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Generic phase diagram of unconventional superconductors 
Superconducting dome next to a magnetically ordered phase
Non-Fermi liquid metal above the superconducting dome 
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Method 

Dynamical mean field theory DMFT: mapping to an impurity problem

Impurity solver: computes the Green’s function of the correlated site

Bath parameters = “mean field”: optimized in such a way that the 
bath mimics the lattice environment
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lattice model impurity model 

Georges and Kotliar, PRB (1992)



CT-QMC solvers allow efficient simulation of multiorbital models

Relevant cases:

4 electrons in 3 orbitals: Sr2RuO4

3 electrons in 3 orbitals, J<0: A3C60

6 electrons in 5 orbitals: Fe-pnictides
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Phase diagram for 

Metallic phase: “transition” from Fermi liquid to incoherent metal
Narrow crossover regime with self-energy

3-orbital model
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3-orbital model
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Strontium Ruthenates

A self-energy with frequency dependence                      implies an 
optical conductivity 

�(�) � �1/2
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Werner, Gull, Troyer & Millis
PRL 101, 166405 (2008)



Spin-spin and orbital-orbital correlation functions 

Spin freezing
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Consider the local susceptibility        

and its dynamic contribution

Spin freezing

subtract the (frozen) long-time value
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Hoshino & Werner
PRL 115, 247001 (2015)



Consider the local susceptibility        and its dynamic contribution

Crossover regime is characterized by large local moment fluctuations

Spin freezing
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Strongly correlated despite moderate U

                   

Pnictides
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Strong doping and temperature dependence of electronic structure

                   

Pnictides

BaFe2As2:

conventional FL metal in the
underdoped regime

non-FL properties near 
optimal doping

incoherent metal in the 
overdoped regime

Werner et al.
Nature Phys. 8, 331 (2012)



Identify ordering instabilities by divergent lattice susceptibilities

Calculate local vertex from impurity problem
Approximate vertex of the lattice problem by this local vertex
Solve Bethe-Salpeter equation to obtain lattice susceptibility

The following orders (staggered and uniform) are considered:

diagonal orders: 
charge, spin, orbital, spin-orbital

off-diagonal orders: 
orbital-singlet-spin-triplet SC, orbital-triplet-spin-singlet SC

Long-range order Hoshino & Werner
PRL 115, 247001 (2015)
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3-orbital model, Ising interactions (lower temperature)
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Tc dome and non-FL metal phase next to magnetic order

Generic phasediagram of unconventional SC without QCP!
            

Long-range order
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Tc dome and non-FL metal phase next to magnetic order

Need spin-anisotropy (SO coupling) for high Tc

probably relevant for: Sr2RuO4, UGe2, URhGe, UCoGe, ...            
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Pairing induced by local spin fluctuations

Effective interaction which includes bubble diagrams: 

Effective inter-orbital same-spin interaction

Long-range order

Weak-coupling argument inspired by Inaba & Suga, PRL (2012)

Ũ↵�(q) = U↵� �
X

�

U↵���(q)Ũ��(q)

Ũ
1",2"(0) = U 0 � J � [2UU 0 + (U 0 � J)2 + U 02]�

loc

in the weak-coupling regime: �
loc

= ��
loc

Hoshino & Werner
PRL 115, 247001 (2015)
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Effective attraction from purely repulsive interactions

Here, we explain how local fluctuations can induce a pairing among repulsively interacting electrons. We follow
Ref. 1 that deals with a three-component fermion system. In the weak-coupling regime, the effective interactions that
incorporate bubble diagrams can be written in general form as

Ũαβ(q) = Uαβ −
∑

α1

Uαα1χα1(q)Ũα1β(q), (1)

where q = (q, iνm) with q denoting the wave vector and νm = 2πmT a bosonic Matsubara frequency. For the present
three orbital Hubbard model, the indices are given by α = (γ,σ) where γ = 1, 2, 3 and σ =↑, ↓. The bare interactions
are given by Uγσ-γσ = 0, Uγ↑-γ↓ = U , Uγ↑-γ′↓ = U ′, Uγ↑-γ′↑ = U ′−J (γ ̸= γ′). The dynamical susceptibility is defined
by χα(q) = −

∑
k gα(k)gα(k+ q) where gα(k) is the single-particle Green function for electrons with flavor α. For the

case of degenerate orbitals considered in our paper, we do not need the index α in the susceptibility.
In the DMFT approximation, only the local part of the vertex corrections is taken into account [2]. Hence we

replace the susceptibility by the local one, χloc(iνm). (This replacement is not essential for the pairing: the effective
attraction can be derived even when we consider the q-dependent susceptibility, as discussed in Ref. 1.) By solving
Eq. (1), the static interaction among 1 ↑ and 2 ↑ electrons can be explicitly derived as

