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Hunds Metals: coherence incoherence 
crosover

Hubbard U not important
The Hund’s coupling brings correlations!

K. Haule, G. Kotliar,  arXiv:0805.0722 (2008), New Journal of Physics, 11 025021 (2009).

Hund’s metals were found when studying the origin of mass enhancements in Fe-
pnictides

Hund’s coupling J ⇒high spin Kinetic energy & Pauli ⇒ low spin

t

Coherence-incoherence crossover in the normal state of iron-oxypnictides and importance of the Hund’s rule coupling3

between the hole and electron pocket promotes the spin density wave instability which

was actually observed in experiment [6]. Notice however that the Bragg peak in neutron

experiments remains commensurate and does not change with doping, pointing to the

inadequacy of the weak coupling spin density wave scenario.

Figure 1. a) Sketch of the orbital levels in the downfolded LDA Hamiltonian for
LaOFeAs, keeping five d-orbitals (see appendix Appendix A). The levels are obtained
by h↵ =

P
k H

LDA

k,↵↵
, where ↵ is the orbital index. The Hund’s coupling in this

compound becomes relevant when its strength is comparable to the total splitting
J ⇠ 350 meV. The coordinate system is chosen such that x and y axis point from Fe
atom towards its the nearest neighbor Fe atoms. b) Probability for each iron 3d atomic
state in DMFT calculation for LaOFeAs at T = 116K and JHund = 0.4 eV. There are
1024 atomic states in Fe-3d shell. Within sector with constant occupancy, states are
sorted by increasing atomic energy).

Fig. 1 sketches the crystal field levels, as obtained by the Local Density

In metals when electrons are forced to be in the high-spin 
state (by Hund’s J), the Fermi liquid state is protracted, 
and develops only at very low temperature. There is a 
“Coherence incoherence transition” from incoherent 
local-moment state at high-T to Fermi liquid  state at low-
T (except in the selective Mott phase).

6 electrons 
in 5 orbitals



Hunds Metals: coherence incoherence 
crosover

LDA value
For J=0 there is negligible mass enhancement at U~W!

JHunds

J=0J=0.4

Hund’s coupling J ⇒high spin Kinetic energy & Pauli ⇒ low spin

tHubbard U not important
The Hund’s coupling brings correlations!

K. Haule, G. Kotliar,  arXiv:0805.0722 (2008), New Journal of Physics, 



arXiv:0805.0722  : Coherence-incoherence crossover in the normal state of iron-
oxypnictides and importance of the Hund's rule coupling. NJP, K.H and G.Kotliar. 

arXiv:0806.2621  : Spin freezing transition and non-Fermi-liquid self-energy in a 3-orbital 
model, PRL (2008), P.  Werner et.al. 

Nature Materials 10, 932-935 (2011): The word Hund’s metals was coined, Z.P. Yin, K.H. 
and G. Kotliar.

Related early work on 3-band Hubbard 
model found “a quantum phase transition 
between paramagnetic metallic phase, and 
incoherent metallic phase with frozen 
moments.” dubbed spin-freezing.

the Hund coupling. We adopt the conventional choice of
parameters, U0 ¼ U" 2J.

To study the model, we use the single-site dynamical
mean-field approximation [3] which ignores the momen-
tum dependence of the self-energy and reduces the original
lattice problem to the self-consistent solution of a quantum
impurity model given by the Hamiltonian HQI ¼ Hloc þ
Hhyb þHbath with Hhyb describing the exchange of elec-
trons between impurity and bath. Our data were computed
for a semicircular density of states with bandwidth 4t (so
the model is particle-hole symmetric about the density n ¼
3), using the continuous time QMC solver of Refs. [17,18].
We investigate the electron self-energy !ð!Þ and the
imaginary-time impurity-model spin-spin and orbital-
orbital correlators hOð!ÞOð0Þi with O representing either
the electron spin density Sz ¼ 1

3

P
"
1
2 ðd

y
";"d";" " dy";#d";#Þ

or the orbital density n̂" ¼ P
#d

y
";#d";#. Attention is re-

stricted to solutions which preserve spin and orbital rota-
tional symmetry at the level of the impurity model.

Figure 1 presents our calculated phase diagram in the
space of density n and interaction strength U for the ratio
J=U ¼ 1=6. The Mott insulating phases of the model are
shown as heavy solid lines. The light line with circles or
diamonds is our new result: a phase boundary separating a
small n small U Fermi liquid phase from a frozen-moment
phase at larger n and larger U. Other values of 0< J=U <
1=3 give similar results. For J ¼ 0, the new phase does
not exist while for J > U=3, the term U0 " J ¼ U" 3J
changes sign and the physics of the model becomes
different.

We may define the phase boundary using the im-
purity model spin-spin correlation function CSSð!Þ ¼
hSzð!ÞSzð0Þi, shown in the upper panel of Fig. 2 for U=t ¼
8 and several values of n. In a Fermi liquid at low tem-
perature T, CSSð!Þ & ½T= sinð$!TÞ(2 for imaginary times !
sufficiently far from either ! ¼ 0 or ! ¼ 1=T. Our results

are consistent with this form in the Fermi liquid phase, but
in the non-Fermi-liquid phase, CSS is seen to approach a
constant at long times indicating the presence of frozen
moments. We also plot in Fig. 2 the corresponding orbital
correlation function, which is seen to decay rapidly with
time on both sides of the phase transition. For a more
quantitative analysis, we studied the temperature depen-
dence of C1=2 ) CSSð! ¼ 1

2TÞ. In a Fermi liquid, C1=2 & T2

while in the frozen-moment phase, C1=2 becomes tempera-
ture independent at sufficiently low T. Within our numeri-
cal accuracy, we find that at the transition point,
CSSð! ¼ 1

2TÞ & T. The lower panel of Fig. 2 shows how
the ratio C1=2ðT ¼ 0:02tÞ=C1=2ðT ¼ 0:01tÞ changes from
the value 4 expected in the Fermi liquid phase to the value 1
expected in the frozen-moment phase.
The phase transition has consequences for the electron

self-energy!ð!Þ. In a Fermi liquid at low T, the imaginary
part of the real axis scattering rate !00ð!Þ &maxð!2; T2Þ,
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FIG. 1 (color online). Phase diagram for J=U ¼ 1=6 and %t ¼
50, 100 in the space of density n and interaction strength U. The
light line with circles or diamonds indicates a phase transition
between a Fermi liquid metal and a ‘‘frozen-moment’’ metal.
The black lines mark the regions of Mott insulating behavior.
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FIG. 2 (color online). Upper panel: imaginary time depen-
dence of the spin-spin correlation function hSzð0ÞSzð!Þi (positive
correlation function, full symbols) and orbital correlation func-
tion hn1ð0Þn2ð!Þi (negative correlation function, open symbols)
for U ¼ 8t and carrier concentrations n indicated. Lower panel:
variation with doping of the temperature dependence of the spin-
spin correlation at ! ¼ %=2. The error bars are large at smaller n
because the midpoint spin correlator is very small. The black line
indicates the n-value of the phase transition deduced from an
analysis of the self-energy.
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Theory prediction Experiment
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FIG. 1: Dynamic spin structure factor S(q,!) in iron pnictides, chalcogenides and MgFeGe. The S(q,!) is plotted
along the path (0,0)!(1,0)!(1,1)!(0.5,0.5)!(0,0) (in the unit of the one-Fe Brillouin zone) for (a) BaFe2P2 (Tmax

C < 2K); (b)
LiFeP (TC = 6K); (c)LaFePO (TC = 7K); (d) SrFe2As2 (Tmax

C = 37K); (e) LaFeAsO (Tmax
C = 43K); (f) BaFe2As2 (Tmax

C =
39K); (g) LiFeAs (TC = 18K); (h) FeSe (Tmax

C = 37K); (i)MgFeGe (Tmax
C = 0); (j)FeTe (Tmax

C = 0); (k) BaFe1.7Ni0.3As2
(TC < 2K); (l) BaFe1.9Ni0.1As2 (TC = 20K); (m) Ba0.6K0.4Fe2As2 (TC = 39K); (n) KFe2As2 (TC = 3.5K); (o) KFe2Se2. Since
the intensity substantially varies across compounds, the maximum value of intensity was adjusted to emphasize the dispersion
most clearly. The maximum value of the intensity in each compound is shown in the top right corner. The experimental data
shown in (f), (g), (l) and (m) are from Refs. 17–20.

of the fluctuating moment in this energy range, which roughly anti-correlates with strength of correlations, hence
phosphorus compounds show the weakest (max = 4) and FeTe shows the strongest (max = 20) intensity.

The low energy spin-excitations are much more sensitive to the details of both the band-structure and the two-
particle vertex function, hence the trend across di↵erent compounds can not be guessed from either the correlation
strength or from the band structure. In Fig. 2 we show S(q,!) for the same compounds as in Fig. 1, but we take
a di↵erent cut. We keep the energy fixed at ! = 5meV, and change momentum in the two dimensional momentum
plane (qx, qy) at qz = 0/⇡. (The qz dependence is small for most compounds.) As is clear from Figs. 1a-c, and
Fig. 2a-c, the low energy spin-excitations are almost absent in phosphorus compounds, while they are very strong
in arsenides (Figs. 1d-g) at the commensurate wave vector (qx, qy) = (1, 0). This is the ordering wave vector of the
spin-density wave state, which is the ground state of all these compounds except LiFeAs, which is a superconductor
(Tc = 18K). When doped, all these compounds are high-temperature superconductors (Tc ⇡ 37K � 39K). Similarly
chalcogenide FeSe (Fig. 1h) - which becomes superconducting Tc = 37K under modest pressure p = 3GPa - has
similar low energy spin response as the arsenides superconductors. On the other hand, MgFeGe is a compound with
similar band structure as arsenides21, but quite di↵erent spin response, which is much broader and peaked at q = 0,
hence spin fluctuations are ferromagnetic, in agreement with calculation of Ref.22 showing stable ferromagnetic ground
state. Finally FeTe has also much broader spin-excitations covering large part of the Brillouin zone (see Fig. 2j), and
shows two competing excitations at q=(1,0) and q=(0.5, 0.5), the latter corresponds to the ordering wave vector of
the low-temperature antiferromagnetic state of Fe1.07Te.23 The common theme in high-temperature superconductors
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Comparing LDA+DMFT partial DOS to LDA partial DOS,
we notice that apart from the renormalization of the low
energy quasiparticles, and broadening of the high-energy fea-
tures, there is only little difference between LDA and LDA
+DMFT momentum averaged spectral functions. This is in
agreement with x-ray absorption spectroscopy,6 where good
agreement between LDA and the experiments was pointed
out. Given the strong correlation effects present in optics and
low energy ARPES, it is unusual that no clear Hubbard-like
satellites of the atomic like 3d5 state can be identified in local
density of states.

The DMFT valence histogram,33 describing the probabil-
ity of finding each Fe-3d atomic configuration in the solid as
a function of the renormalized energy of the atomic state
sheds light on the unusual metallic state of the iron pnictides.
In a weakly correlated metal, almost all the atomic configu-
rations are significantly present in the ground state of the
solid and their energy vary over the scale of the hybridization
which represents the bandwidth of the metal. In correlated
oxides, on the other hand, only a few atomic states in each
valence have substantial weight, which results in sharp Hub-
bard bands. As shown in Fig. 4, in BaFe2As2, the probability
of the atomic ground state with valence N=6, N=7, and N
=5 is only 0.014, 0.01, and 0.007, respectively. Other states
have smaller probability, but remarkably all atomic states
with valence 5, 6, and 7 have finite probability larger then
0.0005. The large occupancy of the extremely large number
of atomic configurations is reminiscent of an itinerant sys-
tem. On the other hand, unlike the weakly correlated situa-
tion, the spread of the multiplets of the N=5 states, !coming
from the Slater integrals F2 and F4" is #7 eV similarly the
atomic states with N=6 span an energy range of 6.5 eV. This
scale, represents the width of the Hubbard bands and is very
large, much larger than the scale of the hybridization !2. eV".

We stress that the absence of clear atomiclike satellite
excitations is not due to weak correlations in FeAs materials,
as suggested in Refs. 10–12, but rather due to the strength of
the atomic multiplet splittings and due to the broad band-
width of the highly polarizable As states. This situation,
arises for the parameters determined from the self consistent
GW method. It is significantly different from what is found
in the oxides, and is captured by the charge self-consistent
LDA+DMFT calculation.

IV. CONCLUSION

In conclusion, we introduced a self-consistent approach to
compute the Coulomb interaction which is tailored to be
used with the all-electron DMFT method. It successfully ex-
plains the normal state properties of BaFe2As2, and eluci-
dates the unique nature of the correlations in this material.
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FIG. 3. !Color online" Total and partial density of states of
LDA+DMFT method compared to LDA density of states. FIG. 4. !Color online" The atomic histogram of the Fe-3d shell

for BaFe2As2. The atomic states !all 1024" are sorted according to
their valence N. Below the arrow we also display the multiplet
splitting of the atomic states in each valence. The N=5 and N=6
valences show the largest splitting of 7 and 6.5 eV, resulting in a
very broad lower Hubbard band of the one electron density of
states.
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Hunds metals: correla'ons without Hubbard 
satellites, but quite localized magne'sm

• Charge fluctuations are very fast — many 
atomic states are contributing to valence 
histogram

• Orbital fluctuations slow but faster than spin 
due coupling between spins and orbits. 

• Spin fluctuations very slow due to low energy 
ferromagnetic spin-spin—coupling

A. Kutepov, PRB 82, 045105 2010. 

H. Park, K. Haule, G. Kotliar, PRL 107, 137007 (2011)

Valence histogram:  
probability for an atomic state

spin susceptibility



LHB UHB

quasiparticle peakNo Hund’s coupling 
just moderate Hubbard 

Qualitative idea 

Mott physics gives: LHB UHB

renormalized 
quasiparticle peak

Large separation  
between 

Hubbard bands

renormalized 
quasiparticle peak
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Z.Yin, KH, G. Kotliar, PRB 86, 195141 (2012).
Schrieffer-Wolf mathematical derivation in 
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FIG. 2. (Color online) Incoherence-coherence crossover in FeTe.
A(k,ω) along the path " → X → M → " → Z → R → A → Z

for FeTe at (a) 232 K, (b) 116 K, and (c) 58 K and for (d) FeSe
at 116 K in the PM states. (e), (f) A(ω) for the Fe 3d xy and the
xz and yz orbitals at 387, 232, 116, and 58 K in PM FeTe. (g), (h)
Color-coded Fermi surface in the " plane for PM FeTe and FeSe,
respectively. Red, green, and blue colors correspond to xy, xz, and
yz orbital character, respectively. Due to the incoherent nature of the
xy orbital above TN , the outer hole pocket around " is not easy to
detect in ARPES experiments.

by the blue ellipse has an enormous scattering rate at 58 K
and should be hard to detect by angle-resolved photoemission
spectroscopy (ARPES). The missing Fermi surface is drawn
in Fig. 2(g) as a large red pocket centered at the " point,
which is very incoherent above TN , and hence is missing
in the photoemission of the paramagnetic FeTe, in strong
contrast to paramagnetic FeSe [Fig. 2(h); see also Ref. 47].
Our calculation shows that K-intercalated FeSe (KxFe2−ySe2)
is even more correlated than FeTe, and has smaller power-law
exponents and lower coherence temperature than FeTe. This
is in agreement with recent angle-resolved photoemission
spectroscopy experiments on AxFe2−ySe2 compounds (A =
K, Rb, Cs) where an orbital-dependent incoherence-coherence
crossover was observed by Yi and collaborators.48

B. Low-energy Hamiltonian

To gain some understanding of the Hund’s physics in
these systems, we derive below a low-energy Hamiltonian

of the three-band Hubbard model, the simplest model
which shows power-law behavior of the self-energy. The
starting Hubbard Hamiltonian is H = Ht + HU , with the
hopping term Ht =

∑
ijσ,a,b t

ij
abf

†
iaσfjbσ and Coulomb

term HU = 1
2

∑
iσ,abcd U [a,b,c,d]f †

iaσ f
†
ibσ ′ficσ ′fidσ . Here

a,b,c,d (i,j ) are orbital (site) indices, and σ stands for
the spin. The hopping term is taken to be locally SU(6)
symmetric (no crystal fields), while the Coulomb interaction
is set to U [a,b,c,d] = Uδadδbc + J δacδbd , which reduces
the symmetry to SU(3) × SU(2). Within DMFT, this
model maps to an SU(3) × SU(2) impurity Hamiltonian.
To understand why the Hund’s rule coupling has such a
dramatic effect on the physical properties, we first perform
a Schrieffer-Wolff transformation (for its derivation, see
the Appendix) to obtain a Kondo-like Hamiltonian, of the
form H Kondo

eff = H0 + H1 + H2 + H3, with the potential
scattering term H0 = Jp

∑
aσ ψ

†
aσ (0)ψaσ (0), the spin-spin

Kondo part H1 = J1
∑

α Sα
∑

aσσ ′ ψ
†
aσ (0)σα

σσ ′ψaσ ′(0), the
orbital-Kondo part, H2 = J2

∑
α T α

∑
abσ ψ

†
aσ (0)λα

abψbσ (0),
and the coupled spin-orbital part H3 =
J3

∑
αβ T αSβ

∑
abσ ψ

†
aσ (0)λα

abσ
β
σσ ′ψbσ ′ (0). Here Sα =

∑
aσσ ′ f

†
aσ

1
2σα

σσ ′faσ ′ and T β =
∑

abσ f
†
aσ λ

β
abfbσ ′ are spin and

SU(3) orbital operators acting on the impurity site, ψ(0)
are field operators of the conduction electrons coupled to
the impurity, while σα

σσ ′ and λα
ab are Pauli matrices and the

Gell-Mann 3 × 3 matrices of the SU(3) group, respectively.
Notice that in our picture the same electrons carry both

orbital and spin degrees of freedom, in contrast to the point of
view of Ref. 49, which emphasizes the spin and orbital degrees
of freedom being carried by different type of electrons, i.e., t2g

the spin, and eg the orbital.
While the form of the low-energy impurity model is dictated

by symmetry considerations, the exchange couplings J1,J2,J3
depend crucially on the impurity valence and Hund’s coupling
JH . For the half-filled shell and large JH , only the spin-spin
term J1 survives, and a well-known reduction of the J1 Kondo
coupling for a factor of (2l + 1) was derived in Refs. 2 and 3
compared to a corresponding one-band model. Consequently,
a huge reduction of the Kondo temperature for a factor of
(2l + 1)2 in the exponent was derived in Ref. 3. This regime
is relevant for the half-filled d5 shell realized in the Hund’s
insulators LaMnPO.50

For the above Hund’s metals, the relevant valence of the
transition metal ion is one unit of charge away from half filling.
When JH is negligible, the Hamiltonian is SU(6) symmetric,
and all three Kondo couplings J1,J2,J3 are positive (antiferro-
magnetic). For the valence nimp = 2 (or nimp = 4), their numer-
ical values are J1 = J0/3, J2 = J0/4, and J3 = J0/2, where
J0 = V 2/(2U + εf ) [or J0 = V 2/(3U + εf )] is a positive
number, which depends on the corresponding Anderson impu-
rity model parameters, i.e., hybridization V and impurity level
εf . The ground state is a Fermi liquid, because antiferromag-
netic couplings between conduction electrons and impurity de-
grees of freedom ensure complete quenching of both the orbital
and spin moments. On the other hand, when JH is large, the
spin-spin Kondo coupling J1 changes sign to ferromagnetic,
while the orbit J2 and spin-orbit J3 couplings remain positive.
In the three-band SU(2) × SU(3) model and for large JH , their
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FIG. 1. (Color online) (a) Schematic phase diagram of FeTe1−xSex derived from Refs. [9,11,13]. SC and AFM denote superconductivity
and antiferromagnetism, respectively. The miscible region exists at high Se concentrations due to the difficulty in growing single-phase
samples. (b) One-Fe/unit-cell Brillouin zone of FeTe1−xSex used in this study together with the schematic hole and electron Fermi surfaces at
the ! and M points, respectively. (c)–(g) Se-concentration dependence of normal-state ARPES spectra along the !-M line in a wide energy
region for FeTe1−xSex (T = 25 K for x = 0.45–0.2 and 80 K for x = 0.0) measured with the He-Iα resonance line (hν = 21.218 eV). (h)–(l)
Corresponding ARPES intensity plotted as a function of binding energy and wave vector.

