Spin freezing and unconventional superconductivity

Philipp Werner

University of Fribourg

Aspen, March 2020
Spin freezing and unconventional superconductivity

In collaboration with:

Shintaro Hoshino (Saitama)
Hiroshi Shinaoka (Saitama)
Xi Chen (Flatiron)
Emanuel Gull (Michigan)

Aspen, March 2020
Generic phase diagram of unconventional superconductors
- Superconducting dome next to a magnetically ordered phase
- Non-Fermi liquid metal above the superconducting dome

\[\Sigma(\omega) \sim \sqrt{\omega} \]
Method

- **Dynamical mean field theory DMFT**: mapping to an impurity problem

 ![Lattice and impurity models](image)

 \[G_{\text{latt}} \equiv G_{\text{imp}} \]
 \[\Sigma_{\text{latt}} \equiv \Sigma_{\text{imp}} \]

- **Impurity solver**: computes the Green's function of the correlated site

- **Bath parameters = “mean field”**: optimized in such a way that the bath mimics the lattice environment

Georges and Kotliar, PRB (1992)
CT-QMC solvers allow efficient simulation of multiorbital models

\[
H_{\text{loc}} = - \sum_{\alpha,\sigma} \mu n_{\alpha,\sigma} + \sum_{\alpha} U n_{\alpha,\uparrow} n_{\alpha,\downarrow} + \sum_{\alpha > \beta, \sigma} U' n_{\alpha,\sigma} n_{\beta,-\sigma} + (U' - J) n_{\alpha,\sigma} n_{\beta,\sigma} - \sum_{\alpha \neq \beta} J (\psi_{\alpha,\downarrow}^\dagger \psi_{\beta,\uparrow}^\dagger \psi_{\beta,\downarrow} \psi_{\alpha,\uparrow} + \psi_{\beta,\uparrow}^\dagger \psi_{\beta,\downarrow}^\dagger \psi_{\alpha,\uparrow} \psi_{\alpha,\downarrow} + \text{h.c.})
\]

Relevant cases:

- 4 electrons in 3 orbitals: \textit{Sr}_2\textit{RuO}_4
- 3 electrons in 3 orbitals, \(J<0\): \textit{A}_3\textit{C}_{60}
- 6 electrons in 5 orbitals: \textit{Fe}-pnictides
Phase diagram for $U' = U - 2J, J/U = 1/6, \beta = 50$

Metallic phase: “transition” from Fermi liquid to incoherent metal

Narrow crossover regime with self-energy

$\text{Im} \Sigma/t \sim (i\omega_n/t)^\alpha, \alpha \approx 0.5$
Fit self-energy by $-\text{Im}\Sigma(i\omega_n) = C + A(\omega_n)^{\alpha}$

Square-root self-energy coincides with on-set of frozen moments
Strontium Ruthenates

A self-energy with frequency dependence $\Sigma(\omega) \sim \omega^{1/2}$ implies an optical conductivity $\sigma(\omega) \sim 1/\omega^{1/2}$

Non-Fermi-Liquid Behavior of SrRuO$_3$: Evidence from Infrared Conductivity

P. Kostic, Y. Okada,* N. C. Collins, and Z. Schlesinger

*Department of Physics, University of California, Santa Cruz, California 95064

†J. W. Reiner, L. Klein, A. Kapitulnik, T. H. Geballe, and M. R. Beasley

Edward L. Ginzton Laboratories, Stanford University, Stanford, California 94305
(Received 13 March 1998)

The reflectivity of the itinerant ferromagnet SrRuO$_3$ has been measured between 50 and 25 000 cm$^{-1}$ at temperatures ranging from 40 to 300 K, and used to obtain conductivity, scattering rate, and effective mass as a function of frequency and temperature. We find that at low temperatures the conductivity falls unusually slowly as a function of frequency (proportional to $1/\omega^{1/2}$), and at high temperatures it even appears to increase as a function of frequency in the far-infrared limit. The data suggest that the charge dynamics of SrRuO$_3$ are substantially different from those of Fermi-liquid metals.
Spin-freezing