Ũ1↑-2↑(0) =
U ′ − J + (J2 − 2UU ′ − 2U ′J)χloc + (U ′ − J)(U2 − 2J2 + 4U ′J)χ2

loc

[1− (U − J)χloc][1− (U + 2J)χloc][1 + (U − 2U ′ + J)χloc][1 + (U + 4U ′ − 2J)χloc]
, (2)

where we consider the static component: χloc = χloc(0). The diagrams up to second-order in the interactions are
shown in Fig. 1. In this approximation the effective interaction is given by

Ũ1↑-2↑(0) ≃ U ′ − J − [2UU ′ + (U ′ − J)2 + U ′2]χloc. (3)

Thus if the second-order terms dominate the bare interaction U ′ − J , the effective interaction Ũ1↑-2↑ can become
attractive even though the bare interaction is repulsive. Hence, Eq. (3) shows that strong local fluctuations induce a
pairing among electrons. This argument is valid in the case of weak interactions, where no local moments are formed.
In this regime, the relation ∆χloc = χloc holds (see Eq. (2) in the main text for the definition of ∆χloc).
In the above argument, the local susceptibility can be identified as the magnetic and charge susceptibilities, which

have the same value in the weak-coupling limit. With increasing repulsive Coulomb interactions, the magnetic
susceptibility is enhanced and the charge one is suppressed. Hence we expect that in the regime considered in the
main text, the local magnetic fluctuations primarily contribute to the pairing among electrons in the multi-orbital
Hubbard model. Indeed our DMFT+CTQMC calculations demonstrate a clear connection between superconductivity
and local spin susceptibility. We note that the present discussion cannot be applied to the local-moment regime with
∆χloc ̸= χloc. In this case the expansion from the strong-coupling limit should work as an effective theory.

FIG. 1: Effective attractive interactions from bubble diagrams up to second order.



2-orbital model (U=bandwidth=4)

Negative J and orbital freezing
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Away from half-filling: SC dome peaks near orbital freezing line 

Negative J and orbital freezing

line of maximum orbital fluctuations
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Cuprates

Mapping to an effective two-orbital model:

Slater-Kanamori interaction with                                                 
nnn hopping translates into a crystal-field splitting 
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Phasediagram (2-site/2-orbital cluster DMFT)
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Phasediagram (2-site/2-orbital cluster DMFT)

Hoshino & Werner (2016)Cuprates
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Hoshino & Werner (2016)Cuprates
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Spin correlations in the 2D Hubbard model (DCA results)

Compare nearest neighbor correlations (S12) to diagonal next-
nearest neighbor correlations (S13) 

Hoshino & Werner (2016)Further evidence Werner, Xi & Gull 
arxiv:1912.01260 (2019) 
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FIG. 2: Imaginary-time dependent nearest-neighbor (�S12,
dashed) and diagonal next-nearest-neighbor (S13, solid) spin
correlations at � = 10 and indicated fillings, in 4-site DCA
(left) and 8-site DCA (right). While antiferromagnetic S12

correlations dominate at short time, they are weaker than the
ferromagnetic S13 correlations at ⌧ = �/2.

contribution 1
2 [S11(⌧)+S13(⌧)] are presented in the Sup-

plementary Material.

In the present study, we take a step back and instead
of discussing the dynamics of Sff (⌧) compute and ana-
lyze the nearest-neighbor S12 and diagonal next-nearest
neighbor S13 spin correlations in the original basis. We
employ the dynamical cluster approximation (DCA) [20],
which enforces translational invariance on the cluster,
and report the spin correlations measured on the impu-
rity cluster. The calculations are performed for a square
lattice Hubbard model with nearest-neighbor hopping t,
which we use as the unit of energy. The on-site repulsion
is fixed to U = 8.

Figure 2 plots �S12 and S13 for inverse temperature
� = 10 and di↵erent fillings (half filling corresponds to
n� = 0.5). The left (right) panel reports results for the
4-site (8-site) cluster. At short imaginary times ⌧ the
antiferromagnetic nearest-neighbor correlations (dashed
lines) dominate the diagonal next-nearest-neighbor cor-
relations (solid lines). The time dependence is however
nontrivial, and for a broad range of fillings, we find that
at long times the ferromangetic S13 correlations domi-
nate. This is related to the interesting fact that S13 can
increase with increasing ⌧ , in contrast to �S12, which al-
ways decreases. We interpret the robustness of S13 as a
signature of the formation of a composite spin-1 moment
on diagonally opposite sites. While this phenomenon has
been anticipated in the previous spin-freezing analysis
based on 4-site cluster DMFT [16], it is manifest also in
the DCA solution and persists in the 8-site calculation.