High-quality single crystals of FeTe1−xSex were grown
by the unidirectional solidification method. The nominal
compositions are FeTe (x = 0; TN = 67 K), FeTe0.8Se0.2
(x = 0.2), FeTe0.7Se0.3 (x = 0.3; Tc = 13 K), FeTe0.6Se0.4
(x = 0.4; Tc = 14 K), and FeTe0.55Se0.45 (x = 0.45; Tc =
14.5 K). Energy-dispersive x-ray spectroscopy shows that
the amount of excess iron atom residing at interstitial sites
is as low as 0.03. High-resolution ARPES measurements
were performed with a VG-Scienta SES2002 spectrometer
and a He discharge lamp (hν = 21.218 eV) at Tohoku
University. ARPES measurements were also performed with
synchrotron radiation at BL-28A at Photon Factory (KEK)
using a VG-Scienta SES2002 spectrometer with circularly
polarized 44 eV photons, and at BL-7U at UVSOR using a
MBS-A1 spectrometer with linearly polarized 21 eV photons.
The energy and angular resolutions were set at 6–12 meV
and 0.2◦, respectively. Clean sample surfaces were obtained
for the ARPES measurements by cleaving crystals in situ
in an ultrahigh vacuum of 1 × 10−10 Torr. The Fermi level
(EF) of the samples was referenced to that of a gold film
evaporated onto the sample holder. In this study, we adopt the
one-Fe/unit-cell description where Q = (π,0) corresponds to
Q = (π,π ) of the two-Fe/unit-cell description adopted in our
earlier study [20].

Figures 1(c)–1(g) compare the normal-state ARPES spectra
along the !-M line [Fig. 1(b)] for different Se compositions.
The corresponding ARPES-intensity plots as a function of
binding energy and wave vector are displayed in Figs. 1(h)–
1(l). As most clearly seen in the highest-Tc sample (x = 0.45),
there are holelike bands approaching EF in addition to a
dispersive prominent band at ∼300 meV binding energy
near the ! point. We also find a less dispersive band at
∼50 meV and a weak but finite intensity near EF around
the M point. The latter weak intensity signifies the presence
of an electron pocket as we demonstrate later. While the band

structure of the five compositions is qualitatively similar, we
definitely recognize the broadening of the peak structure and
the reduction of intensity with decreasing x. We will return to
this point later.

To investigate in more detail the low-energy electronic
states directly responsible for superconductivity, we focus on
a narrower energy range in the vicinity of EF. The ARPES
intensity at EF for different compositions is displayed in
Fig. 2(a). We clearly identify an essentially similar intensity-
distribution pattern for different x, with bright intensity around
the ! point and relatively weak intensity around the M point,
which correspond to the hole and electron Fermi surfaces,
respectively. The near-EF band dispersions around the ! point
are composed of three holelike bands labeled α, α′, and β
[Figs. 2(b)–2(g)], which are assigned to the even combination
of the dxz and dyz orbitals, the odd combination of the dxz and
dyz orbitals, and the dxy orbital, respectively [18]. At x = 0.45,
the α′ and β bands create hole Fermi surfaces, as seen in
Fig. 2(a). While these spectral features of bands become less
clear with decreasing x, we can still trace the dispersions of
the α′ and β bands until the compositions of x = 0.0 and 0.2,
respectively. The extracted data set in Fig. 2(h) reveals that the
holelike bands crossing/touching EF do not exhibit significant
x dependence (note that the α band is not clearly resolved for
x ! 0.3, probably because of the strong spectral broadening
and/or a change in the band energy).

Around the M point, a shallow electron pocket (γ ) is
observed at x = 0.45 [Fig. 2(i)]. Since the intensity of
the γ band is already weak at x = 0.45, its dispersion is
rapidly smeared out with the reduction of Se concentration
(not shown). Nevertheless, the momentum distribution curve
(MDC) at EF exhibits a peak structure showing that the γ
band resides near EF even at x = 0.2 [see Fig. 3(b)]. The
peak position (ky ∼ 0.1 π/a) corresponding to the Fermi
wave vector (kF) is unchanged for 0.2 ! x ! 0.45, although
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FIG. 2. (Color online) (a) Comparison of ARPES-intensity plot at EF as a function of two-dimensional wave vector in the normal state.
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80 K for x = 0.0. (h) Comparison of experimental band dispersions in the vicinity of EF determined by tracing the peak position in ARPES
spectra. (i) Near-EF ARPES spectra measured around the M point at 25 K. (j) High-resolution ARPES spectra near the ! point obtained in
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the kF position of the γ band is no longer well defined at
x = 0, as in a previous study [16]. This result, combined with
the x-insensitive behavior of the α′ and β bands near the !
point, suggests that the shape of the Fermi surface is approx-
imately independent for 0.2 ! x ! 0.45, even when the Se
concentration is altered from the bulk-superconducting regime
(e.g., x = 0.45) to the non-bulk-superconducting regime
(x = 0.2).

The observed invariable Fermi-surface shape is a unique
property of FeTe1−xSex, in contrast to chemically doped
and isovalent-substituted iron pnictides, where a systematic
and drastic change in the Fermi-surface size and topology
takes place [24–31]. In the context of the weak-coupling
approach, ill-defined nesting of Fermi surface causes the
disappearance of superconductivity. However, the present
result strongly suggests that the Tc value is not linked to the
nesting condition in FeTe1−xSex because similar Fermi-surface
nesting conditions are retained in both bulk-superconducting
and non-bulk-superconducting compositions. By taking into
account the absence of a good Fermi-surface nesting via
Q = (π,0) in AxFe2−ySe2 [32] and monolayer FeSe thin
film [6] regardless of their high-Tc values, there would exist
no common relationship between Tc and the nesting condition
in iron-chalcogenide superconductors. This would suggest
that the Fermi-surface nesting is not important for super-
conductivity in these systems, while we cannot completely
exclude the possible role of nesting in FeTe1−xSex because
of the good correspondence between the development of
Q = (π,0) antiferromagnetic fluctuations and the emergence
of superconductivity [11] in the well-nested samples [20]. In
either case (the Fermi-surface nesting is important or not), the
present results indicate that the presence of a factor which is
not directly associated with the nesting should be taken into

account to understand the suppression of superconductivity at
low Se concentrations.

To answer the above question and further evaluate the
electronic states, we turn our attention to the ARPES spectral
line shape, which exhibits a striking x dependence in contrast
to the Fermi-surface shape. Figure 3(a) compares the normal-
state ARPES spectrum near the ! point for various x values.
While a well-defined quasiparticle peak due to the α′ band
is observed for x " 0.4, the peak intensity is drastically
suppressed and simultaneously broadened with decreasing x
[see inset to Fig. 3(a)], and finally almost vanishes at x = 0,
suggesting that the electronic states become incoherent at
x = 0 [33]. A similar quasiparticle-peak suppression is also
recognized for the electron band around the M point. One can
clearly find in Fig. 3(b) that the MDC peak around the M point
is significantly broadened at the low Se concentrations. The
present results thus clearly show the occurrence of progressive
evolution from coherent to incoherent electronic states taking
place with decreasing x. We have confirmed the reproducibility
of such an observation by repeating the measurements at least
twice for each concentration x.

Next we discuss the relationship between the evolution of
coherent/incoherent electronic states and the disappearance
of superconductivity. In Figs. 3(c)–3(f), we show the phase
diagram of FeTe1−xSex compared with several characteristic
quantities extracted from the present ARPES and previous
studies [11]. We immediately notice that the increase of
the Se concentration gives rise to a marked sharpening of the
quasiparticle-peak width [Fig. 3(d)] and an increase of
the quasiparticle-peak intensity [Fig. 3(e)] as explained
above. Interestingly, the x dependence of the quasiparticle-
peak intensity resembles the bulk superconducting-dome
shape, suggesting that the development of well-defined
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FIG. 3. (Color online) (a) Se-concentration dependence of the
near-EF ARPES spectrum at 20 K for x = 0.2–0.45 and 80 K for
x = 0.0 measured at ky ∼ 0.2 π/a where the quasiparticle-peak
intensity of the α′ band is dominant (note that we did not select
the ARPES spectrum at the kF point since it is strongly influenced by
the α band). Each spectrum is normalized to the intensity at 100 meV.
The ARPES spectra after subtracting a Shirley-type background
are plotted in the inset, in which each spectrum is normalized to
the intensity of the peak maximum to demonstrate the spectral
broadening. (b) MDCs at EF along the (π,0)-(π,π ) line for various
Se concentrations. Solid curves represent the numerical fittings with
two Lorentzians. MDC peak positions extracted from the fitting are
shown in the inset, where blue and red circles denote the peak
position for negative and positive ky regions, respectively. (c) Phase
diagram of Fe1.02Te1−xSex [11]. (d) Full width at half maximum of
the EDC peak in the inset to (a) (blue filled circle) and the MDC
peak in (b) (red filled circle) plotted as a function of x. We found
that sample-to-sample variation is much smaller than the observed
x dependence as highlighted by the comparison of open and filled
circles. (e) x dependence of the quasiparticle-peak intensity of the
α′ band (blue filled circle) extracted from ARPES spectra in (a).
The MDC peak intensity extracted from (b) is also plotted using
green filled triangles (ky < 0) and orange filled triangles (ky > 0).
The sample-to-sample variation is also included by open symbols. (f)
The superconducting volume fraction (red circle) together with the
dρ/dT value at 35 K [11].

quasiparticles in the normal state triggers bulk superconduc-
tivity in FeTe1−xSex. The present results agree well with the
transport and superconducting properties, as explained below.
As seen in Fig. 3(f), the resistivity at 35 K (slightly above
Tc) exhibits a metallic behavior (dρ/dT > 0) for x > 0.3 [see
black diamond in Fig. 3(f)], whereas the negative dρ/dT value
for 0.1 < x < 0.3 signifies weak charge carrier localization.
For x < 0.1, the positive dρ/dT value is associated with the
occurrence of the antiferromagnetic transition, and the charge
carriers are still weakly localized (dρ/dT < 0) above TN, as
suggested by the absence of a Drude peak in the optical conduc-
tivity spectra [34]. These characteristic physical properties are

consistent with the observed evolution of coherent/incoherent
electronic states in the normal state. We also note that a sharp
quasiparticle peak expected for the metallic transport in the
antiferromagnetic phase in FeTe is clearly identified around
the $ point below TN [Fig. 2(j)]. The good agreement of the
ARPES result with the transport properties demonstrates that
the observed electronic states, including the incoherent feature
in the normal state, certainly reflect the inherent characteristics
of FeTe1−xSex. Most importantly, the superconducting volume
fraction, which is close to 100% (−4πχ ∼ 1) at x ∼ 0.45
[red circle in Fig. 3(f)], gradually decreases and eventually
vanishes to ∼0% across the Se concentration of ∼0.3, at
which the dρ/dT value changes its sign. This demonstrates
the close relationship between the emergence of incoherent
normal states and the destruction of bulk superconductivity at
low Se concentrations.

The origin of the incoherent electronic states at low Se
concentrations is crucial for fully understanding the super-
conducting mechanism. Excess iron is known to promote
the carrier localization and suppress the bulk superconduc-
tivity, and thus it may be responsible for the incoherent
states; e.g., Fe1.03Te0.63Se0.37 is a bulk superconductor, while
Fe1.11Te0.64Se0.36 is not [35,36]. However, this would not
be the main cause of the present observation, because
the ARPES spectrum becomes drastically broadened even
when the amount of excess iron is as low as 0.03 [see
Figs. 3(a) and 3(b)]. We thus propose that either bicollinear
antiferromagnetic fluctuations or electronic correlations are
responsible for the incoherent states. In the former case,
the bicollinear antiferromagnetic fluctuations strongly scatter
itinerant electrons to make them weakly localized. In the
latter case, the large on-site Coulomb interaction pushes
the system close to the Mott metal-insulator transition. The
electronic correlations driven by the Hund’s rule coupling
may play an additional important role like in manganites
[37–39].

In conclusion, we reported high-resolution ARPES results
of FeTe1−xSex with various Se concentrations (0 ! x ! 0.45).
We found that the Fermi-surface shape does not show a
clear difference for 0.2 ! x ! 0.45. We also observed that
the broad normal-state ARPES spectrum characterized by a
small quasiparticle weight in FeTe progressively transforms
into a sharp well-defined quasiparticle peak upon increasing
the Se concentration. The present results suggest that the
suppression of superconductivity at low Se concentrations is
not caused by the deterioration of the nesting condition, but is
rather associated with the incoherent electronic states produced
by an additional factor such as bicollinear antiferromagnetic
fluctuations and electronic correlations.
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Matsunami, and S. Kimura for their assistance in ARPES
measurements. This work was supported by grants from
the Japan Society for the Promotion of Science (JSPS), the
Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT) of Japan, the Chinese Academy of Sciences
(CAS), the National Science Foundation of China (NSFC),
the Ministry of Science and Technology (MOST) of China,
KEK-PF (Proposals No. 2009S2-005 and No. 2012S2-001),
and UVSOR (Proposal No. 22-540).
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FIG. 3. (Color online) (a) Se-concentration dependence of the
near-EF ARPES spectrum at 20 K for x = 0.2–0.45 and 80 K for
x = 0.0 measured at ky ∼ 0.2 π/a where the quasiparticle-peak
intensity of the α′ band is dominant (note that we did not select
the ARPES spectrum at the kF point since it is strongly influenced by
the α band). Each spectrum is normalized to the intensity at 100 meV.
The ARPES spectra after subtracting a Shirley-type background
are plotted in the inset, in which each spectrum is normalized to
the intensity of the peak maximum to demonstrate the spectral
broadening. (b) MDCs at EF along the (π,0)-(π,π ) line for various
Se concentrations. Solid curves represent the numerical fittings with
two Lorentzians. MDC peak positions extracted from the fitting are
shown in the inset, where blue and red circles denote the peak
position for negative and positive ky regions, respectively. (c) Phase
diagram of Fe1.02Te1−xSex [11]. (d) Full width at half maximum of
the EDC peak in the inset to (a) (blue filled circle) and the MDC
peak in (b) (red filled circle) plotted as a function of x. We found
that sample-to-sample variation is much smaller than the observed
x dependence as highlighted by the comparison of open and filled
circles. (e) x dependence of the quasiparticle-peak intensity of the
α′ band (blue filled circle) extracted from ARPES spectra in (a).
The MDC peak intensity extracted from (b) is also plotted using
green filled triangles (ky < 0) and orange filled triangles (ky > 0).
The sample-to-sample variation is also included by open symbols. (f)
The superconducting volume fraction (red circle) together with the
dρ/dT value at 35 K [11].

quasiparticles in the normal state triggers bulk superconduc-
tivity in FeTe1−xSex. The present results agree well with the
transport and superconducting properties, as explained below.
As seen in Fig. 3(f), the resistivity at 35 K (slightly above
Tc) exhibits a metallic behavior (dρ/dT > 0) for x > 0.3 [see
black diamond in Fig. 3(f)], whereas the negative dρ/dT value
for 0.1 < x < 0.3 signifies weak charge carrier localization.
For x < 0.1, the positive dρ/dT value is associated with the
occurrence of the antiferromagnetic transition, and the charge
carriers are still weakly localized (dρ/dT < 0) above TN, as
suggested by the absence of a Drude peak in the optical conduc-
tivity spectra [34]. These characteristic physical properties are

consistent with the observed evolution of coherent/incoherent
electronic states in the normal state. We also note that a sharp
quasiparticle peak expected for the metallic transport in the
antiferromagnetic phase in FeTe is clearly identified around
the $ point below TN [Fig. 2(j)]. The good agreement of the
ARPES result with the transport properties demonstrates that
the observed electronic states, including the incoherent feature
in the normal state, certainly reflect the inherent characteristics
of FeTe1−xSex. Most importantly, the superconducting volume
fraction, which is close to 100% (−4πχ ∼ 1) at x ∼ 0.45
[red circle in Fig. 3(f)], gradually decreases and eventually
vanishes to ∼0% across the Se concentration of ∼0.3, at
which the dρ/dT value changes its sign. This demonstrates
the close relationship between the emergence of incoherent
normal states and the destruction of bulk superconductivity at
low Se concentrations.

The origin of the incoherent electronic states at low Se
concentrations is crucial for fully understanding the super-
conducting mechanism. Excess iron is known to promote
the carrier localization and suppress the bulk superconduc-
tivity, and thus it may be responsible for the incoherent
states; e.g., Fe1.03Te0.63Se0.37 is a bulk superconductor, while
Fe1.11Te0.64Se0.36 is not [35,36]. However, this would not
be the main cause of the present observation, because
the ARPES spectrum becomes drastically broadened even
when the amount of excess iron is as low as 0.03 [see
Figs. 3(a) and 3(b)]. We thus propose that either bicollinear
antiferromagnetic fluctuations or electronic correlations are
responsible for the incoherent states. In the former case,
the bicollinear antiferromagnetic fluctuations strongly scatter
itinerant electrons to make them weakly localized. In the
latter case, the large on-site Coulomb interaction pushes
the system close to the Mott metal-insulator transition. The
electronic correlations driven by the Hund’s rule coupling
may play an additional important role like in manganites
[37–39].

In conclusion, we reported high-resolution ARPES results
of FeTe1−xSex with various Se concentrations (0 ! x ! 0.45).
We found that the Fermi-surface shape does not show a
clear difference for 0.2 ! x ! 0.45. We also observed that
the broad normal-state ARPES spectrum characterized by a
small quasiparticle weight in FeTe progressively transforms
into a sharp well-defined quasiparticle peak upon increasing
the Se concentration. The present results suggest that the
suppression of superconductivity at low Se concentrations is
not caused by the deterioration of the nesting condition, but is
rather associated with the incoherent electronic states produced
by an additional factor such as bicollinear antiferromagnetic
fluctuations and electronic correlations.
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Figure 3. (color online) (a)-(e) ARPES intensity plots of the
� band at 30 K, 50 K, 100 K, 150 K and 200 K, respectively.
(f)-(j) ARPES intensity plots of the � and � bands at 30 K,
50 K, 100 K, 150 K and 200 K, respectively. All spectra are
divided by the Fermi-Dirac function convoluted with the sys-
tem resolution. (k)-(p), DFT+DMFT calculated momentum-
and energy-resolved spectral function at 58 K, 116 K and 232
K. (k)-(m) and (n)-(p) are corresponding to hole bands and
electron bands, respectively.

sents non-quasi-particle regime. The area does not go
to zero because of the temperature correction, ⇡kBT , to
the self-energy. The 16 meV anomalies observed in both
�(k,!) and Z(k,!) are likely induced by electron-boson
couplings with negligible contributions of the antiferro-
magnetic spin-resonance[21].

Now we turn to the temperature dependence of the
QPs. Figures 3a-3e show ARPES intensity plots of the
� band at 30 K, 50 K, 100 K, 150 K and 200 K, respec-
tively. Figures 3f-3j show the temperature evolution of
the � and � bands. To reveal the electronic states above
EF , all spectra are divided by the Fermi-Dirac function
convoluted with the system resolution. As shown in Figs.
3a-3e, the � band, which is mainly composed of dxy or-
bital character, dramatically loses intensity and is nearly
invisible at 200 K, while the � band, which is mainly com-
posed of dxz/yz orbital, becomes broader and its intensity
remains relatively strong even at 200 K. This orbital de-
pendent intensity loss is consistent with previous report
on the same material, where the drop of peak intensity
on � band is much faster than it is on the ↵ and ↵’ band,
which are mainly composed of dxz/yz orbital[13, 21]. In
Fig. 3, we show the DFT+DMFT calculated hole bands
(Figs. 3k-3m) and electron bands (Figs. 3n-3p) at sev-
eral temperatures. The overall momentum and energy
resolved spectra agree quite well with experimental mea-
surements without any adjustment such as band renor-
malization and shift, which are usually needed for the

DFT band structure, validating the DFT+DMFT ap-
proach. It is also evident that the DFT+DMFT inten-
sity of the � band with dxy orbital is substantially weaker
than the dxz/yz bands at 232 K[21], which is consistent
with the experimental observations[21].
In order to quantitatively compare the di↵erence be-

tween the � band and the � band, we analyze the mea-
sured EDCs at k�

F
and k�

F
, which are marked by blue

and red lines in Figs. 3a and 3f, respectively. In Figs.
4a and 4b, we show the EDCs of the � band and the �
band from 20 K to 200 K. All curves are fitted by the QP
spectral function plus a polynomial background and the
extracted QP peaks of the � and the � bands are plotted
in Figs. 4d and 4e, respectively[21]. The temperature-
dependent QP scattering rates are extracted and plotted
in Fig. 4c. The grey shaded background represents the
coherence-incoherence crossover regime where the deriva-
tive of the resistivity curve reaches a maximum and starts
to drop down[23]. Interestingly, in agreement with a re-
cent study[24], we find that the QP scattering rates on
both the � band and the � band also severely deviate
from their low-temperature T -quadratic behavior near
this temperature, indicating that the saturation of re-
sistivity is intimately connected to the high-temperature
QP scattering rate.

Although the scattering rates of the � band and the �
band show similar temperature evolutions, we find that
the total spectral weight (TSW) of the � and � bands
have di↵erent behaviors at high temperature. To extract
the spectral weight (SW), we integrate the extracted and
DFT+DMFT calculated QP spectral functions shown in
Figs. 4d and 4e[21] and plot the integrated SW of the
� and � bands in Fig. 4f. Both the experimental data
and the theoretical calculations show a nearly conserved
SW on the � band up to 200 K, and a dramatically re-
duced SW on the � band at high temperature[21]. In-
deed, the intensity change of the ↵ and ↵’ is similar to
the � band and much slower than the � band with in-
creasing temperature[13, 21], further proving the change
of SW is orbital dependent.

