/Teff

Non-equilibrium steady state:
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 # Phase-diagram of photodoped system

1/Te↵

Scan for different 𝜇bath:

         Photo-doping (doublon and hole filling)

Instabilities?

H = HSystem+Bath + h
⌘

X

j

⌘x
j

�
⌘

=
h⌘x

j

iness
h
⌘

���
h!0

AFM, CDW, SC, …
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 # 𝜂-pairing superconductivity

Only doublons 
& holes: 𝜂

inverse temperature
Singly-occupied 
sites: AFM

Photo-doping (doublon and hole filling)

?

Large U limit: only doubly occupied/empty sites

SU(2)C symmetry

⌘+j = (�1)jc†j"c
†
j#

⌘�j = (�1)jcj#cj"

⌘zj =
1

2
(nj � 1)

✓
| "#i
|0i

◆

Long-range 𝜂-pairing: h⌘+j i ⌘ �

 Staggered phase Superconductivity
(exact excited state on bipartite lattice, 

Yang, PRL 63, 2144 (1989) 



 # 𝜂-pairing superconductivity

Only doublons 
& holes: 𝜂

inverse temperature
Singly-occupied 
sites: AFM

Photo-doping (doublon and hole filling)

?

 photo-excitation to populate doublons?

Peronacci, Schiro, Parcollet  2019

finite size (ED): Enhancing  𝜂-correlations Kaneko et al, 2018,2019

Pumping doublons d>1/4 by driving



 # 𝜂-pairing superconductivity

inverse temperature

Photo-doping (doublon and hole filling)

𝜂-susceptibility

Extended region of non-thermal 
superconductivity in the Hubbard model



a real steady state



 # CDW in attractive Hubbard model

t

U

Attractive interaction (U<0) at half filling:
s-wave superconductivity and  charge density wave order degenerate

 CDW = hnA � nBi
 SC = 2hci"ci#i

H = �t
X

⇤ij⌅,�=�,⇥

c†i�cj� + U
X

i

ni�ni⇥

Can one stabilize superconductivity under non-equilibrium conditions?



 # Model Hamiltonians

t

U

current J

voltage bias V

environment at given temperature

Non-equilibrium steady state:
Balance of power input  JV
and dissipation to bath



 # I-V Characteristics

Coexisting steady state solutions    first-order transition
1) Melting of CDW through charge excitations
2) Metal unstable against infinitesimal CDW fluctuations:
      close to thermal mechanism?

1)

2)

Attractive HM at half filling: U = �2.5; bandwidth = 4
p
2



 # I-V Characteristics

Attractive HM at half filling:

Only slight deviations from Fermi function (due to el.-el. scattering)

U = �2.5; bandwidth = 4
p
2

Distribution functions:

1

2

3
2

1

 in the following analysis, first use Teff to characterize steady state

3



Attractive HM at half filling: U = �2.5; bandwidth = 4
p
2

 # I-V Characteristics

CDW in steady state as function of effective temperature

order parameter in stead state lowered 
with respect to equilibrium

CDW susceptibility reduced 
in steady-state metal

effective temperature at transition 
reduced with respect to equilibrium



 # Non-equilibrium phase diagram

Attractive HM at half filling:

 CDW suppressed by current beyond the Joule heating effect

 robust “supercooled metallic phase”



 Multi-orbital systems 
 Hidden states is systems with spin-orbital order 

     (Include feedback on lattice?)

 # Summary & Outlook

Probing non-equilibrium phase-diagram as auxiliary steady state

Long-lived non-thermal orders through population engineering

MPS, CTQMC, Keldysh QMC

 Ideal for unbiased impurity solvers:
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