Because the long-time behavior reveals interesting
properties of the spin correlations, we will from now on
focus on the values of S12 and S13 at ⌧ = �/2. In Fig. 3
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we plot �[S13(�/2)�(�S12(�/2))], where the multiplica-
tion with � is meant to compensate for the overall decay
of the correlations with time, but is not crucial for the
following analysis. A positive value indicates dominant
ferromagnetic correlations on the diagonals, while a neg-
ative value implies dominant antiferromagnetic nearest-
neighbor correlations. Let us first focus on the 4-site
DCA results, shown in the top panel. Here, we also in-
dicate by a black solid line the Tc dome previously com-
puted for the same model in Ref. 6. It is apparent from
this plot that ferromagnetic next-nearest neighbor corre-
lations dominate over a wide doping range, and in fact
almost exactly the doping range in which d-wave super-
conductivity is found at low temperatures.
The strongest enhancement of ferromagnetic correla-

tions occurs in a temperature and doping region that
one typically associates with the onset of the pseudo-gap
(“T ⇤ line”). This suggests that the formation and freez-
ing of composite spins on the lattice diagonals is at the
root of the pseudo-gap phenomenon. Note that in our
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Spin correlations in the 2D Hubbard model (DCA results)

Plot                           as a function of temperature and filling 

Hoshino & Werner (2016)Further evidence Werner, Xi & Gull 
arxiv:1912.01260 (2019) 
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FIG. 2: Imaginary-time dependent nearest-neighbor (�S12,
dashed) and diagonal next-nearest-neighbor (S13, solid) spin
correlations at � = 10 and indicated fillings, in 4-site DCA
(left) and 8-site DCA (right). While antiferromagnetic S12

correlations dominate at short time, they are weaker than the
ferromagnetic S13 correlations at ⌧ = �/2.

contribution 1
2 [S11(⌧)+S13(⌧)] are presented in the Sup-

plementary Material.

In the present study, we take a step back and instead
of discussing the dynamics of Sff (⌧) compute and ana-
lyze the nearest-neighbor S12 and diagonal next-nearest
neighbor S13 spin correlations in the original basis. We
employ the dynamical cluster approximation (DCA) [20],
which enforces translational invariance on the cluster,
and report the spin correlations measured on the impu-
rity cluster. The calculations are performed for a square
lattice Hubbard model with nearest-neighbor hopping t,
which we use as the unit of energy. The on-site repulsion
is fixed to U = 8.

Figure 2 plots �S12 and S13 for inverse temperature
� = 10 and di↵erent fillings (half filling corresponds to
n� = 0.5). The left (right) panel reports results for the
4-site (8-site) cluster. At short imaginary times ⌧ the
antiferromagnetic nearest-neighbor correlations (dashed
lines) dominate the diagonal next-nearest-neighbor cor-
relations (solid lines). The time dependence is however
nontrivial, and for a broad range of fillings, we find that
at long times the ferromangetic S13 correlations domi-
nate. This is related to the interesting fact that S13 can
increase with increasing ⌧ , in contrast to �S12, which al-
ways decreases. We interpret the robustness of S13 as a
signature of the formation of a composite spin-1 moment
on diagonally opposite sites. While this phenomenon has
been anticipated in the previous spin-freezing analysis
based on 4-site cluster DMFT [16], it is manifest also in
the DCA solution and persists in the 8-site calculation.

Because the long-time behavior reveals interesting
properties of the spin correlations, we will from now on
focus on the values of S12 and S13 at ⌧ = �/2. In Fig. 3
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FIG. 3: Di↵erence in spin correlations �[S13(�/2) �
(�S12(�/2))] in 4-site DCA (top) and 8-site DCA (bottom).
The Tc data for the d-wave superconducting phase in the 4-
site case (solid black line) are taken from Ref. 6. The Tc dome
of the 8-site cluster is an educated guess based on the results
in Ref. 25. Dashed lines with diagonal crosses indicate the
filling below which the nearest-neighbor spin correlations at
⌧ = �/2 become ferromagnetic.