This orbital-dependent SW reduction with ele-
vated temperature is fully consistent with the Hund’s
metal picture where an orbital-di↵erentiated coherence-
incoherence crossover occurs at di↵erent temperatures
due to the strong Hund’s rule coupling[25, 26]. This
is further supported by a recent DMFT plus nu-
merical renormalization group study confirming that
the iron pnictides are Fermi liquids at low tempera-
ture and the orbital-di↵erentiated coherence-incoherence
crossover is driven by a Kondo-type screening with
the Kondo temperature determined by the strength of
Hund’s coupling[27]. In the Hund’s metal point of
view, both iron pnictides and iron chalcogenides have
Hund-di↵erentiated coherence-incoherence crossover. In-
deed, previous studies[7, 8] show that both FeTe
and KxFe2�ySe2 exhibit a similar orbital-di↵erentiated
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Figure 3. (color online) (a)-(e) ARPES intensity plots of the
� band at 30 K, 50 K, 100 K, 150 K and 200 K, respectively.
(f)-(j) ARPES intensity plots of the � and � bands at 30 K,
50 K, 100 K, 150 K and 200 K, respectively. All spectra are
divided by the Fermi-Dirac function convoluted with the sys-
tem resolution. (k)-(p), DFT+DMFT calculated momentum-
and energy-resolved spectral function at 58 K, 116 K and 232
K. (k)-(m) and (n)-(p) are corresponding to hole bands and
electron bands, respectively.

sents non-quasi-particle regime. The area does not go
to zero because of the temperature correction, ⇡kBT , to
the self-energy. The 16 meV anomalies observed in both
�(k,!) and Z(k,!) are likely induced by electron-boson
couplings with negligible contributions of the antiferro-
magnetic spin-resonance[21].

Now we turn to the temperature dependence of the
QPs. Figures 3a-3e show ARPES intensity plots of the
� band at 30 K, 50 K, 100 K, 150 K and 200 K, respec-
tively. Figures 3f-3j show the temperature evolution of
the � and � bands. To reveal the electronic states above
EF , all spectra are divided by the Fermi-Dirac function
convoluted with the system resolution. As shown in Figs.
3a-3e, the � band, which is mainly composed of dxy or-
bital character, dramatically loses intensity and is nearly
invisible at 200 K, while the � band, which is mainly com-
posed of dxz/yz orbital, becomes broader and its intensity
remains relatively strong even at 200 K. This orbital de-
pendent intensity loss is consistent with previous report
on the same material, where the drop of peak intensity
on � band is much faster than it is on the ↵ and ↵’ band,
which are mainly composed of dxz/yz orbital[13, 21]. In
Fig. 3, we show the DFT+DMFT calculated hole bands
(Figs. 3k-3m) and electron bands (Figs. 3n-3p) at sev-
eral temperatures. The overall momentum and energy
resolved spectra agree quite well with experimental mea-
surements without any adjustment such as band renor-
malization and shift, which are usually needed for the

DFT band structure, validating the DFT+DMFT ap-
proach. It is also evident that the DFT+DMFT inten-
sity of the � band with dxy orbital is substantially weaker
than the dxz/yz bands at 232 K[21], which is consistent
with the experimental observations[21].
In order to quantitatively compare the di↵erence be-

tween the � band and the � band, we analyze the mea-
sured EDCs at k�

F
and k�

F
, which are marked by blue

and red lines in Figs. 3a and 3f, respectively. In Figs.
4a and 4b, we show the EDCs of the � band and the �
band from 20 K to 200 K. All curves are fitted by the QP
spectral function plus a polynomial background and the
extracted QP peaks of the � and the � bands are plotted
in Figs. 4d and 4e, respectively[21]. The temperature-
dependent QP scattering rates are extracted and plotted
in Fig. 4c. The grey shaded background represents the
coherence-incoherence crossover regime where the deriva-
tive of the resistivity curve reaches a maximum and starts
to drop down[23]. Interestingly, in agreement with a re-
cent study[24], we find that the QP scattering rates on
both the � band and the � band also severely deviate
from their low-temperature T -quadratic behavior near
this temperature, indicating that the saturation of re-
sistivity is intimately connected to the high-temperature
QP scattering rate.

Although the scattering rates of the � band and the �
band show similar temperature evolutions, we find that
the total spectral weight (TSW) of the � and � bands
have di↵erent behaviors at high temperature. To extract
the spectral weight (SW), we integrate the extracted and
DFT+DMFT calculated QP spectral functions shown in
Figs. 4d and 4e[21] and plot the integrated SW of the
� and � bands in Fig. 4f. Both the experimental data
and the theoretical calculations show a nearly conserved
SW on the � band up to 200 K, and a dramatically re-
duced SW on the � band at high temperature[21]. In-
deed, the intensity change of the ↵ and ↵’ is similar to
the � band and much slower than the � band with in-
creasing temperature[13, 21], further proving the change
of SW is orbital dependent.

This orbital-dependent SW reduction with ele-
vated temperature is fully consistent with the Hund’s
metal picture where an orbital-di↵erentiated coherence-
incoherence crossover occurs at di↵erent temperatures
due to the strong Hund’s rule coupling[25, 26]. This
is further supported by a recent DMFT plus nu-
merical renormalization group study confirming that
the iron pnictides are Fermi liquids at low tempera-
ture and the orbital-di↵erentiated coherence-incoherence
crossover is driven by a Kondo-type screening with
the Kondo temperature determined by the strength of
Hund’s coupling[27]. In the Hund’s metal point of
view, both iron pnictides and iron chalcogenides have
Hund-di↵erentiated coherence-incoherence crossover. In-
deed, previous studies[7, 8] show that both FeTe
and KxFe2�ySe2 exhibit a similar orbital-di↵erentiated
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Fig. 2a, controls the overlap between the iron and pnictogen atom
and hence makes iron electrons more localized (itinerant) with
increasing (decreasing) distance. The largest distance is achieved in
compounds with a larger chalcogenide ion, such as in FeTe, which
results in very heavy quasiparticles, as seen in Fig. 1b. The variation
in distance alters the overall bandwidth moderately. The Hund’s
orbital blockingmechanism amplifies this variation.

The second key structural parameter is the tetrahedron shape,
which is parameterized in terms of the pnictogen–Fe–pnictogen
angle, shown in Fig. 2a. This angle is equal to 109.5� for an
ideal tetrahedron, and is much smaller in FeTe, where the Te
ion is pushed farther away from the iron plane. The shape of
the tetrahedron controls the crystal-field levels, which in turn
control the orbital occupancies. We show them in Fig. 2b. The
average occupation of the iron atom is around nd = 6.25 across
all of the compounds studied, which leads to an average orbital
occupation of n↵ = 1.25. A deviation from the ideal angle enhances
the crystal-field splittings between xy and the degenerate xz/yz
orbital and also changes the splitting between t2g and eg orbitals.
Heavier quasiparticles with a smaller quasiparticle bandwidth are
more susceptible to the crystal-field splitting; hence, the orbital
differentiation is largest in FeTe but very small in LaFePO. The net
result of crystal-field splittings and quasiparticle mass is the charge
transfer from the t2g to eg orbitals as seen in Fig. 2b, and among t2g
orbitals the xy orbital loses most charge with increased correlation
strength, pushing its occupancy closer to integer filling.

Furthermore, the effective hopping between neighbouring iron
atoms has two contributions, one is due to direct Fe–Fe overlap,
and the second is indirect hopping through the pnictogen atom.
The two contributions to the diagonal hopping t↵,↵ have opposite
signs and destructively interfere. For the xz and yz orbital, the
indirect hopping through the pnictogen is larger than the direct
Fe–Fe hop. For the xy orbital, the two contributions are very
similar, and when the pnictogen height is sufficiently large, such
as in FeTe, the indirect hop is reduced and the two contributions
almost exactly cancel each other, resulting in vanishing effective
nearest-neighbour Fe–Fe txy,xy hopping. This kinetic frustration
mechanism contributes to the marked enhancement of the xy mass
in the FeTe compound.

In itinerant systems, the shape of the Fermi surface, or the Fermi-
surface nesting, is relevant for deciding which magnetic ordering
wave vector is realized when the residual interactions among the

quasiparticles are sufficiently strong. Additional terms, arising from
the incoherent part of the electron, become increasingly important
as the localization threshold is approached.

In Fig. 3 we show the DFT+DMFT Fermi surface together with
DFT predictions. In the moderately correlated end, such as in the
phosphorus 1111 compounds, our theoretical predictions match
DFT results. However, when correlations become sizable, such as
in LaFeAsO or BaFe2As2, the xy orbital starts to play a special
role, which results in a slightly modified Fermi-surface shape and
character when compared with DFT, while respecting the Luttinger
theorem. In BaFe2As2, DFT predicts that the outer pocket at 0 is
of xz/yz character, whereas DFT+DMFTpredicts that the outer
pocket is of xy character, in agreement with experiments26. This
effect of growing xy pocket at 0 and consequently shrinking of
xz/yz pocket is also apparent in LiFeAs, bringing the DFT+DMFT
Fermi surface in better agreementwith the experiment of ref. 22.

These changes in the shape of the Fermi surfaces are the
momentum-space counterpart of the real-space picture of charge
transfer among the iron 3d orbitals shown in Fig. 2b. This is because
the decrease (increase) of the xy (xz , yz) orbital occupancy results
in the increase (decrease) of the hole pocket size. Finally, the
Fermi surface of KFe2As2 shown in Fig. 3 has only hole pockets
around 0 but almost no electron pockets at M; hence, there
is no Fermi-surface nesting to facilitate the long-range magnetic
order. Indeed, KFe2As2 cannot sustain SDW ordering and only
a tiny DSDW moment can be stabilized, as shown in Fig. 1a.
Although the mass enhancement in KFe2As2 and 111 compounds is
substantial, the Fermi-surface nesting still plays an important role
in stabilizing magnetic ordering.

The fluctuating moment presented in Fig. 1a monotonically
increases with increased correlation strength, and constitutes an
upper bound to the size of the orderedmagneticmoment.However,
even when the Fermi-surface nesting is quite good, such as in 1111
and many 122 compounds, the ordered moment is substantially
reduced from this upper bound. In the DFT+DMFT theoretical
method, the orbital differentiation is responsible for the large
overall reduction of the static moment. In very itinerant systems,
such as LaFePO, the quasiparticles are too weakly interacting to
condense; hence, moderate correlations with a mass enhancement
of 1.5 do not sufficiently localize electrons to allow magnetic
ordering. In most other compounds, the localization and hence
the effective mass increase is substantial only in t2g orbitals,
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Fig. 2a, controls the overlap between the iron and pnictogen atom
and hence makes iron electrons more localized (itinerant) with
increasing (decreasing) distance. The largest distance is achieved in
compounds with a larger chalcogenide ion, such as in FeTe, which
results in very heavy quasiparticles, as seen in Fig. 1b. The variation
in distance alters the overall bandwidth moderately. The Hund’s
orbital blockingmechanism amplifies this variation.

The second key structural parameter is the tetrahedron shape,
which is parameterized in terms of the pnictogen–Fe–pnictogen
angle, shown in Fig. 2a. This angle is equal to 109.5� for an
ideal tetrahedron, and is much smaller in FeTe, where the Te
ion is pushed farther away from the iron plane. The shape of
the tetrahedron controls the crystal-field levels, which in turn
control the orbital occupancies. We show them in Fig. 2b. The
average occupation of the iron atom is around nd = 6.25 across
all of the compounds studied, which leads to an average orbital
occupation of n↵ = 1.25. A deviation from the ideal angle enhances
the crystal-field splittings between xy and the degenerate xz/yz
orbital and also changes the splitting between t2g and eg orbitals.
Heavier quasiparticles with a smaller quasiparticle bandwidth are
more susceptible to the crystal-field splitting; hence, the orbital
differentiation is largest in FeTe but very small in LaFePO. The net
result of crystal-field splittings and quasiparticle mass is the charge
transfer from the t2g to eg orbitals as seen in Fig. 2b, and among t2g
orbitals the xy orbital loses most charge with increased correlation
strength, pushing its occupancy closer to integer filling.

Furthermore, the effective hopping between neighbouring iron
atoms has two contributions, one is due to direct Fe–Fe overlap,
and the second is indirect hopping through the pnictogen atom.
The two contributions to the diagonal hopping t↵,↵ have opposite
signs and destructively interfere. For the xz and yz orbital, the
indirect hopping through the pnictogen is larger than the direct
Fe–Fe hop. For the xy orbital, the two contributions are very
similar, and when the pnictogen height is sufficiently large, such
as in FeTe, the indirect hop is reduced and the two contributions
almost exactly cancel each other, resulting in vanishing effective
nearest-neighbour Fe–Fe txy,xy hopping. This kinetic frustration
mechanism contributes to the marked enhancement of the xy mass
in the FeTe compound.

In itinerant systems, the shape of the Fermi surface, or the Fermi-
surface nesting, is relevant for deciding which magnetic ordering
wave vector is realized when the residual interactions among the

quasiparticles are sufficiently strong. Additional terms, arising from
the incoherent part of the electron, become increasingly important
as the localization threshold is approached.

In Fig. 3 we show the DFT+DMFT Fermi surface together with
DFT predictions. In the moderately correlated end, such as in the
phosphorus 1111 compounds, our theoretical predictions match
DFT results. However, when correlations become sizable, such as
in LaFeAsO or BaFe2As2, the xy orbital starts to play a special
role, which results in a slightly modified Fermi-surface shape and
character when compared with DFT, while respecting the Luttinger
theorem. In BaFe2As2, DFT predicts that the outer pocket at 0 is
of xz/yz character, whereas DFT+DMFTpredicts that the outer
pocket is of xy character, in agreement with experiments26. This
effect of growing xy pocket at 0 and consequently shrinking of
xz/yz pocket is also apparent in LiFeAs, bringing the DFT+DMFT
Fermi surface in better agreementwith the experiment of ref. 22.

These changes in the shape of the Fermi surfaces are the
momentum-space counterpart of the real-space picture of charge
transfer among the iron 3d orbitals shown in Fig. 2b. This is because
the decrease (increase) of the xy (xz , yz) orbital occupancy results
in the increase (decrease) of the hole pocket size. Finally, the
Fermi surface of KFe2As2 shown in Fig. 3 has only hole pockets
around 0 but almost no electron pockets at M; hence, there
is no Fermi-surface nesting to facilitate the long-range magnetic
order. Indeed, KFe2As2 cannot sustain SDW ordering and only
a tiny DSDW moment can be stabilized, as shown in Fig. 1a.
Although the mass enhancement in KFe2As2 and 111 compounds is
substantial, the Fermi-surface nesting still plays an important role
in stabilizing magnetic ordering.

The fluctuating moment presented in Fig. 1a monotonically
increases with increased correlation strength, and constitutes an
upper bound to the size of the orderedmagneticmoment.However,
even when the Fermi-surface nesting is quite good, such as in 1111
and many 122 compounds, the ordered moment is substantially
reduced from this upper bound. In the DFT+DMFT theoretical
method, the orbital differentiation is responsible for the large
overall reduction of the static moment. In very itinerant systems,
such as LaFePO, the quasiparticles are too weakly interacting to
condense; hence, moderate correlations with a mass enhancement
of 1.5 do not sufficiently localize electrons to allow magnetic
ordering. In most other compounds, the localization and hence
the effective mass increase is substantial only in t2g orbitals,
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Fermi surface can be strongly affected by 
correlations due to Hund’s

• Orbital differen'a'on gives different mass and different shiNs to different orbitals: 
• xy is orbital more correlated, its volume can be different than in DFT 
• xz/yz orbitals compensate for the volume change in yx orbital (LuWnger theorem)

DMFT Fermi surfaces:

DFT Fermi surfaces:

Z.P. Yin, K. Haule and G. Kotliar, Nature Materials 10, 932 (2011).



Puzzle: Parent compounds of Fe SC have very 
different ordered magnetic moments

many families of Fe superconductors 
share the same Fe-As tetrahedral unit

Experiment: Ordered magnetic moments
across many Fe superconductors

no understanding what determines 
the size of the ordered moments

Contrast with cuprates, where the 
moments correspond to spin s=1/2.

What governs magnetism in Fe compounds?
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FIG. S1: Atomic histogram The atomic histogram of the
Fe-3d shell for (a) FeTe and (b) LaFeAsO in the paramag-
netic state and magnetic states. The 1024 possible atomic
configurations are sorted by the number of 3d electrons of the
individual configuration.

the high spin atomic states gain even more weight, as
seen in Fig. S1.

The valence histogram of a Hund’s metal is fundamen-
tally different from that of an oxide. While only a few
atomic states have a significant probability in an oxide,
Hund’s metals visit a large number of atomic states over
time, resulting in a dramatic (40%) reduction of the mag-
netic moment due to valence fluctuations. A monovalent
histogram with only the atomic ground state would give
iron magnetic moment of 4 µB .

Another interesting feature of Hund’s metals is that
very large number of atomic states has finite probability.
For comparison, in transition metal oxides or in heavy
fermion materials with similar mass enhancement as in
iron pnictides and chalcogenides, the atomic histogram
would contain only a small number of states with signifi-
cant probability [S23]. Since the Hund’s rule coupling J
is equal to 0.8 eV, the energy spread of atomic states at

FIG. S2: Fe 3d DOS Atomic-like Fe 3d DOS for FeTe con-
trasted with actual Fe 3d DOS of LaFeAsO and FeTe com-
puted by DFT+DMFT.

constant N = 5 or N = 6 is very large, of the order of
6−7 eV. Because there are many atomic states with finite
probability that contribute to the one electron spectral
function, and because those states are extended over a
wide energy range, the spectral function does not have a
very well defined atomic like excitations. To demonstrate
this effect, we plot in Fig. S2(a) an atomic spectral func-
tion of Fe 3d orbitals, obtained from the corresponding
atomic Green’s function defined by

G(ω) =
∑

α,m,n

|〈n|d†α|m〉|2(Pn + Pm)
ω − En + Em

(1)

where n, m run over all atomic states, and α runs over
Fe 3d orbitals, and Pn are atomic probabilities displayed
in Fig. S1. Clearly, the atomic spectral weight is dis-
tributed over a very large energy range. For comparison,
a typical heavy fermion would have one sharp peak (a
delta function) below the Fermi level, and another peak
above the Fermi level, i.e., a lower and an upper Hubbard
band.[S23]

In Fig. S2(a) we also show the full DFT+DMFT spec-
tral function of the iron atom in the solid for FeTe and
LaFeAsO. One can notice that these spectral functions
have a sharp quasiparticle peak close to the Fermi level.
Due to larger mass enhancement in FeTe, the quasipar-
ticle peak in this compound is substantially smaller than
in LaFeAsO. The rest of the spectral weight does not
have a well defined Hubbard like bands, not because the
rest of the spectra would be coherent, but because of
the unusual atomic histograms of the Hund’s metals. A
small feature around −2 to −1 eV is however noticeably
enhanced in FeTe compared to LaFeAsO. This peak was
identified in Ref. S24 as an atomic-like excitation, which
is found in atomic spectral function at −2.2 eV , and is
related to the excitation from atomic ground state of d6

3

to atomic ground state of d5.

FIG. S3: DOS and magnetic moment: (a) Total density
of states at the Fermi level in the PM phase computed by DFT
and DFT+DMFT. (b) The magnetic moment calculated by
DFT with both LSDA and GGA exchange-correlation func-
tionals in both the SDW phase and DSDW phase. The fluc-
tuating moment in the PM phase calculated by DFT+DMFT
and the experimental magnetic moment in the magnetic states
which are shown in Fig1(a) in the manuscript and reproduced
here for easier comparison.

In the manuscript, we showed that one important fac-
tor in determining the size of the magnetic moment is
the quasiparticle mass enhancement. Clearly the heavier
quasiparticles with smaller quasiparticle effective width
are more prone to ordering. It is interesting to inspect
also the ”quasiparticle height”, i.e., the value of the one-
electron spectral function at the Fermi level. In Stoner
theory, this value plays a crucial role in determining the
critical temperature and the size of the ordered moment.
In Fig. S3(a) we show the value of the density of states
at the Fermi level in the paramagnetic state as obtained
by both DFT and DFT+DMFT. Clearly, large density
of states at the Fermi level is more compatible with
the small moment rather than large moment (shown in

Fig. S3(b)), which disfavors Stoner theory for explanation
of the trends in magnetic states across iron pnictides and
chalcogenides.

We also show in Fig. S3(b) the magnetic moment in
the SDW and DSDW phases calculated by DFT with
both the local spin density approximation (LSDA[S25])
and generalized gradient approximation (GGA[S26]) ex-
change correlation functionals. We also repeat the para-
magnetic fluctuating moment and the experimental static
ordered moments from the manuscript for better compar-
ison. It is clear from Fig. S3(b) that the DFT calculated
magnetic moments roughly follows the trend of the fluc-
tuating moment in the PM state, but is very different
from the static ordered moment, as already pointed out
by Ref. S27.