Spin-spin and orbital-orbital correlation functions

-0.1
-0.05
0
0.05
0.1
0.15
0.2
0.25

\(\langle n_1(0)n_2^{z}(\tau) \rangle \), \(\langle S_z(0)S_z(\tau) \rangle \)

\(n=1.21 \)
\(n=1.75 \)
\(n=2.23 \)
\(n=2.62 \)
\(n=2.97 \)

Freezing of spin moments

No freezing of orbital moments

Werner, Gull, Troyer & Millis
PRL 101, 166405 (2008)
Consider the local susceptibility

\[\chi_{\text{loc}} = \int_0^\beta d\tau \langle S_z(\tau)S_z(0) \rangle \]

and its dynamic contribution

\[\Delta \chi_{\text{loc}} = \int_0^\beta d\tau [\langle S_z(\tau)S_z(0) \rangle - \langle S_z(\beta/2)S_z(0) \rangle] \]

subtract the (frozen) long-time value
Consider the local susceptibility χ_{loc} and its dynamic contribution $\Delta \chi_{loc}$.

Crossover regime is characterized by large local moment fluctuations.

Crossover regime is characterized by large local moment fluctuations.
Pnictides

- Strongly correlated despite moderate U

incoherent metal state resulting from Hund’s coupling

Haule & Kotliar, NJP (2009)
Strong doping and temperature dependence of electronic structure

\[\text{BaFe}_2\text{As}_2: \]

- Conventional FL metal in the underdoped regime
- Non-FL properties near optimal doping
- Incoherent metal in the overdoped regime
Identify ordering instabilities by divergent lattice susceptibilities

- Calculate local vertex from impurity problem
- Approximate vertex of the lattice problem by this local vertex
- Solve Bethe-Salpeter equation to obtain lattice susceptibility

The following orders (staggered and uniform) are considered:

- **diagonal orders:**
 charge, spin, orbital, spin-orbital

- **off-diagonal orders:**
 orbital-singlet-spin-triplet SC, orbital-triplet-spin-singlet SC

Hoshino & Werner
PRL 115, 247001 (2015)
- 3-orbital model, Ising interactions

AFM near half-filling
FM at large U away from half-filling
spin-triplet superconductivity in the spin-freezing crossover region
3-orbital model, Ising interactions (lower temperature)

AFM near half-filling

FM at large U away from half-filling

spin-triplet superconductivity in the spin-freezing crossover region

parameter regime relevant for Sr_2RuO_4
T_c dome and non-FL metal phase next to magnetic order

Generic phasediagram of unconventional SC without QCP!
T_c dome and non-FL metal phase next to magnetic order

Need spin-anisotropy (SO coupling) for high T_c
probably relevant for: Sr$_2$RuO$_4$, UGe$_2$, URhGe, UCoGe, ...
Long-range order

Hoshino & Werner

PRL 115, 247001 (2015)

- **Pairing induced by local spin fluctuations**

 Weak-coupling argument inspired by Inaba & Suga, PRL (2012)

- **Effective interaction which includes bubble diagrams:**

 \[\tilde{U}_{\alpha\beta}(q) = U_{\alpha\beta} - \sum_{\gamma} U_{\alpha\gamma} \chi_{\gamma}(q) \tilde{U}_{\gamma\beta}(q) \]

 ![Effective interaction diagram]

- **Effective inter-orbital same-spin interaction**

 \[\tilde{U}_{1\uparrow,2\uparrow}(0) = U' - J - [2UU' + (U' - J)^2 + U''^2] \chi_{\text{loc}} \]

 in the weak-coupling regime: \(\chi_{\text{loc}} = \Delta \chi_{\text{loc}} \)
Negative J and orbital freezing