we plot �[S13(�/2)�(�S12(�/2))], where the multiplica-
tion with � is meant to compensate for the overall decay
of the correlations with time, but is not crucial for the
following analysis. A positive value indicates dominant
ferromagnetic correlations on the diagonals, while a neg-
ative value implies dominant antiferromagnetic nearest-
neighbor correlations. Let us first focus on the 4-site
DCA results, shown in the top panel. Here, we also in-
dicate by a black solid line the Tc dome previously com-
puted for the same model in Ref. 6. It is apparent from
this plot that ferromagnetic next-nearest neighbor corre-
lations dominate over a wide doping range, and in fact
almost exactly the doping range in which d-wave super-
conductivity is found at low temperatures.
The strongest enhancement of ferromagnetic correla-

tions occurs in a temperature and doping region that
one typically associates with the onset of the pseudo-gap
(“T ⇤ line”). This suggests that the formation and freez-
ing of composite spins on the lattice diagonals is at the
root of the pseudo-gap phenomenon. Note that in our
simulations, long-range order is suppressed. It is natural
to assume that the spin-1 moments formed on the diago-
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and report the spin correlations measured on the impu-
rity cluster. The calculations are performed for a square
lattice Hubbard model with nearest-neighbor hopping t,
which we use as the unit of energy. The on-site repulsion
is fixed to U = 8.
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nate. This is related to the interesting fact that S13 can
increase with increasing ⌧ , in contrast to �S12, which al-
ways decreases. We interpret the robustness of S13 as a
signature of the formation of a composite spin-1 moment
on diagonally opposite sites. While this phenomenon has
been anticipated in the previous spin-freezing analysis
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tion with � is meant to compensate for the overall decay
of the correlations with time, but is not crucial for the
following analysis. A positive value indicates dominant
ferromagnetic correlations on the diagonals, while a neg-
ative value implies dominant antiferromagnetic nearest-
neighbor correlations. Let us first focus on the 4-site
DCA results, shown in the top panel. Here, we also in-
dicate by a black solid line the Tc dome previously com-
puted for the same model in Ref. 6. It is apparent from
this plot that ferromagnetic next-nearest neighbor corre-
lations dominate over a wide doping range, and in fact
almost exactly the doping range in which d-wave super-
conductivity is found at low temperatures.
The strongest enhancement of ferromagnetic correla-

tions occurs in a temperature and doping region that
one typically associates with the onset of the pseudo-gap
(“T ⇤ line”). This suggests that the formation and freez-
ing of composite spins on the lattice diagonals is at the
root of the pseudo-gap phenomenon. Note that in our
simulations, long-range order is suppressed. It is natural
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FIG. 2: Imaginary-time dependent nearest-neighbor (�S12,
dashed) and diagonal next-nearest-neighbor (S13, solid) spin
correlations at � = 10 and indicated fillings, in 4-site DCA
(left) and 8-site DCA (right). While antiferromagnetic S12

correlations dominate at short time, they are weaker than the
ferromagnetic S13 correlations at ⌧ = �/2.

contribution 1
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In the present study, we take a step back and instead
of discussing the dynamics of Sff (⌧) compute and ana-
lyze the nearest-neighbor S12 and diagonal next-nearest
neighbor S13 spin correlations in the original basis. We
employ the dynamical cluster approximation (DCA) [20],
which enforces translational invariance on the cluster,
and report the spin correlations measured on the impu-
rity cluster. The calculations are performed for a square
lattice Hubbard model with nearest-neighbor hopping t,
which we use as the unit of energy. The on-site repulsion
is fixed to U = 8.

Figure 2 plots �S12 and S13 for inverse temperature
� = 10 and di↵erent fillings (half filling corresponds to
n� = 0.5). The left (right) panel reports results for the
4-site (8-site) cluster. At short imaginary times ⌧ the
antiferromagnetic nearest-neighbor correlations (dashed
lines) dominate the diagonal next-nearest-neighbor cor-
relations (solid lines). The time dependence is however
nontrivial, and for a broad range of fillings, we find that
at long times the ferromangetic S13 correlations domi-
nate. This is related to the interesting fact that S13 can
increase with increasing ⌧ , in contrast to �S12, which al-
ways decreases. We interpret the robustness of S13 as a
signature of the formation of a composite spin-1 moment
on diagonally opposite sites. While this phenomenon has
been anticipated in the previous spin-freezing analysis
based on 4-site cluster DMFT [16], it is manifest also in
the DCA solution and persists in the 8-site calculation.