Optical properties

FIG. S4: Plasma frequency. The PM in-plane plasma
frequency ωab and out-of-plane plasma frequency ωc for
various iron pnictides and iron chalcogenides calculated by
both DFT+DMFT and DFT. The experimental PM in-plane
plasma frequencies are taken from Ref. S28–31.

Now we turn to the plasma frequencies in the para-
magnetic state of iron pnictide and chalchogenide com-
pounds, shown in Fig. S4. We show separately the
in-plane and c-axis values, as obtained by both the
DFT+DMFT and DFT calculations. We also plot the ex-
perimentally determined in-plane values from Refs. [S28]
for Na1−δFeAs, [S29] for BaFe2As2 and SrFe2As2, [S30]
for LaFeAsO, and [S31] for LaFePO. The DFT+DMFT
calculated in-plane plasma frequencies agree well with
existing optical measurements, but are significantly re-
duced from the DFT values, showing the important of
correlation effect. The extracted plasma frequencies in
the DFT+DMFT calculation for FeTe are most strongly
reduced from DFT values, and bear bigger error bars due
to the fact that the scattering rate in FeTe is so large that
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FIG. S1: Atomic histogram The atomic histogram of the
Fe-3d shell for (a) FeTe and (b) LaFeAsO in the paramag-
netic state and magnetic states. The 1024 possible atomic
configurations are sorted by the number of 3d electrons of the
individual configuration.

the high spin atomic states gain even more weight, as
seen in Fig. S1.

The valence histogram of a Hund’s metal is fundamen-
tally different from that of an oxide. While only a few
atomic states have a significant probability in an oxide,
Hund’s metals visit a large number of atomic states over
time, resulting in a dramatic (40%) reduction of the mag-
netic moment due to valence fluctuations. A monovalent
histogram with only the atomic ground state would give
iron magnetic moment of 4 µB .

Another interesting feature of Hund’s metals is that
very large number of atomic states has finite probability.
For comparison, in transition metal oxides or in heavy
fermion materials with similar mass enhancement as in
iron pnictides and chalcogenides, the atomic histogram
would contain only a small number of states with signifi-
cant probability [S23]. Since the Hund’s rule coupling J
is equal to 0.8 eV, the energy spread of atomic states at

FIG. S2: Fe 3d DOS Atomic-like Fe 3d DOS for FeTe con-
trasted with actual Fe 3d DOS of LaFeAsO and FeTe com-
puted by DFT+DMFT.

constant N = 5 or N = 6 is very large, of the order of
6−7 eV. Because there are many atomic states with finite
probability that contribute to the one electron spectral
function, and because those states are extended over a
wide energy range, the spectral function does not have a
very well defined atomic like excitations. To demonstrate
this effect, we plot in Fig. S2(a) an atomic spectral func-
tion of Fe 3d orbitals, obtained from the corresponding
atomic Green’s function defined by

G(ω) =
∑

α,m,n

|〈n|d†α|m〉|2(Pn + Pm)
ω − En + Em

(1)

where n, m run over all atomic states, and α runs over
Fe 3d orbitals, and Pn are atomic probabilities displayed
in Fig. S1. Clearly, the atomic spectral weight is dis-
tributed over a very large energy range. For comparison,
a typical heavy fermion would have one sharp peak (a
delta function) below the Fermi level, and another peak
above the Fermi level, i.e., a lower and an upper Hubbard
band.[S23]

In Fig. S2(a) we also show the full DFT+DMFT spec-
tral function of the iron atom in the solid for FeTe and
LaFeAsO. One can notice that these spectral functions
have a sharp quasiparticle peak close to the Fermi level.
Due to larger mass enhancement in FeTe, the quasipar-
ticle peak in this compound is substantially smaller than
in LaFeAsO. The rest of the spectral weight does not
have a well defined Hubbard like bands, not because the
rest of the spectra would be coherent, but because of
the unusual atomic histograms of the Hund’s metals. A
small feature around −2 to −1 eV is however noticeably
enhanced in FeTe compared to LaFeAsO. This peak was
identified in Ref. S24 as an atomic-like excitation, which
is found in atomic spectral function at −2.2 eV , and is
related to the excitation from atomic ground state of d6

3

to atomic ground state of d5.

FIG. S3: DOS and magnetic moment: (a) Total density
of states at the Fermi level in the PM phase computed by DFT
and DFT+DMFT. (b) The magnetic moment calculated by
DFT with both LSDA and GGA exchange-correlation func-
tionals in both the SDW phase and DSDW phase. The fluc-
tuating moment in the PM phase calculated by DFT+DMFT
and the experimental magnetic moment in the magnetic states
which are shown in Fig1(a) in the manuscript and reproduced
here for easier comparison.

In the manuscript, we showed that one important fac-
tor in determining the size of the magnetic moment is
the quasiparticle mass enhancement. Clearly the heavier
quasiparticles with smaller quasiparticle effective width
are more prone to ordering. It is interesting to inspect
also the ”quasiparticle height”, i.e., the value of the one-
electron spectral function at the Fermi level. In Stoner
theory, this value plays a crucial role in determining the
critical temperature and the size of the ordered moment.
In Fig. S3(a) we show the value of the density of states
at the Fermi level in the paramagnetic state as obtained
by both DFT and DFT+DMFT. Clearly, large density
of states at the Fermi level is more compatible with
the small moment rather than large moment (shown in

Fig. S3(b)), which disfavors Stoner theory for explanation
of the trends in magnetic states across iron pnictides and
chalcogenides.

We also show in Fig. S3(b) the magnetic moment in
the SDW and DSDW phases calculated by DFT with
both the local spin density approximation (LSDA[S25])
and generalized gradient approximation (GGA[S26]) ex-
change correlation functionals. We also repeat the para-
magnetic fluctuating moment and the experimental static
ordered moments from the manuscript for better compar-
ison. It is clear from Fig. S3(b) that the DFT calculated
magnetic moments roughly follows the trend of the fluc-
tuating moment in the PM state, but is very different
from the static ordered moment, as already pointed out
by Ref. S27.

Optical properties

FIG. S4: Plasma frequency. The PM in-plane plasma
frequency ωab and out-of-plane plasma frequency ωc for
various iron pnictides and iron chalcogenides calculated by
both DFT+DMFT and DFT. The experimental PM in-plane
plasma frequencies are taken from Ref. S28–31.

Now we turn to the plasma frequencies in the para-
magnetic state of iron pnictide and chalchogenide com-
pounds, shown in Fig. S4. We show separately the
in-plane and c-axis values, as obtained by both the
DFT+DMFT and DFT calculations. We also plot the ex-
perimentally determined in-plane values from Refs. [S28]
for Na1−δFeAs, [S29] for BaFe2As2 and SrFe2As2, [S30]
for LaFeAsO, and [S31] for LaFePO. The DFT+DMFT
calculated in-plane plasma frequencies agree well with
existing optical measurements, but are significantly re-
duced from the DFT values, showing the important of
correlation effect. The extracted plasma frequencies in
the DFT+DMFT calculation for FeTe are most strongly
reduced from DFT values, and bear bigger error bars due
to the fact that the scattering rate in FeTe is so large that
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FIG. S1: Atomic histogram The atomic histogram of the
Fe-3d shell for (a) FeTe and (b) LaFeAsO in the paramag-
netic state and magnetic states. The 1024 possible atomic
configurations are sorted by the number of 3d electrons of the
individual configuration.

the high spin atomic states gain even more weight, as
seen in Fig. S1.

The valence histogram of a Hund’s metal is fundamen-
tally different from that of an oxide. While only a few
atomic states have a significant probability in an oxide,
Hund’s metals visit a large number of atomic states over
time, resulting in a dramatic (40%) reduction of the mag-
netic moment due to valence fluctuations. A monovalent
histogram with only the atomic ground state would give
iron magnetic moment of 4 µB .

Another interesting feature of Hund’s metals is that
very large number of atomic states has finite probability.
For comparison, in transition metal oxides or in heavy
fermion materials with similar mass enhancement as in
iron pnictides and chalcogenides, the atomic histogram
would contain only a small number of states with signifi-
cant probability [S23]. Since the Hund’s rule coupling J
is equal to 0.8 eV, the energy spread of atomic states at

FIG. S2: Fe 3d DOS Atomic-like Fe 3d DOS for FeTe con-
trasted with actual Fe 3d DOS of LaFeAsO and FeTe com-
puted by DFT+DMFT.

constant N = 5 or N = 6 is very large, of the order of
6−7 eV. Because there are many atomic states with finite
probability that contribute to the one electron spectral
function, and because those states are extended over a
wide energy range, the spectral function does not have a
very well defined atomic like excitations. To demonstrate
this effect, we plot in Fig. S2(a) an atomic spectral func-
tion of Fe 3d orbitals, obtained from the corresponding
atomic Green’s function defined by

G(ω) =
∑

α,m,n

|〈n|d†α|m〉|2(Pn + Pm)
ω − En + Em

(1)

where n, m run over all atomic states, and α runs over
Fe 3d orbitals, and Pn are atomic probabilities displayed
in Fig. S1. Clearly, the atomic spectral weight is dis-
tributed over a very large energy range. For comparison,
a typical heavy fermion would have one sharp peak (a
delta function) below the Fermi level, and another peak
above the Fermi level, i.e., a lower and an upper Hubbard
band.[S23]

In Fig. S2(a) we also show the full DFT+DMFT spec-
tral function of the iron atom in the solid for FeTe and
LaFeAsO. One can notice that these spectral functions
have a sharp quasiparticle peak close to the Fermi level.
Due to larger mass enhancement in FeTe, the quasipar-
ticle peak in this compound is substantially smaller than
in LaFeAsO. The rest of the spectral weight does not
have a well defined Hubbard like bands, not because the
rest of the spectra would be coherent, but because of
the unusual atomic histograms of the Hund’s metals. A
small feature around −2 to −1 eV is however noticeably
enhanced in FeTe compared to LaFeAsO. This peak was
identified in Ref. S24 as an atomic-like excitation, which
is found in atomic spectral function at −2.2 eV , and is
related to the excitation from atomic ground state of d6

3

to atomic ground state of d5.

FIG. S3: DOS and magnetic moment: (a) Total density
of states at the Fermi level in the PM phase computed by DFT
and DFT+DMFT. (b) The magnetic moment calculated by
DFT with both LSDA and GGA exchange-correlation func-
tionals in both the SDW phase and DSDW phase. The fluc-
tuating moment in the PM phase calculated by DFT+DMFT
and the experimental magnetic moment in the magnetic states
which are shown in Fig1(a) in the manuscript and reproduced
here for easier comparison.

In the manuscript, we showed that one important fac-
tor in determining the size of the magnetic moment is
the quasiparticle mass enhancement. Clearly the heavier
quasiparticles with smaller quasiparticle effective width
are more prone to ordering. It is interesting to inspect
also the ”quasiparticle height”, i.e., the value of the one-
electron spectral function at the Fermi level. In Stoner
theory, this value plays a crucial role in determining the
critical temperature and the size of the ordered moment.
In Fig. S3(a) we show the value of the density of states
at the Fermi level in the paramagnetic state as obtained
by both DFT and DFT+DMFT. Clearly, large density
of states at the Fermi level is more compatible with
the small moment rather than large moment (shown in

Fig. S3(b)), which disfavors Stoner theory for explanation
of the trends in magnetic states across iron pnictides and
chalcogenides.

We also show in Fig. S3(b) the magnetic moment in
the SDW and DSDW phases calculated by DFT with
both the local spin density approximation (LSDA[S25])
and generalized gradient approximation (GGA[S26]) ex-
change correlation functionals. We also repeat the para-
magnetic fluctuating moment and the experimental static
ordered moments from the manuscript for better compar-
ison. It is clear from Fig. S3(b) that the DFT calculated
magnetic moments roughly follows the trend of the fluc-
tuating moment in the PM state, but is very different
from the static ordered moment, as already pointed out
by Ref. S27.

Optical properties

FIG. S4: Plasma frequency. The PM in-plane plasma
frequency ωab and out-of-plane plasma frequency ωc for
various iron pnictides and iron chalcogenides calculated by
both DFT+DMFT and DFT. The experimental PM in-plane
plasma frequencies are taken from Ref. S28–31.

Now we turn to the plasma frequencies in the para-
magnetic state of iron pnictide and chalchogenide com-
pounds, shown in Fig. S4. We show separately the
in-plane and c-axis values, as obtained by both the
DFT+DMFT and DFT calculations. We also plot the ex-
perimentally determined in-plane values from Refs. [S28]
for Na1−δFeAs, [S29] for BaFe2As2 and SrFe2As2, [S30]
for LaFeAsO, and [S31] for LaFePO. The DFT+DMFT
calculated in-plane plasma frequencies agree well with
existing optical measurements, but are significantly re-
duced from the DFT values, showing the important of
correlation effect. The extracted plasma frequencies in
the DFT+DMFT calculation for FeTe are most strongly
reduced from DFT values, and bear bigger error bars due
to the fact that the scattering rate in FeTe is so large that
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FIG. S1: Atomic histogram The atomic histogram of the
Fe-3d shell for (a) FeTe and (b) LaFeAsO in the paramag-
netic state and magnetic states. The 1024 possible atomic
configurations are sorted by the number of 3d electrons of the
individual configuration.

the high spin atomic states gain even more weight, as
seen in Fig. S1.

The valence histogram of a Hund’s metal is fundamen-
tally different from that of an oxide. While only a few
atomic states have a significant probability in an oxide,
Hund’s metals visit a large number of atomic states over
time, resulting in a dramatic (40%) reduction of the mag-
netic moment due to valence fluctuations. A monovalent
histogram with only the atomic ground state would give
iron magnetic moment of 4 µB .

Another interesting feature of Hund’s metals is that
very large number of atomic states has finite probability.
For comparison, in transition metal oxides or in heavy
fermion materials with similar mass enhancement as in
iron pnictides and chalcogenides, the atomic histogram
would contain only a small number of states with signifi-
cant probability [S23]. Since the Hund’s rule coupling J
is equal to 0.8 eV, the energy spread of atomic states at

FIG. S2: Fe 3d DOS Atomic-like Fe 3d DOS for FeTe con-
trasted with actual Fe 3d DOS of LaFeAsO and FeTe com-
puted by DFT+DMFT.

constant N = 5 or N = 6 is very large, of the order of
6−7 eV. Because there are many atomic states with finite
probability that contribute to the one electron spectral
function, and because those states are extended over a
wide energy range, the spectral function does not have a
very well defined atomic like excitations. To demonstrate
this effect, we plot in Fig. S2(a) an atomic spectral func-
tion of Fe 3d orbitals, obtained from the corresponding
atomic Green’s function defined by

G(ω) =
∑

α,m,n

|〈n|d†α|m〉|2(Pn + Pm)
ω − En + Em

(1)

where n, m run over all atomic states, and α runs over
Fe 3d orbitals, and Pn are atomic probabilities displayed
in Fig. S1. Clearly, the atomic spectral weight is dis-
tributed over a very large energy range. For comparison,
a typical heavy fermion would have one sharp peak (a
delta function) below the Fermi level, and another peak
above the Fermi level, i.e., a lower and an upper Hubbard
band.[S23]

In Fig. S2(a) we also show the full DFT+DMFT spec-
tral function of the iron atom in the solid for FeTe and
LaFeAsO. One can notice that these spectral functions
have a sharp quasiparticle peak close to the Fermi level.
Due to larger mass enhancement in FeTe, the quasipar-
ticle peak in this compound is substantially smaller than
in LaFeAsO. The rest of the spectral weight does not
have a well defined Hubbard like bands, not because the
rest of the spectra would be coherent, but because of
the unusual atomic histograms of the Hund’s metals. A
small feature around −2 to −1 eV is however noticeably
enhanced in FeTe compared to LaFeAsO. This peak was
identified in Ref. S24 as an atomic-like excitation, which
is found in atomic spectral function at −2.2 eV , and is
related to the excitation from atomic ground state of d6

3

to atomic ground state of d5.

FIG. S3: DOS and magnetic moment: (a) Total density
of states at the Fermi level in the PM phase computed by DFT
and DFT+DMFT. (b) The magnetic moment calculated by
DFT with both LSDA and GGA exchange-correlation func-
tionals in both the SDW phase and DSDW phase. The fluc-
tuating moment in the PM phase calculated by DFT+DMFT
and the experimental magnetic moment in the magnetic states
which are shown in Fig1(a) in the manuscript and reproduced
here for easier comparison.

In the manuscript, we showed that one important fac-
tor in determining the size of the magnetic moment is
the quasiparticle mass enhancement. Clearly the heavier
quasiparticles with smaller quasiparticle effective width
are more prone to ordering. It is interesting to inspect
also the ”quasiparticle height”, i.e., the value of the one-
electron spectral function at the Fermi level. In Stoner
theory, this value plays a crucial role in determining the
critical temperature and the size of the ordered moment.
In Fig. S3(a) we show the value of the density of states
at the Fermi level in the paramagnetic state as obtained
by both DFT and DFT+DMFT. Clearly, large density
of states at the Fermi level is more compatible with
the small moment rather than large moment (shown in

Fig. S3(b)), which disfavors Stoner theory for explanation
of the trends in magnetic states across iron pnictides and
chalcogenides.

We also show in Fig. S3(b) the magnetic moment in
the SDW and DSDW phases calculated by DFT with
both the local spin density approximation (LSDA[S25])
and generalized gradient approximation (GGA[S26]) ex-
change correlation functionals. We also repeat the para-
magnetic fluctuating moment and the experimental static
ordered moments from the manuscript for better compar-
ison. It is clear from Fig. S3(b) that the DFT calculated
magnetic moments roughly follows the trend of the fluc-
tuating moment in the PM state, but is very different
from the static ordered moment, as already pointed out
by Ref. S27.

Optical properties

FIG. S4: Plasma frequency. The PM in-plane plasma
frequency ωab and out-of-plane plasma frequency ωc for
various iron pnictides and iron chalcogenides calculated by
both DFT+DMFT and DFT. The experimental PM in-plane
plasma frequencies are taken from Ref. S28–31.

Now we turn to the plasma frequencies in the para-
magnetic state of iron pnictide and chalchogenide com-
pounds, shown in Fig. S4. We show separately the
in-plane and c-axis values, as obtained by both the
DFT+DMFT and DFT calculations. We also plot the ex-
perimentally determined in-plane values from Refs. [S28]
for Na1−δFeAs, [S29] for BaFe2As2 and SrFe2As2, [S30]
for LaFeAsO, and [S31] for LaFePO. The DFT+DMFT
calculated in-plane plasma frequencies agree well with
existing optical measurements, but are significantly re-
duced from the DFT values, showing the important of
correlation effect. The extracted plasma frequencies in
the DFT+DMFT calculation for FeTe are most strongly
reduced from DFT values, and bear bigger error bars due
to the fact that the scattering rate in FeTe is so large that
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FIG. S1: Atomic histogram The atomic histogram of the
Fe-3d shell for (a) FeTe and (b) LaFeAsO in the paramag-
netic state and magnetic states. The 1024 possible atomic
configurations are sorted by the number of 3d electrons of the
individual configuration.

the high spin atomic states gain even more weight, as
seen in Fig. S1.

The valence histogram of a Hund’s metal is fundamen-
tally different from that of an oxide. While only a few
atomic states have a significant probability in an oxide,
Hund’s metals visit a large number of atomic states over
time, resulting in a dramatic (40%) reduction of the mag-
netic moment due to valence fluctuations. A monovalent
histogram with only the atomic ground state would give
iron magnetic moment of 4 µB .

Another interesting feature of Hund’s metals is that
very large number of atomic states has finite probability.
For comparison, in transition metal oxides or in heavy
fermion materials with similar mass enhancement as in
iron pnictides and chalcogenides, the atomic histogram
would contain only a small number of states with signifi-
cant probability [S23]. Since the Hund’s rule coupling J
is equal to 0.8 eV, the energy spread of atomic states at

FIG. S2: Fe 3d DOS Atomic-like Fe 3d DOS for FeTe con-
trasted with actual Fe 3d DOS of LaFeAsO and FeTe com-
puted by DFT+DMFT.

constant N = 5 or N = 6 is very large, of the order of
6−7 eV. Because there are many atomic states with finite
probability that contribute to the one electron spectral
function, and because those states are extended over a
wide energy range, the spectral function does not have a
very well defined atomic like excitations. To demonstrate
this effect, we plot in Fig. S2(a) an atomic spectral func-
tion of Fe 3d orbitals, obtained from the corresponding
atomic Green’s function defined by

G(ω) =
∑

α,m,n

|〈n|d†α|m〉|2(Pn + Pm)
ω − En + Em

(1)

where n, m run over all atomic states, and α runs over
Fe 3d orbitals, and Pn are atomic probabilities displayed
in Fig. S1. Clearly, the atomic spectral weight is dis-
tributed over a very large energy range. For comparison,
a typical heavy fermion would have one sharp peak (a
delta function) below the Fermi level, and another peak
above the Fermi level, i.e., a lower and an upper Hubbard
band.[S23]

In Fig. S2(a) we also show the full DFT+DMFT spec-
tral function of the iron atom in the solid for FeTe and
LaFeAsO. One can notice that these spectral functions
have a sharp quasiparticle peak close to the Fermi level.
Due to larger mass enhancement in FeTe, the quasipar-
ticle peak in this compound is substantially smaller than
in LaFeAsO. The rest of the spectral weight does not
have a well defined Hubbard like bands, not because the
rest of the spectra would be coherent, but because of
the unusual atomic histograms of the Hund’s metals. A
small feature around −2 to −1 eV is however noticeably
enhanced in FeTe compared to LaFeAsO. This peak was
identified in Ref. S24 as an atomic-like excitation, which
is found in atomic spectral function at −2.2 eV , and is
related to the excitation from atomic ground state of d6

3

to atomic ground state of d5.