- 2-orbital model ($U=\text{bandwidth}=4$)

Steiner et al. PRB 94, 075107 (2016)
Away from half-filling: SC dome peaks near orbital freezing line
Negative J and orbital freezing

- **Half-filled 3-orbital model with $J<0$ (A_3C_{60})**

 - Fermi liquid metal
 - Orbital frozen metal
 - Mott insulator

 - SC dome peaks in the region of maximum orbital fluctuations
 - Spontaneous symmetry breaking into an orbital selective Mott phase ("Jahn-Teller metal")

Hoshino & Werner
PRL 118, 177002 (2017)
Mapping to an effective two-orbital model:

\[c_1 = \frac{1}{\sqrt{2}} (d_1 + d_3) \quad c_2 = \frac{1}{\sqrt{2}} (d_2 + d_4) \]
\[f_1 = \frac{1}{\sqrt{2}} (d_1 - d_3) \quad f_2 = \frac{1}{\sqrt{2}} (d_2 - d_4) \]

Slater-Kanamori interaction with \(\tilde{U} = \tilde{U}' = \tilde{J} = U/2 \)

nnn hopping translates into a crystal-field splitting \(\delta = 2t' \)
Mapping to an effective two-orbital model:

\[c_1 = \frac{1}{\sqrt{2}} (d_1 + d_3) \quad c_2 = \frac{1}{\sqrt{2}} (d_2 + d_4) \]
\[f_1 = \frac{1}{\sqrt{2}} (d_1 - d_3) \quad f_2 = \frac{1}{\sqrt{2}} (d_2 - d_4) \]

Slater-Kanamori interaction with \(\tilde{U} = \tilde{U}' = \tilde{J} = U/2 \)
nnn hopping translates into a crystal-field splitting \(\delta = 2t' \)
Phasediagram (2-site/2-orbital cluster DMFT)

- emerging (fluctuating)
- local moments = bad metal regime

- frozen moments = pseudo-gap phase

Cuprates

Hoshino & Werner (2016)
Cuprates

- Phasediagram (2-site/2-orbital cluster DMFT)

- Emerging (fluctuating) local moments = bad metal regime

- SC dome [4-site cluster DMFT, Maier et al, (2005)] induced by fluctuating local moments?
Cuprates

- d-wave SC induced by local spin fluctuations

- Transformation of the d-wave order parameter:

\[
(d_{1\uparrow}^\dagger d_{2\downarrow}^\dagger - d_{1\downarrow}^\dagger d_{2\uparrow}^\dagger) - (d_{2\uparrow}^\dagger d_{3\downarrow}^\dagger - d_{2\downarrow}^\dagger d_{3\uparrow}^\dagger) \\
+ (d_{3\uparrow}^\dagger d_{4\downarrow}^\dagger - d_{3\downarrow}^\dagger d_{4\uparrow}^\dagger) - (d_{4\uparrow}^\dagger d_{1\downarrow}^\dagger - d_{4\downarrow}^\dagger d_{1\uparrow}^\dagger) \rightarrow 2(f_{1\uparrow}^\dagger f_{2\downarrow}^\dagger - f_{1\downarrow}^\dagger f_{2\uparrow}^\dagger)
\]

- Effective attractive interaction:

\[
\tilde{U}_{\text{eff}}^{(1,f,\uparrow),(2,f,\downarrow)} = 2\tilde{U}^3 \chi_{\text{loc}}^{(f)} \chi_{12}^{(c)} + O(\tilde{U}^5)
\]