Because the long-time behavior reveals interesting
properties of the spin correlations, we will from now on
focus on the values of S12 and S13 at ⌧ = �/2. In Fig. 3
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FIG. 3: Di↵erence in spin correlations �[S13(�/2) �
(�S12(�/2))] in 4-site DCA (top) and 8-site DCA (bottom).
The Tc data for the d-wave superconducting phase in the 4-
site case (solid black line) are taken from Ref. 6. The Tc dome
of the 8-site cluster is an educated guess based on the results
in Ref. 25. Dashed lines with diagonal crosses indicate the
filling below which the nearest-neighbor spin correlations at
⌧ = �/2 become ferromagnetic.

we plot �[S13(�/2)�(�S12(�/2))], where the multiplica-
tion with � is meant to compensate for the overall decay
of the correlations with time, but is not crucial for the
following analysis. A positive value indicates dominant
ferromagnetic correlations on the diagonals, while a neg-
ative value implies dominant antiferromagnetic nearest-
neighbor correlations. Let us first focus on the 4-site
DCA results, shown in the top panel. Here, we also in-
dicate by a black solid line the Tc dome previously com-
puted for the same model in Ref. 6. It is apparent from
this plot that ferromagnetic next-nearest neighbor corre-
lations dominate over a wide doping range, and in fact
almost exactly the doping range in which d-wave super-
conductivity is found at low temperatures.
The strongest enhancement of ferromagnetic correla-

tions occurs in a temperature and doping region that
one typically associates with the onset of the pseudo-gap
(“T ⇤ line”). This suggests that the formation and freez-
ing of composite spins on the lattice diagonals is at the
root of the pseudo-gap phenomenon. Note that in our
simulations, long-range order is suppressed. It is natural
to assume that the spin-1 moments formed on the diago-
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which enforces translational invariance on the cluster,
and report the spin correlations measured on the impu-
rity cluster. The calculations are performed for a square
lattice Hubbard model with nearest-neighbor hopping t,
which we use as the unit of energy. The on-site repulsion
is fixed to U = 8.

Figure 2 plots �S12 and S13 for inverse temperature
� = 10 and di↵erent fillings (half filling corresponds to
n� = 0.5). The left (right) panel reports results for the
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antiferromagnetic nearest-neighbor correlations (dashed
lines) dominate the diagonal next-nearest-neighbor cor-
relations (solid lines). The time dependence is however
nontrivial, and for a broad range of fillings, we find that
at long times the ferromangetic S13 correlations domi-
nate. This is related to the interesting fact that S13 can
increase with increasing ⌧ , in contrast to �S12, which al-
ways decreases. We interpret the robustness of S13 as a
signature of the formation of a composite spin-1 moment
on diagonally opposite sites. While this phenomenon has
been anticipated in the previous spin-freezing analysis
based on 4-site cluster DMFT [16], it is manifest also in
the DCA solution and persists in the 8-site calculation.

Because the long-time behavior reveals interesting
properties of the spin correlations, we will from now on
focus on the values of S12 and S13 at ⌧ = �/2. In Fig. 3

4-site

 0.25  0.3  0.35  0.4  0.45  0.5

filling per spin

 0

 0.1

 0.2

 0.3

 0.4

 0.5

T

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

8-site

 0.25  0.3  0.35  0.4  0.45  0.5

filling per spin

 0

 0.1

 0.2

 0.3

 0.4

 0.5

T

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

FIG. 3: Di↵erence in spin correlations �[S13(�/2) �
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The Tc data for the d-wave superconducting phase in the 4-
site case (solid black line) are taken from Ref. 6. The Tc dome
of the 8-site cluster is an educated guess based on the results
in Ref. 25. Dashed lines with diagonal crosses indicate the
filling below which the nearest-neighbor spin correlations at
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we plot �[S13(�/2)�(�S12(�/2))], where the multiplica-
tion with � is meant to compensate for the overall decay
of the correlations with time, but is not crucial for the
following analysis. A positive value indicates dominant
ferromagnetic correlations on the diagonals, while a neg-
ative value implies dominant antiferromagnetic nearest-
neighbor correlations. Let us first focus on the 4-site
DCA results, shown in the top panel. Here, we also in-
dicate by a black solid line the Tc dome previously com-
puted for the same model in Ref. 6. It is apparent from
this plot that ferromagnetic next-nearest neighbor corre-
lations dominate over a wide doping range, and in fact
almost exactly the doping range in which d-wave super-
conductivity is found at low temperatures.
The strongest enhancement of ferromagnetic correla-

tions occurs in a temperature and doping region that
one typically associates with the onset of the pseudo-gap
(“T ⇤ line”). This suggests that the formation and freez-
ing of composite spins on the lattice diagonals is at the
root of the pseudo-gap phenomenon. Note that in our
simulations, long-range order is suppressed. It is natural
to assume that the spin-1 moments formed on the diago-
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