FIG. S3: DOS and magnetic moment: (a) Total density
of states at the Fermi level in the PM phase computed by DFT
and DFT+DMFT. (b) The magnetic moment calculated by
DFT with both LSDA and GGA exchange-correlation func-
tionals in both the SDW phase and DSDW phase. The fluc-
tuating moment in the PM phase calculated by DFT+DMFT
and the experimental magnetic moment in the magnetic states
which are shown in Fig1(a) in the manuscript and reproduced
here for easier comparison.

In the manuscript, we showed that one important fac-
tor in determining the size of the magnetic moment is
the quasiparticle mass enhancement. Clearly the heavier
quasiparticles with smaller quasiparticle effective width
are more prone to ordering. It is interesting to inspect
also the ”quasiparticle height”, i.e., the value of the one-
electron spectral function at the Fermi level. In Stoner
theory, this value plays a crucial role in determining the
critical temperature and the size of the ordered moment.
In Fig. S3(a) we show the value of the density of states
at the Fermi level in the paramagnetic state as obtained
by both DFT and DFT+DMFT. Clearly, large density
of states at the Fermi level is more compatible with
the small moment rather than large moment (shown in

Fig. S3(b)), which disfavors Stoner theory for explanation
of the trends in magnetic states across iron pnictides and
chalcogenides.

We also show in Fig. S3(b) the magnetic moment in
the SDW and DSDW phases calculated by DFT with
both the local spin density approximation (LSDA[S25])
and generalized gradient approximation (GGA[S26]) ex-
change correlation functionals. We also repeat the para-
magnetic fluctuating moment and the experimental static
ordered moments from the manuscript for better compar-
ison. It is clear from Fig. S3(b) that the DFT calculated
magnetic moments roughly follows the trend of the fluc-
tuating moment in the PM state, but is very different
from the static ordered moment, as already pointed out
by Ref. S27.

Optical properties

FIG. S4: Plasma frequency. The PM in-plane plasma
frequency ωab and out-of-plane plasma frequency ωc for
various iron pnictides and iron chalcogenides calculated by
both DFT+DMFT and DFT. The experimental PM in-plane
plasma frequencies are taken from Ref. S28–31.

Now we turn to the plasma frequencies in the para-
magnetic state of iron pnictide and chalchogenide com-
pounds, shown in Fig. S4. We show separately the
in-plane and c-axis values, as obtained by both the
DFT+DMFT and DFT calculations. We also plot the ex-
perimentally determined in-plane values from Refs. [S28]
for Na1−δFeAs, [S29] for BaFe2As2 and SrFe2As2, [S30]
for LaFeAsO, and [S31] for LaFePO. The DFT+DMFT
calculated in-plane plasma frequencies agree well with
existing optical measurements, but are significantly re-
duced from the DFT values, showing the important of
correlation effect. The extracted plasma frequencies in
the DFT+DMFT calculation for FeTe are most strongly
reduced from DFT values, and bear bigger error bars due
to the fact that the scattering rate in FeTe is so large that
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Can distinguish between the fluctuating 
moment <S2>, and the ordered moment 
<S>2. In para <S>=0 on each site.

Yin, Haule & Kotliar, Nature Physics 7, 294-297 (2011).

Substantial fluctuating moment remains 
in the ordered state
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Figure 1 |Ordered magnetic moments and mass enhancements in
iron-based compounds. a, The DFT+DMFT calculated and

experimental
6–13

iron magnetic moments in the SDW and DSDW states.

Also shown is the calculated fluctuating moment in the paramagnetic (PM)

state. b, The DFT+DMFT-calculated mass enhancement m⇤/mband of the

iron 3d orbitals in the paramagnetic state and the low-energy effective

mass enhancement obtained from optical spectroscopy experiments
16–19

and (angle-resolved) photoemission spectroscopy experiments
20–24

.

and Fermi-surface shape, which together conspire to produce the
magnetic orderings shown in Fig. 1a.

The quasiparticle mass shown in Fig. 1b is quite moderate in
the phosphorus 1111 compound on the right-hand side of Fig. 1b,
but correlations are significantly enhanced in arsenic 122 and
1111 compounds. Note, however, that enhancement is not equal
in all orbitals, but it is significantly stronger in the t2g orbitals,
that is, xz , yz , and xy . The correlations get even stronger in
111 compounds, such as LiFeAs and NaFeAs, and finally jump
to significantly larger values of the order of five in selenides
KFe2Se2 and CsFe2Se2. Finally, the mass enhancement of the xy
orbital in FeTe exceeds a factor of seven when compared with
the band mass, which is typical for heavy-fermion materials,
but is rarely found in transition-metal compounds. We showed
only a lower bound for this mass as the end point of an arrow
in Fig. 1b, because the quasiparticles are not yet well formed
at the studied temperature T = 116K. Note the strong orbital
differentiation in FeTe, with an xz/yz mass of five and an eg
mass enhancement of only three. This orbital differentiation signals
that the material is in the vicinity of an orbital-selective Mott
transition, as proposed previously for other iron pnictides15, where
the xy orbital is effectively insulating while other orbitals remain
metallic. In Fig. 1b we also show the mass enhancement extracted
from optics16–19 and angle-resolved photoemission spectroscopy
(ARPES) (refs 20–24) measurements, and find a good agreement
between our theory and experiment when available. The effective
mass extracted from ARPES and optics should be compared with
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Figure 2 | Structure, orbital occupation and probability of selected atomic
states of iron. a, The Fe–X (X = P, As, Se and Te) distance and X–Fe–X

angle in iron-based compounds, where the two X atoms are in the same ab
plane. Note this angle is different from the X–Fe–X angle where the two X

atoms are in different ab planes. b, The orbital occupation of the xy orbital

and the average values for the eg orbitals and all five orbitals. c, The

probability of selected atomic configurations of iron where N(S) is the total

number (spin) of iron 3d electrons in the atomic configuration.

that of the t2g orbitals, which contribute most of the spectral
weight at low energy.

The large mass enhancement in Hund’s metals is due to an
orbital blocking mechanism. If the Hund’s coupling is very large,
only the high-spin states have a finite probability in the atomic
histogram. The atomic high-spin ground state has a maximum
possible spin S = 2, and is orbitally a singlet, which does not
allow mixing of the orbitals and leads to orbital blocking, that is,
hgs|d↵

†d� |gsi= 0 when ↵ 6=�, where |gsi is the atomic ground state
in the 3d6 configuration and ↵ is the iron orbital index. In the
localized limit and in the absence of crystal-field effects, it is possible
to derive a low-energy effective Kondo model, which has Kondo
coupling for a factor of (2S+ 1)2 smaller than a model without
Hund’s coupling25. As the Kondo temperature TK depends on the
Kondo coupling I0 exponentially (TK / exp(�1/I0)), this results
in an enormous mass enhancement of the order of exp(((2S+
1)2�1)/I0) when compared with the systemwith negligible Hund’s
coupling (see also Supplementary Information).

Having established why heavy quasiparticles form in iron
pnictides and chalcogenides, we can now study how the key
parameters of the crystal structure control the strength of
correlations and other physical properties, keeping the same on-site
Coulomb interaction matrix. The Fe–pnictogen distance, shown in
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DMFT predicted moments much closer to 
experiment

several competing effects: 
• correlation strength (m*) (left versus right)
• competing ordered states (1,0),(0,1) with (1/2,1/2)
• substantial fluctuating moment remains in the ordered state

Prediction: large fluctuating moment (2-2.5μB) in para state
Only a part of the fluctuating moments orders.
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FIG. S1: Atomic histogram The atomic histogram of the
Fe-3d shell for (a) FeTe and (b) LaFeAsO in the paramag-
netic state and magnetic states. The 1024 possible atomic
configurations are sorted by the number of 3d electrons of the
individual configuration.

the high spin atomic states gain even more weight, as
seen in Fig. S1.

The valence histogram of a Hund’s metal is fundamen-
tally different from that of an oxide. While only a few
atomic states have a significant probability in an oxide,
Hund’s metals visit a large number of atomic states over
time, resulting in a dramatic (40%) reduction of the mag-
netic moment due to valence fluctuations. A monovalent
histogram with only the atomic ground state would give
iron magnetic moment of 4 µB .

Another interesting feature of Hund’s metals is that
very large number of atomic states has finite probability.
For comparison, in transition metal oxides or in heavy
fermion materials with similar mass enhancement as in
iron pnictides and chalcogenides, the atomic histogram
would contain only a small number of states with signifi-
cant probability [S23]. Since the Hund’s rule coupling J
is equal to 0.8 eV, the energy spread of atomic states at

FIG. S2: Fe 3d DOS Atomic-like Fe 3d DOS for FeTe con-
trasted with actual Fe 3d DOS of LaFeAsO and FeTe com-
puted by DFT+DMFT.

constant N = 5 or N = 6 is very large, of the order of
6−7 eV. Because there are many atomic states with finite
probability that contribute to the one electron spectral
function, and because those states are extended over a
wide energy range, the spectral function does not have a
very well defined atomic like excitations. To demonstrate
this effect, we plot in Fig. S2(a) an atomic spectral func-
tion of Fe 3d orbitals, obtained from the corresponding
atomic Green’s function defined by

G(ω) =
∑

α,m,n

|〈n|d†α|m〉|2(Pn + Pm)
ω − En + Em

(1)

where n, m run over all atomic states, and α runs over
Fe 3d orbitals, and Pn are atomic probabilities displayed
in Fig. S1. Clearly, the atomic spectral weight is dis-
tributed over a very large energy range. For comparison,
a typical heavy fermion would have one sharp peak (a
delta function) below the Fermi level, and another peak
above the Fermi level, i.e., a lower and an upper Hubbard
band.[S23]

In Fig. S2(a) we also show the full DFT+DMFT spec-
tral function of the iron atom in the solid for FeTe and
LaFeAsO. One can notice that these spectral functions
have a sharp quasiparticle peak close to the Fermi level.
Due to larger mass enhancement in FeTe, the quasipar-
ticle peak in this compound is substantially smaller than
in LaFeAsO. The rest of the spectral weight does not
have a well defined Hubbard like bands, not because the
rest of the spectra would be coherent, but because of
the unusual atomic histograms of the Hund’s metals. A
small feature around −2 to −1 eV is however noticeably
enhanced in FeTe compared to LaFeAsO. This peak was
identified in Ref. S24 as an atomic-like excitation, which
is found in atomic spectral function at −2.2 eV , and is
related to the excitation from atomic ground state of d6

3

to atomic ground state of d5.

FIG. S3: DOS and magnetic moment: (a) Total density
of states at the Fermi level in the PM phase computed by DFT
and DFT+DMFT. (b) The magnetic moment calculated by
DFT with both LSDA and GGA exchange-correlation func-
tionals in both the SDW phase and DSDW phase. The fluc-
tuating moment in the PM phase calculated by DFT+DMFT
and the experimental magnetic moment in the magnetic states
which are shown in Fig1(a) in the manuscript and reproduced
here for easier comparison.

In the manuscript, we showed that one important fac-
tor in determining the size of the magnetic moment is
the quasiparticle mass enhancement. Clearly the heavier
quasiparticles with smaller quasiparticle effective width
are more prone to ordering. It is interesting to inspect
also the ”quasiparticle height”, i.e., the value of the one-
electron spectral function at the Fermi level. In Stoner
theory, this value plays a crucial role in determining the
critical temperature and the size of the ordered moment.
In Fig. S3(a) we show the value of the density of states
at the Fermi level in the paramagnetic state as obtained
by both DFT and DFT+DMFT. Clearly, large density
of states at the Fermi level is more compatible with
the small moment rather than large moment (shown in

Fig. S3(b)), which disfavors Stoner theory for explanation
of the trends in magnetic states across iron pnictides and
chalcogenides.

We also show in Fig. S3(b) the magnetic moment in
the SDW and DSDW phases calculated by DFT with
both the local spin density approximation (LSDA[S25])
and generalized gradient approximation (GGA[S26]) ex-
change correlation functionals. We also repeat the para-
magnetic fluctuating moment and the experimental static
ordered moments from the manuscript for better compar-
ison. It is clear from Fig. S3(b) that the DFT calculated
magnetic moments roughly follows the trend of the fluc-
tuating moment in the PM state, but is very different
from the static ordered moment, as already pointed out
by Ref. S27.

Optical properties

FIG. S4: Plasma frequency. The PM in-plane plasma
frequency ωab and out-of-plane plasma frequency ωc for
various iron pnictides and iron chalcogenides calculated by
both DFT+DMFT and DFT. The experimental PM in-plane
plasma frequencies are taken from Ref. S28–31.

Now we turn to the plasma frequencies in the para-
magnetic state of iron pnictide and chalchogenide com-
pounds, shown in Fig. S4. We show separately the
in-plane and c-axis values, as obtained by both the
DFT+DMFT and DFT calculations. We also plot the ex-
perimentally determined in-plane values from Refs. [S28]
for Na1−δFeAs, [S29] for BaFe2As2 and SrFe2As2, [S30]
for LaFeAsO, and [S31] for LaFePO. The DFT+DMFT
calculated in-plane plasma frequencies agree well with
existing optical measurements, but are significantly re-
duced from the DFT values, showing the important of
correlation effect. The extracted plasma frequencies in
the DFT+DMFT calculation for FeTe are most strongly
reduced from DFT values, and bear bigger error bars due
to the fact that the scattering rate in FeTe is so large that
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FIG. S1: Atomic histogram The atomic histogram of the
Fe-3d shell for (a) FeTe and (b) LaFeAsO in the paramag-
netic state and magnetic states. The 1024 possible atomic
configurations are sorted by the number of 3d electrons of the
individual configuration.

the high spin atomic states gain even more weight, as
seen in Fig. S1.

The valence histogram of a Hund’s metal is fundamen-
tally different from that of an oxide. While only a few
atomic states have a significant probability in an oxide,
Hund’s metals visit a large number of atomic states over
time, resulting in a dramatic (40%) reduction of the mag-
netic moment due to valence fluctuations. A monovalent
histogram with only the atomic ground state would give
iron magnetic moment of 4 µB .

Another interesting feature of Hund’s metals is that
very large number of atomic states has finite probability.
For comparison, in transition metal oxides or in heavy
fermion materials with similar mass enhancement as in
iron pnictides and chalcogenides, the atomic histogram
would contain only a small number of states with signifi-
cant probability [S23]. Since the Hund’s rule coupling J
is equal to 0.8 eV, the energy spread of atomic states at

FIG. S2: Fe 3d DOS Atomic-like Fe 3d DOS for FeTe con-
trasted with actual Fe 3d DOS of LaFeAsO and FeTe com-
puted by DFT+DMFT.

constant N = 5 or N = 6 is very large, of the order of
6−7 eV. Because there are many atomic states with finite
probability that contribute to the one electron spectral
function, and because those states are extended over a
wide energy range, the spectral function does not have a
very well defined atomic like excitations. To demonstrate
this effect, we plot in Fig. S2(a) an atomic spectral func-
tion of Fe 3d orbitals, obtained from the corresponding
atomic Green’s function defined by

G(ω) =
∑

α,m,n

|〈n|d†α|m〉|2(Pn + Pm)
ω − En + Em

(1)

where n, m run over all atomic states, and α runs over
Fe 3d orbitals, and Pn are atomic probabilities displayed
in Fig. S1. Clearly, the atomic spectral weight is dis-
tributed over a very large energy range. For comparison,
a typical heavy fermion would have one sharp peak (a
delta function) below the Fermi level, and another peak
above the Fermi level, i.e., a lower and an upper Hubbard
band.[S23]

In Fig. S2(a) we also show the full DFT+DMFT spec-
tral function of the iron atom in the solid for FeTe and
LaFeAsO. One can notice that these spectral functions
have a sharp quasiparticle peak close to the Fermi level.
Due to larger mass enhancement in FeTe, the quasipar-
ticle peak in this compound is substantially smaller than
in LaFeAsO. The rest of the spectral weight does not
have a well defined Hubbard like bands, not because the
rest of the spectra would be coherent, but because of
the unusual atomic histograms of the Hund’s metals. A
small feature around −2 to −1 eV is however noticeably
enhanced in FeTe compared to LaFeAsO. This peak was
identified in Ref. S24 as an atomic-like excitation, which
is found in atomic spectral function at −2.2 eV , and is
related to the excitation from atomic ground state of d6

3

to atomic ground state of d5.

FIG. S3: DOS and magnetic moment: (a) Total density
of states at the Fermi level in the PM phase computed by DFT
and DFT+DMFT. (b) The magnetic moment calculated by
DFT with both LSDA and GGA exchange-correlation func-
tionals in both the SDW phase and DSDW phase. The fluc-
tuating moment in the PM phase calculated by DFT+DMFT
and the experimental magnetic moment in the magnetic states
which are shown in Fig1(a) in the manuscript and reproduced
here for easier comparison.

In the manuscript, we showed that one important fac-
tor in determining the size of the magnetic moment is
the quasiparticle mass enhancement. Clearly the heavier
quasiparticles with smaller quasiparticle effective width
are more prone to ordering. It is interesting to inspect
also the ”quasiparticle height”, i.e., the value of the one-
electron spectral function at the Fermi level. In Stoner
theory, this value plays a crucial role in determining the
critical temperature and the size of the ordered moment.
In Fig. S3(a) we show the value of the density of states
at the Fermi level in the paramagnetic state as obtained
by both DFT and DFT+DMFT. Clearly, large density
of states at the Fermi level is more compatible with
the small moment rather than large moment (shown in

Fig. S3(b)), which disfavors Stoner theory for explanation
of the trends in magnetic states across iron pnictides and
chalcogenides.

We also show in Fig. S3(b) the magnetic moment in
the SDW and DSDW phases calculated by DFT with
both the local spin density approximation (LSDA[S25])
and generalized gradient approximation (GGA[S26]) ex-
change correlation functionals. We also repeat the para-
magnetic fluctuating moment and the experimental static
ordered moments from the manuscript for better compar-
ison. It is clear from Fig. S3(b) that the DFT calculated
magnetic moments roughly follows the trend of the fluc-
tuating moment in the PM state, but is very different
from the static ordered moment, as already pointed out
by Ref. S27.

Optical properties

FIG. S4: Plasma frequency. The PM in-plane plasma
frequency ωab and out-of-plane plasma frequency ωc for
various iron pnictides and iron chalcogenides calculated by
both DFT+DMFT and DFT. The experimental PM in-plane
plasma frequencies are taken from Ref. S28–31.