- Leading contribution:

\[
\begin{array}{c}
1f \uparrow \\
\bowtie
\end{array}
\quad =
\begin{array}{c}
1f \uparrow \\
\tilde{U}_{\text{loc}}^{(f)} \chi_{12}^{(c)}
\end{array}
\begin{array}{c}
2f \downarrow \\
\bowtie
\end{array}
\quad =
\begin{array}{c}
2f \downarrow \\
\tilde{U}_{\text{loc}}^{(f)} \chi_{12}^{(c)}
\end{array}
\begin{array}{c}
1c \uparrow \\
\tilde{U}'
\end{array}
\begin{array}{c}
2c \uparrow \\
\tilde{U}'
\end{array}
\begin{array}{c}
2f \downarrow \\
\tilde{U}'
\end{array}
\end{array}
\]
Further evidence

- Spin correlations in the 2D Hubbard model (DCA results)
- Compare nearest neighbor correlations (S_{12}) to diagonal next-nearest neighbor correlations (S_{13})

![Graphs showing spin correlations in 4-site and 8-site DCA calculations](image)

Note: The graphs illustrate the decay of spin correlations (S_{12} and S_{13}) with increasing imaginary time (τ) for different fillings ($n=0.5, 0.42, 0.36$). The red line represents $n=0.5$, the blue line $n=0.42$, and the black line $n=0.36$. The 4-site and 8-site DCA results are compared, with the former showing a faster decay for S_{12} compared to S_{13}, indicating a stronger antiferromagnetic nearest-neighbor interaction. At long imaginary times, ferromagnetic correlations dominate, as highlighted by the red arrow on the graph.
Further evidence

- **Spin correlations in the 2D Hubbard model (DCA results)**

- **Plot** $\beta[S_{13} - (-S_{12})]$ as a function of temperature and filling

![Diagram showing the dependence of $\beta[S_{13} - (-S_{12})]$ on temperature (T) and filling per spin.](image)

4-site

- Robust FM correlations (formation of composite spin-1)
Spin correlations in the 2D Hubbard model (DCA results)

Plot $\beta [S_{13} - (-S_{12})]$ as a function of temperature and filling

Appearance of composite spin-1 as origin of the pseudo-gap
Summary

- Spin/orbital freezing as a universal phenomenon in unconventional superconductors
 - Strontium ruthenates
 - Uranium-based SC
 - Pnictides
 - Fulleride compounds
 - Cuprates
 - ...

- Pairing induced by local spin or orbital fluctuations

- Bad metal physics originates from fluctuating/frozen moments
3-orbital model

“quasi-particle weight” z

from De’ Medici, Mravlje & Georges, PRL (2011)

large local moment fluctuations

Hund coupling J: Strongly correlated metal far from the Mott transition
Strong doping and temperature dependence of electronic structure
2-orbital model \((U=\text{bandwidth}=4)\)

- Mapping between \(J<0\) and \(J>0\):

\[
\begin{pmatrix}
 d_{i,1\downarrow} \\
 d_{i,2\uparrow}
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
 0 & 1 \\
 1 & 0
\end{pmatrix}
\begin{pmatrix}
 d_{i,1\downarrow} \\
 d_{i,2\uparrow}
\end{pmatrix}
\]

\(J<0\):
- spin-singlet SC
- antiferro OO
- ferro OO
- orbital freezing

\(J>0\):
- spin-triplet SC
- AFM
- FM
- spin freezing
Phasediagram (1-site/2-orbital DMFT)

- Emerging (fluctuating) local moments = bad metal regime
- Frozen moments = pseudo-gap phase

Cuprates

Werner, Hoshino & Shinaoka
PRB 94, 245134 (2016)
Further evidence

- Spin correlations in the 2D Hubbard model (DCA results)
- Plot $\beta [S_{13} - (-S_{12})]$ as a function of temperature and filling
- Appearance of composite spin-1 as origin of the pseudo-gap

![Diagram showing fluctuation of spin correlations](image-url)
Further evidence

- Spin correlations in the 2D Hubbard model (DCA results)
- Plot $\beta[S_{13} - (-S_{12})]$ as a function of temperature and filling

![Graph showing spin correlations](Image)

- Appearance of composite spin-1 as origin of the pseudo-gap