Now we turn to the plasma frequencies in the para-
magnetic state of iron pnictide and chalchogenide com-
pounds, shown in Fig. S4. We show separately the
in-plane and c-axis values, as obtained by both the
DFT+DMFT and DFT calculations. We also plot the ex-
perimentally determined in-plane values from Refs. [S28]
for Na1−δFeAs, [S29] for BaFe2As2 and SrFe2As2, [S30]
for LaFeAsO, and [S31] for LaFePO. The DFT+DMFT
calculated in-plane plasma frequencies agree well with
existing optical measurements, but are significantly re-
duced from the DFT values, showing the important of
correlation effect. The extracted plasma frequencies in
the DFT+DMFT calculation for FeTe are most strongly
reduced from DFT values, and bear bigger error bars due
to the fact that the scattering rate in FeTe is so large that
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Figure 1 | Summary of neutron scattering and calculation results. Our experiments were carried out on the MERLIN time-of-flight chopper spectrometer
at the Rutherford-Appleton Laboratory, UK (ref. 33). We co-aligned 28 g of single crystals of BaFe1.9Ni0.1As2 (with in-plane mosaic of 2.5�and out-of-plane
mosaic of 4�). The incident beam energies were Ei = 20,25,30,80,250,450,600 meV, and mostly with Ei parallel to the c axis. To facilitate easy
comparison with spin waves in BaFe2As2 (ref. 13), we defined the wave vector Q at (qx,qy,qz) as (H,K,L) = (qxa/2⇡ ,qyb/2⇡ ,qzc/2⇡) reciprocal lattice
units (r.l.u.) using the orthorhombic unit cell, where a = b = 5.564 Å, and c = 12.77 Å. The data are normalized to absolute units using a vanadium
standard13, which may have a systematic error up to 20% owing to differences in neutron illumination of the vanadium and sample, and time-of-flight
instruments. a, AF spin structure of BaFe2As2 with Fe spin ordering. The effective magnetic exchange couplings along different directions are shown.
b, RPA and LDA+DMFT calculations of � 00(!) in absolute units for BaFe2As2 and BaFe1.9Ni0.1As2. c, The solid lines show the spin wave dispersions of
BaFe2As2 for J1a 6= J1b, along the [1,K] and [H,0] directions obtained in ref. 13. The filled circles and triangles are the spin excitation dispersions of
BaFe1.9Ni0.1As2 at 5 K and 150 K, respectively. d, The solid line shows the low-energy spin waves of BaFe2As2. The horizontal bars show the full-width at
half-maximum of spin excitations in BaFe1.9Ni0.1As2. e, Energy dependence of � 00(!) for BaFe2As2 (filled blue circles) and BaFe1.9Ni0.1As2 below (filled red
circles) and above (open red circles) Tc. The solid and dashed lines are guides to the eye. The vertical error bars indicate statistical errors of one standard
deviation. The horizontal error bars in e indicate the energy integration range.

constant-energy cuts along the [1,K ] direction for E = 25 ± 5,
55±5, 95±10, 125±10, 150±10, and 210±10meV. The scattering
becomes dispersive for spin excitation energies above 95meV.
Figure 3g–i shows similar constant-energy cuts along the [H ,0]
direction. The solid lines in the figure show identical spin wave
cuts for BaFe2As2 (ref. 13). As both measurements were taken in

absolute units, we can compare the impact of electron doping on
the spin waves in BaFe2As2. At E = 25±5meV, spin excitations in
superconducting BaFe1.9Ni0.1As2 are considerably broader in mo-
mentum space and weaker in intensity than spin waves (Fig. 3a,g).
On increasing the excitation energy to 55± 5meV, the dispersive
spin waves in BaFe2As2 become weaker and broader (Fig. 3b,h).
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f.m. in RPA calculation
(U=0.8eV, J=0.2eV)

f.m. in DMFT

Large fluctuating moment can not be explained by a purely 
itinerant model - property of Hundsness!

The DMFT account for a dual nature of electrons in Hund’s metals:  
itinerant and localized nature.

Fluctuating moment measured by 
neutrons - integral of local 

susceptibility:

~1.8 µB/Fe
up to 300meV

 M. Liu,… K. Haule, Kotliar, P.Dai, et.al., Nature Physics 8, 376-381 (2012)

Large fluctuating moment confirmed



Electron-phonon coupling in Hund’s metals

In Fe-SC electron-phonons coupling is too weak to explain high Tc’s.

Nevertheless, phonons can boost Tc when cooperating with unconventional 
spin-mediated (correlation-driven) superconducting mechanisms. 

K. Haule, J. H. Shim, G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008)
L. Boeri, O. V. Dolgov, and A. A. Golubov, PRL 101, 026403 (2008).

The phonon enhancement of  Tc is determined by electron-phonon coupling:

Change of the band structure due to displacement of the ions in 
the direction of a phonon mode.
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DFT+DMFT Prediction: Subhasish Mandal, Cohen, 
& Haule,  PRB 89, 220502(R) (2014).
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FIG. 2. (Color online). Relative total energy calculated in LDA(non-magnetic), GGA(both nonmagnetic and checkerboard
spin-polarized), and DFT-DMFT methods; arrow indicates the experimental value of zSe.

FIG. 3. (Color online). Pressure dependence optical properties at room temperature: Real part of the optical conductivity (a)
along ab-plane and (b) along c-axis.
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FIG. 1. (Color online). Pressure dependence of chalcogen position parameter zSe. a, b, and c are the experimental data of zSe

for the tetragonal phase, obtained from Ref.[6], Ref.[8], and Ref.[9] respectively; d and e are the data for the low temperature
orthorhombic phase, obtained form Ref. [10] and Ref. [8] respectively. f (Ref. [11]), g(Ref. [12]) indicates non-spinpolarized
DFT results and h indicates our spin-polarized DFT results of zSe while the solid line refers to DFT-DMFT.

SUPPLEMENTARY METHODS

In the DFT-DMFT method, the self-energy, sampling all Feynman diagrams local to the Fe ion, is added to
the DFT Kohn-Sham Hamiltonian[1, 2]. This implementation is fully self-consistent and all-electron [2, 3]. The
computations are converged with respect to charge density, impurity level, chemical potential, self-energy, lattice and
impurity Green’s functions. The lattice is represented using the full potential linear augmented plane wave method,
implemented in Wien2k[4] package in its generalized gradient approximation (PBE-GGA). We use the continuous time
quantum Monte Carlo method to solve the quantum impurity problem and to obtain the local self-energy due to the
correlated Fe 3d orbitals. The self-energy is analytically continued from the imaginary to real axis using an auxiliary
Green’s function. We fixed the Coulomb interaction U and Hund’s coupling J at 5.0 eV and 0.7 eV, respectively [5].
We used a fine k-point mesh of 24 � 24 � 16 and 80 million Monte Carlo steps for each iteration for the paramagnetic
phase of the FeSe at room temperature within the pressure range of 0-11 GPa where FeSe is observed to remain in
its tetragonal phase[6]. The lattice parameters are obtained from the experiment[6] and zSe are optimized within
DFT-DMFT method. For P=-2GPa, we estimated the lattice parameters and zSe after fitting. The estimated lattice
parameters for -2GPa are a=3.82178 Å, c=5.7119Å, and zSe = 0.25872.

DEFORMATION POTENTIAL

The shift in the energy eigenvalues at EF due to a particular phonon mode is calculated by:�E = 1/NkF
�

kF (EkF � EA1g
kF ).

Here EkF and EA1g
kF are the energy eigenvalues around the Fermi level respectively for equilibrium and A1g distortion.

Here EkF is the band resolved energy eigenvalues for the equilibrium structure, chosen within a very small energy
window of 5 mRy around EF within a fine k-point mesh of 25x25x17 to allow at least � 2000 points on the FS for
each pressure. EA1g

kF is the corresponding energy eigenvalues to the A1g distortion. Equilibrium position is where the
total energy is minimum in the respective methods whereas A1g distortion refers to the states with small Se atom
displacement (Q) in the zSe. NkF is the number of k-points (kF) on the Fermi surface on which the deformation

potential (D = �E
�Q ) is calculated. � is then estimated as D2

�2Et(Q)

�Q2 |Q=0

, where Et(Q) is the total energy as a function of

the atomic displacement Q in the DFT-DMFT frozen-phonon calculation [7].

In Table I Dm, Davg, NkF , and Davg
FS refer to the maximum deformation potential, deformation potential averaged

over corresponding pocket, number of k-points on the pocket, and deformation potential averaged over all available
pockets (averaged over the entire Fermi surface) respectively. h1, h2, h3, e1, and e2 are labeled in Fig. 1(d-f) in the
main text.

a) b)

Fig. 14. Crystal structure of FeSe: a) Relative total energy calculated
in LDA(non-magnetic), GGA(both nonmagnetic and checkerboard spin-
polarized), and DFT+eDMFT methods; arrow indicates the experimental
value of zS e. b) Pressure dependence of chalcogen position parameter zS e.
a, b, and c are the experimental data of zS e for the tetragonal phase, obtained
from Ref. 120, Ref. 121, and Ref. 122 respectively; d and e are the data for the
low temperature orthorhombic phase, obtained form Ref. 123 and Ref. 121
respectively. f (Ref. 124), g(Ref. 125) indicates non-spinpolarized DFT re-
sults and h indicates spin-polarized DFT results of zS e while the solid line
refers to DFT+eDMFT.
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FIG. 2. (Color online) (a) Maximum and Fermi surface average
of deformation potentials (D) for the A1g distortion computed in
DFT-DMFT, and DFT as a function of pressure indicates the presence
of strong EPC in FeSe; inset shows deformation potential as a function
of EF at P = 0. (b) Demonstration of huge local electron-lattice
coupling for the A1g distortion in our DFT-DMFT computations at
P = 0 GPa for a selective part of the Brillouin zone; red and blue
lines represent GGA bands. The common Fermi energy is considered
for the equilibrium position and denoted by the single horizontal line
for both DFT and DFT-DMFT methods.

DMFT is from the electron pocket centered at the M point.
Dm also strongly depends on the EF . The inset of Fig. 2(a)
shows the behavior of maximum and average values of D as a
function of EF at P = 0 calculated with DFT-DMFT. So the
movement of EF due to defect or pressure can significantly
change the FS topology and hence the D.

The momentum resolved spectral function A(ω,k) is shown
in Fig. 2(b) for both equilibrium position and A1g distortion
between the high symmetric points, where the most sensitive
band crosses the EF . The solid red and blue lines represent
corresponding GGA bands for equilibrium position and A1g

distortion, respectively. From Fig. 2(b), we notice that at
P = 0, the shift in energy (δE) over the atomic displacement
of 0.0276 Å is ∼0.12 eV in DFT-DMFT and ∼0.04 eV in

GGA, respectively. So as reflected from Fig. 2, the D is about
three times higher in DFT-DMFT for this particular region
of the Brillouin zone. If we notice carefully in Fig. 2(b), the
shift of the bands due to A1g distortion is very nonuniform
in DFT-DMFT; a strong deformation potential is noticed only
in # to Z region, while for the other part of the Brillouin
zone, deformation potential is found to be small. This leads
to a strong nonuniform EPC at P = 0, which is reflected in
Fig. 2(a) where maximum D is found to be about three times
higher than the average. We found this similar nonuniform
EPC for P = 1.4, 2.6, and −2.0 GPa.

We estimate λ using D (see Supplemental Material [60] for
details). While the average λ is still small, the maximum λ in
DFT-DMFT is found to be 0.98 at P = 0. At P = 2.6 GPa,
the maximum λ reaches 1.159. We found that only certain
electronic states have very strong λ, while the average λ is not
strong enough to explain 37 K. So the conventional electron-
phonon mechanism seems unlikely. On the other hand, this also
indicates that local EPC can be important and one can use a po-
laron model, where a single electron can strongly couple with
the lattice and form polarons. Formation of polarons has been
experimentally found in both Fe superconductors [42,63,64]
and cuprates [49]. The anomalous temperature dependence of
the local Fe-As displacement, observed in Ref. [45], indicates
that local rather than global electron-lattice interaction is
present in Fe-based superconductors and as suggested in
Ref. [48], polaron formation is responsible for the observed
anomalies [45]. Though the formation of polarons depends
on a lot of factors, such as the band filling, temperature,
EPC strength, phonon frequency, etc., our results suggest
the use of a polaron model. We consider the electronic state
corresponding to maximum λ (∼1) forms a polaron, which is
a quasiparticle consisting of an electron and the surrounding
lattice distortion. Then the polaronic binding energy (Ep)
will linearly depend [65,66] on maximum λ and hence on
the square of the maximum deformation potential. Taking
the polaronic band into account, Alexandrov and Mott [65]
described that Tc exponentially depends on the function of
Ep. Under hydrostatic pressure, we found that electronic
properties change monotonically, while only |Dm|2 (and hence
Ep) initially grows (up to 3.4 GPa) and then drops, similarly to
experimental Tc. This indicates that a strong local EPC plays
an important role in Fe-based superconductors.

It is important to mention that Tc was found to increase
rapidly for the low pressure range (0–3 GPa) and can reach
up to 27 K at 1.48 GPa [67]. The disagreement in the
pressure dependence of experimental Tc and our DFT-DMFT
calculation of maximum D can be due to the presence
of the mixed phase in low temperature crystal structure
in experiment, while our calculations are based on room
temperature tetragonal (PbO-type) structure.

The behavior of the DFT-DMFT deformation potential
with pressure hints that superconductivity in FeSe may have
partially phonon or polaron origin and local EPI plays a
very important role in superconductivity in the unconventional
superconductors. Analysis of the contributions of each many-
body state reveals that charge fluctuations due to correlations
and charge transfer from Fe to Se are coupled to the A1g mode.

Our computations predict that applied pressure significantly
changes the FS around the # point. We show the Fermi surface

220502-3

Fig. 15. Electron-ohonon coupling in FeSe: the maximum deformation
potential and the Fermi surface average deformation potentailD for the A1g
distortion computed in DFT+eDMFT, and DFT as a function of pressure. It
indicates the presence of strong e-ph coupling in FeSe. Inset shows deforma-
tion potential as a function of EF at zero pressure. Reproduced from Ref. 6.

mode (say A1g) can be calculated by:

�E =
1

NkF

X

kF

(EkF � EA1g
kF

) (42)

Here EkF and EA1g
kF

are the energy eigenvalues around the
Fermi level respectively for equilibrium and A1g distortion.
Equilibrium position is where the total energy is minimum in
the respective methods, whereas A1g distortion refers to the
states with small displacement of the Se atom (Q) in the zS e.
NkF is the number of k-points on the Fermi surface used in the
calculation. The deformation potentialD is then given by

D = �E
�Q

(43)

The coupling � can then be estimated as D2

�2Et(Q)/�Q2 |Q=0
, where

E(Q) is the total energy as a function the atomic displacement
Q in the DFT+eDMFT frozen-phonon calculation.

In Ref. 6 the electron-phonon coupling was calculated for
a particular A1g phonon mode as a function of pressure. In
Fig. 15 we reproduce their results for the maximum value
of the deformation potential D, and the average of D over
the entire fermi surface. The DFT+eDMFT and DFT results
are compared. One notices that the average D increases in
DFT+eDMFT over that obtained in DFT for all pressures. At
P = 0 the average D2 increases ⇡1.5 times in DFT+eDMFT
(D is 0.84eV/Å in DFT+eDMFT, while it is 0.69 eV/Å in
GGA. At P = 3.4 GPa the average D2 increases ⇡2.25 times
in DFT+eDMFT. While this value is still not su�cient to ob-
tain 37 K superconductor, it is not small enough to be ignored,
in contrast to what was suggested in Ref. 133.

More interesting is the pressure dependence of the maxi-
mum D. It was noticed in Ref. 6 that at ambient pressure the
maximum deformation potential (Dm) is several times higher
in DFT+eDMFT than that obtained by standard DFT (com-
pare blue curve with turquoise curve in Fig. 15). This largest
contribution comes from the hole pocket at � point of mainly
xz/yz character, which is very sensitive to this deformation
and also to pressure; it crosses the EF at low pressure, where
the experimental Tc is observed to be high, and goes below
EF at pressure beyond 3 GPa. FeSe exhibits a substantial in-
crease in critical temperature Tc from 8 to 37 K by application
of pressure, which matches the pressure dependence of this
predicted deformation potential, suggesting that correlation
e↵ects have a strong impact on superconductivity in FeSe.

Table II. The Se position zS e, the phonon frequency fA1g, and the electron-
phonon coupling D = �Exz/yz

�Q in FeSe: comparison between experiment and
DMFT prediction.

Exp. (2017) DFT+eDMFT (2014) DFT
Ref. 134 Ref. 6

zS e(r.l.u) 0.2653 0.27 0.2456
fA1g(T Hz) 5.30± 0.05 5.7 6.5± 0.3
�Exz/yz
�Q ( meV

pm ) -13.0± 2.5 -10.3 to -13.4 -1.6± 0.2

The experimental verification of the predicted large en-
hancement of the electron-phonon coupling came in 2017 in
the pioneering work of the Stanford group.134) They combined
two time-domain experiments into a coherent lock-in mea-
surement in the terahertz regime, where the X-ray di↵raction
tracks the light-induced femtosecond coherent lattice motion
at a single phonon frequency, and photoemission monitors the
subsequent coherent changes in the electronic band structure.
In table II we reproduce the measured and computed maxi-
mum deformation potential for the pocket at � point in the
Brillouin zone, which shows the largest change with pressure.
Given that the electron-phonon coupling a↵ects supercon-
ductivity exponentially, this large enhancement of electron-
phonon coupling as compared to DFT highlights the impor-
tance of the cooperative interplay between electron-electron
and electron-phonon interactions in FeSe.

6. Outlook

In conclusion, DFT+eDMFT is a powerful computational
method for correlated materials which can accurately cap-
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Ion positions in fluctuating moment systems

The vertical distance between  Fe and Se 
atoms by different theories

Correlation on Fe ion push away 
other ions (Se).

electrons in correlated 
orbitals need more space
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FIG. 2. (Color online) (a) Maximum and Fermi surface average
of deformation potentials (D) for the A1g distortion computed in
DFT-DMFT, and DFT as a function of pressure indicates the presence
of strong EPC in FeSe; inset shows deformation potential as a function
of EF at P = 0. (b) Demonstration of huge local electron-lattice
coupling for the A1g distortion in our DFT-DMFT computations at
P = 0 GPa for a selective part of the Brillouin zone; red and blue
lines represent GGA bands. The common Fermi energy is considered
for the equilibrium position and denoted by the single horizontal line
for both DFT and DFT-DMFT methods.

DMFT is from the electron pocket centered at the M point.
Dm also strongly depends on the EF . The inset of Fig. 2(a)
shows the behavior of maximum and average values of D as a
function of EF at P = 0 calculated with DFT-DMFT. So the
movement of EF due to defect or pressure can significantly
change the FS topology and hence the D.

The momentum resolved spectral function A(ω,k) is shown
in Fig. 2(b) for both equilibrium position and A1g distortion
between the high symmetric points, where the most sensitive
band crosses the EF . The solid red and blue lines represent
corresponding GGA bands for equilibrium position and A1g

distortion, respectively. From Fig. 2(b), we notice that at
P = 0, the shift in energy (δE) over the atomic displacement
of 0.0276 Å is ∼0.12 eV in DFT-DMFT and ∼0.04 eV in

GGA, respectively. So as reflected from Fig. 2, the D is about
three times higher in DFT-DMFT for this particular region
of the Brillouin zone. If we notice carefully in Fig. 2(b), the
shift of the bands due to A1g distortion is very nonuniform
in DFT-DMFT; a strong deformation potential is noticed only
in # to Z region, while for the other part of the Brillouin
zone, deformation potential is found to be small. This leads
to a strong nonuniform EPC at P = 0, which is reflected in
Fig. 2(a) where maximum D is found to be about three times
higher than the average. We found this similar nonuniform
EPC for P = 1.4, 2.6, and −2.0 GPa.

We estimate λ using D (see Supplemental Material [60] for
details). While the average λ is still small, the maximum λ in
DFT-DMFT is found to be 0.98 at P = 0. At P = 2.6 GPa,
the maximum λ reaches 1.159. We found that only certain
electronic states have very strong λ, while the average λ is not
strong enough to explain 37 K. So the conventional electron-
phonon mechanism seems unlikely. On the other hand, this also
indicates that local EPC can be important and one can use a po-
laron model, where a single electron can strongly couple with
the lattice and form polarons. Formation of polarons has been
experimentally found in both Fe superconductors [42,63,64]
and cuprates [49]. The anomalous temperature dependence of
the local Fe-As displacement, observed in Ref. [45], indicates
that local rather than global electron-lattice interaction is
present in Fe-based superconductors and as suggested in
Ref. [48], polaron formation is responsible for the observed
anomalies [45]. Though the formation of polarons depends
on a lot of factors, such as the band filling, temperature,
EPC strength, phonon frequency, etc., our results suggest
the use of a polaron model. We consider the electronic state
corresponding to maximum λ (∼1) forms a polaron, which is
a quasiparticle consisting of an electron and the surrounding
lattice distortion. Then the polaronic binding energy (Ep)
will linearly depend [65,66] on maximum λ and hence on
the square of the maximum deformation potential. Taking
the polaronic band into account, Alexandrov and Mott [65]
described that Tc exponentially depends on the function of
Ep. Under hydrostatic pressure, we found that electronic
properties change monotonically, while only |Dm|2 (and hence
Ep) initially grows (up to 3.4 GPa) and then drops, similarly to
experimental Tc. This indicates that a strong local EPC plays
an important role in Fe-based superconductors.

It is important to mention that Tc was found to increase
rapidly for the low pressure range (0–3 GPa) and can reach
up to 27 K at 1.48 GPa [67]. The disagreement in the
pressure dependence of experimental Tc and our DFT-DMFT
calculation of maximum D can be due to the presence
of the mixed phase in low temperature crystal structure
in experiment, while our calculations are based on room
temperature tetragonal (PbO-type) structure.

The behavior of the DFT-DMFT deformation potential
with pressure hints that superconductivity in FeSe may have
partially phonon or polaron origin and local EPI plays a
very important role in superconductivity in the unconventional
superconductors. Analysis of the contributions of each many-
body state reveals that charge fluctuations due to correlations
and charge transfer from Fe to Se are coupled to the A1g mode.

Our computations predict that applied pressure significantly
changes the FS around the # point. We show the Fermi surface
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Mandal, Cohen, & Haule,  PRB 89, 220502(R) (2014).

Electron-phonon coupling in fluctuating moment systems

The DMFT electronic states are much more sensitive to Se displacement than predicted by DFT.

Can be understood as a feedback effect of correlations on electrons through structure.
Correlations push Se away from Fe, which reduces hybridization strength of Fe with Se, which increases 
correlations, and push Se further away (Kondo coupling exponentially sensitive to hybridization)
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FIG. 2. (Color online) (a) Maximum and Fermi surface average
of deformation potentials (D) for the A1g distortion computed in
DFT-DMFT, and DFT as a function of pressure indicates the presence
of strong EPC in FeSe; inset shows deformation potential as a function
of EF at P = 0. (b) Demonstration of huge local electron-lattice
coupling for the A1g distortion in our DFT-DMFT computations at
P = 0 GPa for a selective part of the Brillouin zone; red and blue
lines represent GGA bands. The common Fermi energy is considered
for the equilibrium position and denoted by the single horizontal line
for both DFT and DFT-DMFT methods.

DMFT is from the electron pocket centered at the M point.
Dm also strongly depends on the EF . The inset of Fig. 2(a)
shows the behavior of maximum and average values of D as a
function of EF at P = 0 calculated with DFT-DMFT. So the
movement of EF due to defect or pressure can significantly
change the FS topology and hence the D.

The momentum resolved spectral function A(ω,k) is shown
in Fig. 2(b) for both equilibrium position and A1g distortion
between the high symmetric points, where the most sensitive
band crosses the EF . The solid red and blue lines represent
corresponding GGA bands for equilibrium position and A1g

distortion, respectively. From Fig. 2(b), we notice that at
P = 0, the shift in energy (δE) over the atomic displacement
of 0.0276 Å is ∼0.12 eV in DFT-DMFT and ∼0.04 eV in

GGA, respectively. So as reflected from Fig. 2, the D is about
three times higher in DFT-DMFT for this particular region
of the Brillouin zone. If we notice carefully in Fig. 2(b), the
shift of the bands due to A1g distortion is very nonuniform
in DFT-DMFT; a strong deformation potential is noticed only
in # to Z region, while for the other part of the Brillouin
zone, deformation potential is found to be small. This leads
to a strong nonuniform EPC at P = 0, which is reflected in
Fig. 2(a) where maximum D is found to be about three times
higher than the average. We found this similar nonuniform
EPC for P = 1.4, 2.6, and −2.0 GPa.

We estimate λ using D (see Supplemental Material [60] for
details). While the average λ is still small, the maximum λ in
DFT-DMFT is found to be 0.98 at P = 0. At P = 2.6 GPa,
the maximum λ reaches 1.159. We found that only certain
electronic states have very strong λ, while the average λ is not
strong enough to explain 37 K. So the conventional electron-
phonon mechanism seems unlikely. On the other hand, this also
indicates that local EPC can be important and one can use a po-
laron model, where a single electron can strongly couple with
the lattice and form polarons. Formation of polarons has been
experimentally found in both Fe superconductors [42,63,64]
and cuprates [49]. The anomalous temperature dependence of
the local Fe-As displacement, observed in Ref. [45], indicates
that local rather than global electron-lattice interaction is
present in Fe-based superconductors and as suggested in
Ref. [48], polaron formation is responsible for the observed
anomalies [45]. Though the formation of polarons depends
on a lot of factors, such as the band filling, temperature,
EPC strength, phonon frequency, etc., our results suggest
the use of a polaron model. We consider the electronic state
corresponding to maximum λ (∼1) forms a polaron, which is
a quasiparticle consisting of an electron and the surrounding
lattice distortion. Then the polaronic binding energy (Ep)
will linearly depend [65,66] on maximum λ and hence on
the square of the maximum deformation potential. Taking
the polaronic band into account, Alexandrov and Mott [65]
described that Tc exponentially depends on the function of
Ep. Under hydrostatic pressure, we found that electronic
properties change monotonically, while only |Dm|2 (and hence
Ep) initially grows (up to 3.4 GPa) and then drops, similarly to
experimental Tc. This indicates that a strong local EPC plays
an important role in Fe-based superconductors.

It is important to mention that Tc was found to increase
rapidly for the low pressure range (0–3 GPa) and can reach
up to 27 K at 1.48 GPa [67]. The disagreement in the
pressure dependence of experimental Tc and our DFT-DMFT
calculation of maximum D can be due to the presence
of the mixed phase in low temperature crystal structure
in experiment, while our calculations are based on room
temperature tetragonal (PbO-type) structure.

The behavior of the DFT-DMFT deformation potential
with pressure hints that superconductivity in FeSe may have
partially phonon or polaron origin and local EPI plays a
very important role in superconductivity in the unconventional
superconductors. Analysis of the contributions of each many-
body state reveals that charge fluctuations due to correlations
and charge transfer from Fe to Se are coupled to the A1g mode.

Our computations predict that applied pressure significantly
changes the FS around the # point. We show the Fermi surface
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• Pressure dependence tracks Tc of 
FeSe

• Phonons boost SC in FeSe
• eDMFT suggests up to one order of 

magnitude stronger e-ph coupling 
than DFT (A1g mode)

Electron-phonon coupling in FeSe

DFT DFT+eDMFT
(2014)

Experiment

zSe(r.l.u) 0.2456 0.27 0.2653
fA1g(THz) 6.5±0.3 5.7

ΔExz/yz/ΔzSe(meV/pm) -1.6±0.2 -10.3 to -13.4

DFT+eDMFT Prediction: 
Mandal, Cohen, & Haule,  PRB 89, 220502(R) (2014).

position of Se

A1g frequency

e-ph coupling



DFT DFT+eDMFT
(2014)

Experiment
(2017)

zSe(r.l.u) 0.2456 0.27 0.2653
fA1g(THz) 6.5±0.3 5.7 5.30±0.05

ΔExz/yz/ΔzSe(meV/pm) -1.6±0.2 -10.3 to -13.4 -13.0±2.5

position of Se

A1g frequency

e-ph coupling

Stanford pioneering exp: direct measurement of e-ph c.

DFT+eDMFT Prediction: 
Mandal, Cohen, & Haule,  PRB 89, 220502(R) (2014).
Experiment: 
S. Gerber, …,Z.X. Shen et.al., Science 357, 71 (2017).

send IR pump pulse 
to excite A1g phonon

measure time resolved X-ray
measure time resolved ARPES

Brag peak position is oscillating 
with A1g phonon frequency

Bands are oscillating with the 
same frequency.

Direct confirmation of DFT+eDMFT prediction



Computed from the two particle response functions
using the fact that the irreducible vertex is local. 

The two particle irreducible 
vertex function of the impurity  

The LDA+DMFT 
self-consistent lattice 

Green’s function

Two particle response of Hund’s metals: 
Dynamical structure factor

H. Park, K. Haule, G. Kotliar, PRL 107, 137007 (2011)
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FIG. 1: Dynamic spin structure factor S(q,!) in iron pnictides, chalcogenides and MgFeGe. The S(q,!) is plotted
along the path (0,0)!(1,0)!(1,1)!(0.5,0.5)!(0,0) (in the unit of the one-Fe Brillouin zone) for (a) BaFe2P2 (Tmax

C < 2K); (b)
LiFeP (TC = 6K); (c)LaFePO (TC = 7K); (d) SrFe2As2 (Tmax

C = 37K); (e) LaFeAsO (Tmax
C = 43K); (f) BaFe2As2 (Tmax

C =
39K); (g) LiFeAs (TC = 18K); (h) FeSe (Tmax

C = 37K); (i)MgFeGe (Tmax
C = 0); (j)FeTe (Tmax

C = 0); (k) BaFe1.7Ni0.3As2
(TC < 2K); (l) BaFe1.9Ni0.1As2 (TC = 20K); (m) Ba0.6K0.4Fe2As2 (TC = 39K); (n) KFe2As2 (TC = 3.5K); (o) KFe2Se2. Since
the intensity substantially varies across compounds, the maximum value of intensity was adjusted to emphasize the dispersion
most clearly. The maximum value of the intensity in each compound is shown in the top right corner. The experimental data
shown in (f), (g), (l) and (m) are from Refs. 17–20.

of the fluctuating moment in this energy range, which roughly anti-correlates with strength of correlations, hence
phosphorus compounds show the weakest (max = 4) and FeTe shows the strongest (max = 20) intensity.

The low energy spin-excitations are much more sensitive to the details of both the band-structure and the two-
particle vertex function, hence the trend across di↵erent compounds can not be guessed from either the correlation
strength or from the band structure. In Fig. 2 we show S(q,!) for the same compounds as in Fig. 1, but we take
a di↵erent cut. We keep the energy fixed at ! = 5meV, and change momentum in the two dimensional momentum
plane (qx, qy) at qz = 0/⇡. (The qz dependence is small for most compounds.) As is clear from Figs. 1a-c, and
Fig. 2a-c, the low energy spin-excitations are almost absent in phosphorus compounds, while they are very strong
in arsenides (Figs. 1d-g) at the commensurate wave vector (qx, qy) = (1, 0). This is the ordering wave vector of the
spin-density wave state, which is the ground state of all these compounds except LiFeAs, which is a superconductor
(Tc = 18K). When doped, all these compounds are high-temperature superconductors (Tc ⇡ 37K � 39K). Similarly
chalcogenide FeSe (Fig. 1h) - which becomes superconducting Tc = 37K under modest pressure p = 3GPa - has
similar low energy spin response as the arsenides superconductors. On the other hand, MgFeGe is a compound with
similar band structure as arsenides21, but quite di↵erent spin response, which is much broader and peaked at q = 0,
hence spin fluctuations are ferromagnetic, in agreement with calculation of Ref.22 showing stable ferromagnetic ground
state. Finally FeTe has also much broader spin-excitations covering large part of the Brillouin zone (see Fig. 2j), and
shows two competing excitations at q=(1,0) and q=(0.5, 0.5), the latter corresponds to the ordering wave vector of
the low-temperature antiferromagnetic state of Fe1.07Te.23 The common theme in high-temperature superconductors
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FIG. 2: Dynamic spin structure factor S(q,!) in iron pnictides, chalcogenides and MgFeGe. The S(q,!) is plotted
in the 2D plane at constant !=5 meV for the same materials as in Fig.1. The maximum intensity scale for each compound is
marked as a number in the bottom-left corner of each subplot.

(Figs. d-h) is thus the existence of well defined high energy dispersive spin excitations with bandwidth between
0.1 � 0.35 eV, and most importantly very well developed commensurate low energy spin excitations at wave vector
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Particle-particle irreducible vertex

4

FIG. 3: Particle-particle irreducible vertex �pp
�1�2;�3�4

. It consists of fully-irreducible vertex �pp,firr, and vertex which

is reducible in the particle-hole channel. There are two ways to arrange particle-hole ladders, either horizontally (�pp(1)) or
vertically (�pp(2)), hence there are two particle-hole contributions.

Superconductivity

A divergent susceptibility in the particle-particle channel signals instability of the metallic state towards supercon-
ductivity. To obtain this susceptibility, we need to compute the particle-particle irreducible vertex �pp, depicted in
Fig.S3. It consists of the fully irreducible vertex function �firr and the reducible vertex functions in the particle-hole
channels. There are two particle-hole channles, because one can stack particle-hole ladders horizontally (particle-
hole channel 1) or vertically (particle-hole channel 2), as shown in Fig.S3. Notice that this equation contain all
spin-fluctuation diagrams [? ]. Indeed we recover the spin-fluctuation theory if we replace �ph by constant number
U , which is treated as a phenomenological parameter in spin-fluctuation theory, and propagators with free-electron
Green’s function. Since results are very sensitive to the value and structure of this screened interaction, it is important
to determine it ab-initio.

In this report, we consider only the spin-singlet pairing and define the singlet vertex �pp,s by

�pp,s =
1

2
(�pp

"#;"# � �pp
#";"#) (15)

For convenience, we rewrite �pp,s as the sum of the three terms depicted in Fig. 3:

�pp,s = �pp,firr,s + �pp(1),s + �pp(2),s. (16)

It then follows that the fully irreducible particle-particle vertex in the spin singlet channel �pp,firr,s is

�pp,firr,s =
1

2
(�pp,firr,s

"";## � �pp,firr,s
#";#" ), (17)

We can also express the rest of the objects in Fig. 3 in terms of the above calculated particle-hole susceptibility �ph

and particle-hole irreducible vertex �ph by

�pp(1),s = �1

2
((���)ph"";## � (���)ph#";#")

=
3

4
(���)ph,m � 1

4
(���)ph,d

(18)

and

�pp(2),s =
1

2
((���)ph#";#" � (���)ph"";##)

=
3

4
(���)ph,m � 1

4
(���)ph,d

(19)

To simplify the notation, we then define

(���)ph ⌘ 3

4
(���)ph,m � 1

4
(���)ph,d. (20)

We can compute par'cle-par'cle vertex using parquet equa'ons:

have par'cle hole want

 Z.P. Yin, K. Haule, G. Kotliar,  
Nature Physics 10, 845 (2014)

Parquet 
equations



Closely compe+ng states: 
Depending on the details,  system can change from one to another

 Z.P. Yin, K. Haule, G. Kotliar,  
Nature Physics 10, 845 (2014)

Superconducting and pairing symmetry

5

FIG. 4: Decomposition of particle-particle irreducible vertex for the spin singlet channel: We explicitely write
the spin components, which contribute to the vertex �pp,s in the singlet channel.

to connect the above computed magnetic and charge susceptibility/vertex with the particle-particle irreducible vertex.
With this algebraic manipulation, we removed the need for the spin index, however, we do have four orbital indices
(↵,�,↵0,�0), three frequencies (fermionic ⌫,⌫0, and bosonic ⌦) and three momenta (k,k0,q) left. However, within DMFT
the particle-hole irreducible vertex �ph is local, therefore this quantity is independent of momenta k and k0 and can
be witten as

(���)phq,⌦(↵�, ⌫;↵
0�0, ⌫0) (21)

Furthermore, the fully irreducible vertex within DMFT is local and hence independent of momenta
�pp,firr,s(↵�⌫;↵0�0⌫0).

Finally, using these building blocks computed above, we explicitely write down the irreducible particle-particle
vertex

�pp,s(↵�k⌫;↵0�0k0⌫0) = �pp(1),s(↵�k⌫;↵0�0k0⌫0) + �pp(2),s(↵�k⌫;↵0�0k0⌫0) + �pp,firr,s(↵�⌫;↵0�0⌫0)

= (���)phk0�k,⌫0�⌫(↵
0↵, ⌫0;��0,�⌫) + (���)ph�k0�k,�⌫0�⌫(�

0↵,�⌫0;�↵0,�⌫) + �pp,firr,s(↵�⌫;↵0�0⌫0)
(22)

When the particle-particle ladder sum �pp = ((�0,pp)�1 � �pp)�1 is diverging, the normal state is unstable to super-
conductivity. The su�cient condition is that the matrix of �pp�0,pp has an eigenvalue equal to unity. The eigenvector
with the largest eigenvalue gives the symmetry of the superconducting order parameter. Explicitely, we are solving
the eigenvalue problem of the following matrix

� kBT
X

k0⌫0↵0�0��

�pp,s(↵�k⌫;↵0�0k0⌫0)�0,pp
↵0�0��(k

0⌫0)���(k
0⌫0) = ��↵�(k⌫) (23)

where the eigenvalue � is the pairing strength and the eigenfunction � is the pairing amplitude.

5

FIG. 4: Superconducting Pairing symmetry and pairing amplitude anisotropy in LiFeAs. The superconducting
pairing symmetry with the (a) antiphase s+�, (b) conventional s+� and (c) a d-wave symmetry. The pairing strength of the
antiphase s+� symmetry is slightly larger than the other two, hence the antiphase s+� symmetry is the ground state in our
theory. (d)-(e) show the variations of the pairing amplitude of the antiphase s+� symmetry on the outer hole Fermi surface
and the two electron Fermi surfaces, respectively, which agree well with the measured superconducting energy gaps taken
from Ref.4. However, the conventional s+� symmetry is unable to account for the experimental superconducting energy gap
variations on the two electron Fermi surfaces, in consistent with previous observation4.

pairing symmetries in the conventional Brillouin zone with the two-iron atoms per unit cell. The ground state in
our calculation for LiFeAs is the antiphase s+�. Experimentally, it was found4,5 that the superconducting gaps have
very unusual variations on the Fermi surfaces, where the superconducting gap is maximal (minimum) around '=45�

(0�) on the outer hole Fermi surface (see Fig. 4(d)), whereas it is maximal (minimum) around '=0� (45�) on the
two electron Fermi surfaces (Fig.4(e),(f)). This observation was used as an evidence against the spin fluctuation
mechanism4 of superconductivity, as it is not consistent with the conventional s+� state. Indeed, our calculation
show that conventional s+� state can not account for the gap size variation in momentum space, however, as seen
from (Fig.4(d)-(f)), the antiphase-s+� can account for the variation of this gap.

The novel antiphase s+� pairing symmetry is not limited to LiFeAs but may be the ground state for many other
iron-based superconductors, such as Ba1�xKxFe2As2 and KxFe2Se2 [30]. Our study suggests that it is important to
describe the cooper-pairing in orbital-space, keeping the complexity of orbital and spin fluctuations, which arise due
to electron correlations, rather than solving BCS equations for weakly correlated systems in band space.
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Figure 4 | Superconducting pairing symmetry and gap function anisotropy in LiFeAs. a,b, The superconducting gaps on the Fermi surfaces are obtained by
diagonalizing the Bogoliubov quasiparticle Hamiltonian, with the orbital-antiphase s+� (a) and conventional s+� pairing symmetries (b). The red and blue
colours denote the di�erent signs of the superconducting gaps. c–f, Angular dependences of the superconducting gaps for the orbital-antiphase s+� (c,d)
and conventional s+� (e,f) states on the three-hole Fermi surfaces (c,e) and the two electron Fermi surfaces (d,f), respectively. The solid lines correspond
to theoretical results and the symbols denote the experimental measurements from ref. 4. Note that we rescaled the whole gap function such that the
computed superconducting gap on the inner hole pocket matches the experimental value4.

is suppressed (maximum intensity in Fig. 2n is 15, compared
to 100 in the parent compound), and the main excitation peak
moves to an incommensurate wavevector q=(0.75,0) in agreement
with experiments13,21. The optimally doped compounds (Fig. 1l,m)
have high-energy spin excitations very similar to the parent com-
pound, whereas the low-energy excitations are slightly reduced
and broadened in momentum space (Fig. 2l,m), to suppress the
long-range magnetic order of the parent compound. This is very
similar to the spectrum of LiFeAs and FeSe, both of which have
a superconducting ground state. From these plots, we can deduce
that nearly commensurate or commensurate spin excitations at
q= (1, 0), with some finite width in momentum space to reduce
the tendency towards the long-range magnetic order, are favourable
for superconductivity.

Turning to KFe2Se2, Figs 1o and 2o indicate strong low-energy
spin excitations peaked around q= (1,0.4). Vacancies in the K site,
which reduce the e�ective electron doping, can move the peak
towards q=(1,0) and favour superconductivity. On the other hand,
vacancies in the Fe sites canmove the peak to q=(0.6,0.2) to induce
novel magnetism in K0.8Fe1.6Se2 (ref. 22).

Whereas the dispersion of the dynamic spin structure factor
S(q,!) and the strength of the low-energy spin excitations correlate
with experimentalTC acrossmany families of iron superconductors,
the superconducting pairing symmetry and the variation of the
superconducting gaps on di�erent Fermi surfaces cannot be
extracted from the spin dynamics alone. To make further progress
on these issues, we computed the complete two-particle scattering
amplitude in the particle–particle channel and determined the
superconducting pairing function (Methods).

In compounds with strong low-energy (nearly) commensurate
spin excitations, such as SrFe2As2, LaFeAsO, BaFe2As2, LiFeAs,
FeSe, BaFe1.9Ni0.1As2 and Ba0.6K0.4Fe2As2, the eigenvalue problem
that determines the pairing function has three, almost degenerate,
leading eigensolutions (with eigenvalues di�ering by only a few per

cent). The largest eigenvalue of the pairing equations generates a
pole in the particle–particle scattering process, and consequently
determines the wavefunction of the Cooper pair. The corresponding
three eigenvectors, which are proportional to the superconducting
order parameter �↵�(k) (↵, � are orbital indices of the iron 3d
orbitals), have a surprisingly simple form in the orbital space. The
momentum dependence of the order parameter is very close to
cos(kx)cos(ky) and �↵�(k) is almost diagonal in the orbital indices.
The numerical solutions can therefore be approximated as

�↵�(k)⇡�↵��↵ cos(kx)cos(ky) (1)

where �↵� is the Kronecker delta function. The dominant pairing
hence occurs between the iron 3d electrons in the same orbital and
on the next-nearest neighbour Fe atoms. The three solutions that
we find, di�er in the sign and amplitude of the coe�cient �↵ for
di�erent orbitals.

For general orientation, in Fig. 3weplot the diagonal components
of the gap functions in the orbital space (�↵↵(k)) in the first
Brillouin zone of the single-iron unit cell. We also plot the diagonal
components of the pairing function in the band basis (�ii(k)) on the
Fermi surfaces; but notice that the o�-diagonal components �ij(k)
are equally large.

In these three competing pairing states, each orbital component
�↵↵(k) changes sign between the zone centre and k = (⇡ , 0);
hence it has an s+� form6. The three states di�er by the
relative phase of individual orbital components, which leads to
di�erent gap structures on the Fermi surfaces and to di�erent
global symmetries. When all three t2g orbitals have the same
phase (�xy > 0, �xz > 0, �yz > 0), we recover the conventional s+�

state6. If the xz orbital has the opposite phase to the yz orbital
(�xz =��yz ), the global symmetry is of d-wave type. In this case
the xy orbital shows negligible pairing (�xy ⇡ 0). Finally, we find
a novel type of pairing state in which xz and yz orbitals are in

848 NATURE PHYSICS | VOL 10 | NOVEMBER 2014 | www.nature.com/naturephysics

© 2014 Macmillan Publishers Limited. All rights reserved

Proposed by both weak & strong coupling approaches

Elliashberg equastions  solved in orbital/momentum space with ab-initio two particle vertex

orbital an'phase s+-
LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS3116

−Max

0

+Max

Γ
X

Y
M

ϕ

ϕ ϕ

ϕ ϕ

ϕ

Orbital-antiphase s+−

Conventional s+−

a

b

2

3

4

5

6

0 45 90

Hole FSs

Theory 

Inner hole

Middle hole

Outer hole

c

0

1

2

3

4

0 45 90

Electron FSs

and

Inner electron

Outer electron

d

0

1

2

3

4

0 45 90

Inner electron

Outer electron

f

2

3

4

5

6

0 45 90

Inner hole

Middle hole

Outer hole

e

Experiments 

|
| (

m
eV

)
∆ |

| (
m

eV
)

∆

|
| (

m
eV

)
∆ |

| (
m

eV
)

∆

Figure 4 | Superconducting pairing symmetry and gap function anisotropy in LiFeAs. a,b, The superconducting gaps on the Fermi surfaces are obtained by
diagonalizing the Bogoliubov quasiparticle Hamiltonian, with the orbital-antiphase s+� (a) and conventional s+� pairing symmetries (b). The red and blue
colours denote the di�erent signs of the superconducting gaps. c–f, Angular dependences of the superconducting gaps for the orbital-antiphase s+� (c,d)
and conventional s+� (e,f) states on the three-hole Fermi surfaces (c,e) and the two electron Fermi surfaces (d,f), respectively. The solid lines correspond
to theoretical results and the symbols denote the experimental measurements from ref. 4. Note that we rescaled the whole gap function such that the
computed superconducting gap on the inner hole pocket matches the experimental value4.

is suppressed (maximum intensity in Fig. 2n is 15, compared
to 100 in the parent compound), and the main excitation peak
moves to an incommensurate wavevector q=(0.75,0) in agreement
with experiments13,21. The optimally doped compounds (Fig. 1l,m)
have high-energy spin excitations very similar to the parent com-
pound, whereas the low-energy excitations are slightly reduced
and broadened in momentum space (Fig. 2l,m), to suppress the
long-range magnetic order of the parent compound. This is very
similar to the spectrum of LiFeAs and FeSe, both of which have
a superconducting ground state. From these plots, we can deduce
that nearly commensurate or commensurate spin excitations at
q= (1, 0), with some finite width in momentum space to reduce
the tendency towards the long-range magnetic order, are favourable
for superconductivity.

Turning to KFe2Se2, Figs 1o and 2o indicate strong low-energy
spin excitations peaked around q= (1,0.4). Vacancies in the K site,
which reduce the e�ective electron doping, can move the peak
towards q=(1,0) and favour superconductivity. On the other hand,
vacancies in the Fe sites canmove the peak to q=(0.6,0.2) to induce
novel magnetism in K0.8Fe1.6Se2 (ref. 22).

Whereas the dispersion of the dynamic spin structure factor
S(q,!) and the strength of the low-energy spin excitations correlate
with experimentalTC acrossmany families of iron superconductors,
the superconducting pairing symmetry and the variation of the
superconducting gaps on di�erent Fermi surfaces cannot be
extracted from the spin dynamics alone. To make further progress
on these issues, we computed the complete two-particle scattering
amplitude in the particle–particle channel and determined the
superconducting pairing function (Methods).

In compounds with strong low-energy (nearly) commensurate
spin excitations, such as SrFe2As2, LaFeAsO, BaFe2As2, LiFeAs,
FeSe, BaFe1.9Ni0.1As2 and Ba0.6K0.4Fe2As2, the eigenvalue problem
that determines the pairing function has three, almost degenerate,
leading eigensolutions (with eigenvalues di�ering by only a few per

cent). The largest eigenvalue of the pairing equations generates a
pole in the particle–particle scattering process, and consequently
determines the wavefunction of the Cooper pair. The corresponding
three eigenvectors, which are proportional to the superconducting
order parameter �↵�(k) (↵, � are orbital indices of the iron 3d
orbitals), have a surprisingly simple form in the orbital space. The
momentum dependence of the order parameter is very close to
cos(kx)cos(ky) and �↵�(k) is almost diagonal in the orbital indices.
The numerical solutions can therefore be approximated as

�↵�(k)⇡�↵��↵ cos(kx)cos(ky) (1)

where �↵� is the Kronecker delta function. The dominant pairing
hence occurs between the iron 3d electrons in the same orbital and
on the next-nearest neighbour Fe atoms. The three solutions that
we find, di�er in the sign and amplitude of the coe�cient �↵ for
di�erent orbitals.

For general orientation, in Fig. 3weplot the diagonal components
of the gap functions in the orbital space (�↵↵(k)) in the first
Brillouin zone of the single-iron unit cell. We also plot the diagonal
components of the pairing function in the band basis (�ii(k)) on the
Fermi surfaces; but notice that the o�-diagonal components �ij(k)
are equally large.

In these three competing pairing states, each orbital component
�↵↵(k) changes sign between the zone centre and k = (⇡ , 0);
hence it has an s+� form6. The three states di�er by the
relative phase of individual orbital components, which leads to
di�erent gap structures on the Fermi surfaces and to di�erent
global symmetries. When all three t2g orbitals have the same
phase (�xy > 0, �xz > 0, �yz > 0), we recover the conventional s+�

state6. If the xz orbital has the opposite phase to the yz orbital
(�xz =��yz ), the global symmetry is of d-wave type. In this case
the xy orbital shows negligible pairing (�xy ⇡ 0). Finally, we find
a novel type of pairing state in which xz and yz orbitals are in
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FIG. 4: Superconducting Pairing symmetry and pairing amplitude anisotropy in LiFeAs. The superconducting
pairing symmetry with the (a) antiphase s+�, (b) conventional s+� and (c) a d-wave symmetry. The pairing strength of the
antiphase s+� symmetry is slightly larger than the other two, hence the antiphase s+� symmetry is the ground state in our
theory. (d)-(e) show the variations of the pairing amplitude of the antiphase s+� symmetry on the outer hole Fermi surface
and the two electron Fermi surfaces, respectively, which agree well with the measured superconducting energy gaps taken
from Ref.4. However, the conventional s+� symmetry is unable to account for the experimental superconducting energy gap
variations on the two electron Fermi surfaces, in consistent with previous observation4.

pairing symmetries in the conventional Brillouin zone with the two-iron atoms per unit cell. The ground state in
our calculation for LiFeAs is the antiphase s+�. Experimentally, it was found4,5 that the superconducting gaps have
very unusual variations on the Fermi surfaces, where the superconducting gap is maximal (minimum) around '=45�

(0�) on the outer hole Fermi surface (see Fig. 4(d)), whereas it is maximal (minimum) around '=0� (45�) on the
two electron Fermi surfaces (Fig.4(e),(f)). This observation was used as an evidence against the spin fluctuation
mechanism4 of superconductivity, as it is not consistent with the conventional s+� state. Indeed, our calculation
show that conventional s+� state can not account for the gap size variation in momentum space, however, as seen
from (Fig.4(d)-(f)), the antiphase-s+� can account for the variation of this gap.

The novel antiphase s+� pairing symmetry is not limited to LiFeAs but may be the ground state for many other
iron-based superconductors, such as Ba1�xKxFe2As2 and KxFe2Se2 [30]. Our study suggests that it is important to
describe the cooper-pairing in orbital-space, keeping the complexity of orbital and spin fluctuations, which arise due
to electron correlations, rather than solving BCS equations for weakly correlated systems in band space.
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Orbital-an'phase matches best with ARPES 
conven'onal s+- does not match
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weak scatterer and in-gap state:Observation of momentum-confined in-gap 
impurity state in Ba0.6K0.4Fe2As2: evidence for anti-phase s± pairing.

4

FIG. 4. (A-C ) Numerical simulations of the spectral weight for a system with an impurity interacting with two dispersive
bands according to Eq. [2] in the normal state (�1 = �2 = 0), in the in-phase SC state (�1 = 2�2 6= 0), and in the anti-phase
SC state (�1 = �2�2 6= 0), respectively. In all cases, we used V0/|t| = �1. The red dashed lines represent the electronic
dispersion in the normal state. (D) Zoom near the impurity state from panel C (anti-phase SC). (E) Zoom on the impurity
state found experimentally near the ↵ band of Ba0.6K0.4Fe2As2. (F ) Schematic FS of Ba0.6K0.4Fe2As2, with the FS sheets
drawn in red and blue having opposite SC gap phase sign. In inset, we show the calculated scattering strength as a function
of momentum transfer.

No impurity state is observed near EF in this case. We
then consider two cases for which a SC gap opens on the
two bands, with a 2:1 size ratio. The relative phase of
the gap on the two bands is given directly by the sign
of the parameters �1,2. Fig. 4B displays the result for
in-phase SC gaps (�1 = 2�2 6= 0). In this condition,
no impurity state is observed. In contrast, our results
for the anti-phase case (�1 = �2�2 6= 0), shown in Fig.
4C, reveal an in-gap state with a spectral weight confined
in momentum space around the kF position of the two
bands, as well illustrated by the zoom in Fig. 4D. This
phenomenon is very similar to our experimental observa-
tion on Ba0.6K0.4Fe2As2, for which a near-EF zoom at
the kF position of the ↵ band is displayed in Fig. 4E.

As a corollary from our simulations, our observation of
an in-gap state implies directly that the SC gaps on the
various FS pockets do not have all the same phase, which
discards all scenarios favoring a s++ pairing symmetry,
such as the low-energy orbital fluctuation model [18]. To
derive further consequences of our observation, we now
try to determine the origin of the scattering giving rise to
the impurity state. Instead of the constant potential V0,
from here we consider the screened Coulomb potential:

V (r) = � e
2

4⇡✏0
p
r2 + d2

e
�
p
r2+d2/�

, (3)

where d is the distance between the Fe and impu-
rity planes, r is the in-plane distance and � is the
Thomas-Fermi screening length, which is estimated to
be about 1 Å for the 1.85 ⇥ 1021 cm�3 electron density
in Ba0.55K0.45Fe2As2 [19]. We first consider that the K+

ions doping the Ba0.6K0.4Fe2As2 system at the Ba2+ site
act as weak potential centers for the in-plane Fe elec-
tronic states. Using d = 3.1 Å for the distance from
the dopant atom to the Fe plane, we can deduce that
the scattering potential at the nearest Fe site is about
0.24 eV. This potential is slightly smaller than the 0.3
eV kinetic energy estimated from the 0.6 eV bandwidth
of the ↵ band in Ba0.6K0.4Fe2As2 [20]. In contrast, as-
suming d = 0 for an in-plane impurity, the largest V (r)
potential would be reached for a distance r comparable
to a ⇠ 1 Å screening length. This situation leads to a
scattering potential of about 5.3 eV, which cannot be
regarded as weak. Therefore, the ARPES signature of
a momentum-confined spectral weight for the impurity
state in Ba0.6K0.4Fe2As2 is more consistent with out-of-
plane scattering by the Ba2+/K+ disorder. This may

2

FIG. 1. (A-B) ARPES intensity plots for a cut passing
through � and oriented along �-M recorded at 1 K using
� and ⇡ incident light polarizations, respectively. The blue
and red dashed lines indicate the position of the MDCs in
panels H and I. (C ) Sum of the ARPES intensity plots in
A and B. The turquoise and pink curves represent the band
dispersions extracted from the MDCs and EDCs in A and B,
respectively. (D) Same as A but for a cut passing near the
M point, measured at 4.2 K. (E-G) EDC plots corresponding
to the cuts shown in panels A, B and D, respectively. (H )
Comparison of the MDCs recorded with � and ⇡ polarizations
at the MDC#1 position in panels A (blue) and B (red). (I )
Same as H but for the MDC#2 position.

about 12 meV on the ↵ band and of about 6 meV on
the � band. Interestingly, the EDC at the Fermi wave
vector (kF ) location of the ↵ band exhibits a strong peak
at 6 meV, inside the SC gap, which has been reported
already in an early ARPES report [3]. Similar observa-
tion is made for the cut displayed in Fig. 1B, which has
been recorded in the same conditions but with ⇡ polar-
ization, which is sensitive to the ↵’ band formed by the
even combination of the dxz and dyz orbitals [2]. As il-
lustrated by the corresponding EDC plot shown in Fig.
1F, the ↵’ band is gapped by 13 meV and a peak inside
the SC gap is also detected at 7 meV.

In Fig. 1C, we show the ARPES intensity plot ob-
tained by summing the intensity plots recorded with �

and ⇡ polarizations, and we overlay the electronic band
dispersions obtained by tracking the various peak posi-
tions in the EDCs and the momentum distribution curves
(MDCs). At this particular photon energy (21.2 eV), the
↵ and ↵’ bands are very close in momentum but the use
of variable polarization allows to separate them. More
importantly, when the energy reaches the minimum gap
location, they both show a bending back characteristic
of the Bogoliubov dispersion in the SC state, confirm-
ing the SC origin of the peaks observed at 12-13 meV
on the ↵ and ↵’ bands. In addition, our analysis allows
us to follow the dispersionless in-gap feature over a short

FIG. 2. (A-D) Temperature evolution, from (A) 15 K to
(F ) 40 K, of the ARPES intensity plots for the cut presented
in Fig. 1A. (E) Temperature evolution of the SC gap ampli-
tude (red) and the position of the in-gap state peak, as de-
termined from EDC analysis. (F ) Temperature dependence
of the spectral weight of the SC coherent peak (red) and in-
gap state peak at kF , as determined from EDC analysis. The
inset illustrates how the spectral weight is extracted. After
symmetrizing the EDCs to approximately remove the Fermi
cuto↵, and removing a background shown by a dashed line,
we fit the left part of the subtracted symmetrized EDC using
two Lorentzian curves. The spectral weight is given by the
area below each Lorentzian curve.

momentum range around the kF positions of the ↵ and
↵’ bands. By comparing the MDCs recorded at 7 meV
and 22 meV below the Fermi energy (EF ) in Figs. 1H
and 1I, we can see that the in-gap peak is also observed
at the kF position of the � band. A peak is detected
in the ⇡ polarization configuration, whereas the � band
is completely suppressed. The observation of the in-gap
state in both odd and even configurations of polarization
contrasts with the expectation for a regular energy band,
and rather suggests a mixture of pure characters. Inter-
estingly, a similar in-gap state is also observed around
the M point, as shown in the ARPES intensity plot dis-
played in Fig. 1D and the corresponding EDC plot shown
in Fig. 1G.

In order to discuss further the origin of the in-gap
state, we display in Figs. 2A-2D ARPES intensity plots
recorded between 15 K and 40 K. Surprisingly, the in-gap
state is clearly visible up to 28 K, but is undetectable
near and above Tc. Our quantitative analysis, presented
in Figs. 2E and 2F, indicates that similarly to the SC
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Figure 4 | Superconducting pairing symmetry and gap function anisotropy in LiFeAs. a,b, The superconducting gaps on the Fermi surfaces are obtained by
diagonalizing the Bogoliubov quasiparticle Hamiltonian, with the orbital-antiphase s+� (a) and conventional s+� pairing symmetries (b). The red and blue
colours denote the di�erent signs of the superconducting gaps. c–f, Angular dependences of the superconducting gaps for the orbital-antiphase s+� (c,d)
and conventional s+� (e,f) states on the three-hole Fermi surfaces (c,e) and the two electron Fermi surfaces (d,f), respectively. The solid lines correspond
to theoretical results and the symbols denote the experimental measurements from ref. 4. Note that we rescaled the whole gap function such that the
computed superconducting gap on the inner hole pocket matches the experimental value4.

is suppressed (maximum intensity in Fig. 2n is 15, compared
to 100 in the parent compound), and the main excitation peak
moves to an incommensurate wavevector q=(0.75,0) in agreement
with experiments13,21. The optimally doped compounds (Fig. 1l,m)
have high-energy spin excitations very similar to the parent com-
pound, whereas the low-energy excitations are slightly reduced
and broadened in momentum space (Fig. 2l,m), to suppress the
long-range magnetic order of the parent compound. This is very
similar to the spectrum of LiFeAs and FeSe, both of which have
a superconducting ground state. From these plots, we can deduce
that nearly commensurate or commensurate spin excitations at
q= (1, 0), with some finite width in momentum space to reduce
the tendency towards the long-range magnetic order, are favourable
for superconductivity.

Turning to KFe2Se2, Figs 1o and 2o indicate strong low-energy
spin excitations peaked around q= (1,0.4). Vacancies in the K site,
which reduce the e�ective electron doping, can move the peak
towards q=(1,0) and favour superconductivity. On the other hand,
vacancies in the Fe sites canmove the peak to q=(0.6,0.2) to induce
novel magnetism in K0.8Fe1.6Se2 (ref. 22).

Whereas the dispersion of the dynamic spin structure factor
S(q,!) and the strength of the low-energy spin excitations correlate
with experimentalTC acrossmany families of iron superconductors,
the superconducting pairing symmetry and the variation of the
superconducting gaps on di�erent Fermi surfaces cannot be
extracted from the spin dynamics alone. To make further progress
on these issues, we computed the complete two-particle scattering
amplitude in the particle–particle channel and determined the
superconducting pairing function (Methods).

In compounds with strong low-energy (nearly) commensurate
spin excitations, such as SrFe2As2, LaFeAsO, BaFe2As2, LiFeAs,
FeSe, BaFe1.9Ni0.1As2 and Ba0.6K0.4Fe2As2, the eigenvalue problem
that determines the pairing function has three, almost degenerate,
leading eigensolutions (with eigenvalues di�ering by only a few per

cent). The largest eigenvalue of the pairing equations generates a
pole in the particle–particle scattering process, and consequently
determines the wavefunction of the Cooper pair. The corresponding
three eigenvectors, which are proportional to the superconducting
order parameter �↵�(k) (↵, � are orbital indices of the iron 3d
orbitals), have a surprisingly simple form in the orbital space. The
momentum dependence of the order parameter is very close to
cos(kx)cos(ky) and �↵�(k) is almost diagonal in the orbital indices.
The numerical solutions can therefore be approximated as

�↵�(k)⇡�↵��↵ cos(kx)cos(ky) (1)

where �↵� is the Kronecker delta function. The dominant pairing
hence occurs between the iron 3d electrons in the same orbital and
on the next-nearest neighbour Fe atoms. The three solutions that
we find, di�er in the sign and amplitude of the coe�cient �↵ for
di�erent orbitals.

For general orientation, in Fig. 3weplot the diagonal components
of the gap functions in the orbital space (�↵↵(k)) in the first
Brillouin zone of the single-iron unit cell. We also plot the diagonal
components of the pairing function in the band basis (�ii(k)) on the
Fermi surfaces; but notice that the o�-diagonal components �ij(k)
are equally large.

In these three competing pairing states, each orbital component
�↵↵(k) changes sign between the zone centre and k = (⇡ , 0);
hence it has an s+� form6. The three states di�er by the
relative phase of individual orbital components, which leads to
di�erent gap structures on the Fermi surfaces and to di�erent
global symmetries. When all three t2g orbitals have the same
phase (�xy > 0, �xz > 0, �yz > 0), we recover the conventional s+�

state6. If the xz orbital has the opposite phase to the yz orbital
(�xz =��yz ), the global symmetry is of d-wave type. In this case
the xy orbital shows negligible pairing (�xy ⇡ 0). Finally, we find
a novel type of pairing state in which xz and yz orbitals are in
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Origin of fluctuating local moments 
Low Energy (Schrieffer-Wolff)
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Analyzing the quantum impurity model in the d6 configuration:
Z.Yin, KH, G. Kotliar, PRB 86, 195141 (2012).

Gell-Mann matrices for SU(3)

low energy effective model has these terms:

spin-spin:

orbital-orbital:

cross term:
orbital+spin-
orbital+spin

well screened
spins

well screened 
orbital

fluctuations

Effective Kondo coupling for JH=0 are AFM:

1

�[{Gij}] ⇡ EH [{⇢}] + �[{Gii}] (1)

J1 = 1/3J0 (2)

J2 = 1/4J0 (3)

J3 = 1/2J0 (4)

J1 = �1/9J0 (5)

J2 = 1/3J0 (6)

J3 = 1/3J0 (7)

1
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Effective Kondo coupling for JH=∞
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