Quantum Quasi-Monte Carlo

for non-equilibrium quantum systems

Olivier Parcollet

Center for Computational Quantum Physics (CCQ)
Flatiron Institute, Simons Foundation
New York

Outline

I. Real time "diagrammatic" Quantum Monte Carlo. C. Bertrand, S. Florens, OP, X. Waintal Phys. Rev. X 9, 04I008 (2019)
Solution of the out of equilibrium quantum dot.

$$
\begin{aligned}
& \text { Phys. Rev. B 91, } 245154(2015) \\
& \text { Phys. Rev. B 100, } 125129(2019)
\end{aligned}
$$

2. Quantum Quasi-Monte Carlo.

How to compute the perturbative expansion faster ($\mathrm{x} 100, \mathrm{xI} 0000$) and more precisely.

Collaborators

Corentin Bertrand (Flatiron/CCQ)
Cf poster

Serge Florens (Grenoble, France)

Philipp Dumitrescu (Flatiron/CCQ)
Cf poster

Bill Triggs (Grenoble, France)

Marjan Macek (Grenoble, France)

Xavier Waintal (Grenoble, France)

Out of equilibrium \& strong correlations

- Many new experiments : Pump probe, quantum dots, ultra-cold atoms, cavities.

Pump probe

Nano-electronics

Ultra-cold atoms

- Computational physics challenge :
- Exact methods for out of equilibrium systems, at strong coupling
- Control, speed and precision
- Long time (after quench), steady state. Resolve various energy/time scales.

Road map

Quantum dots

- Kondo effect.

L .Glazman et al. I988, P. Lee 1988.
D. Goldhaber-Gordon, 1998

- High precision benchmark in equilibrium (Bethe Ansatz)

Out of equilibrium
DMFT solvers

Lattice models
Real solid

- I atom+ self-consistent bath
- Few exact solvers
(inchworm Cf Cohen's talk, our work)
- Equilibrium : cf talk by M. Ferrero
- Non equilibrium.Transport.

Perturbation theory

$$
Q(t)=\sum_{n=0}^{K} Q_{n}(t) U^{n}
$$

- Use perturbation theory $(\mathrm{K}=10-15)$, even deep in strong coupling regime (e.g. Kondo effect).
- Real time "diagrammatic" Quantum Monte Carlo (Cftalk of N. Prokof'ev, M. Ferrero)

How to compute $Q_{n}(t)$?
How to sum the series?

How to compute $\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$?

- Schwinger-Keldysh formalism Q_{n} is a n -dimensional integral

$$
\begin{array}{r}
Q_{n}(t)=\frac{1}{n!} \int_{t_{0}}^{\infty} d u_{1} \ldots d u_{n}\left(\sum_{\alpha_{i}= \pm 1} \prod_{i} \alpha_{i} \operatorname{det}(\ldots)\right) \\
\equiv f_{n}\left(t, u_{1}, \ldots, u_{n}\right)
\end{array}
$$

Vertices.Times u_{i}.
Keldysh indices $\alpha=-I, I$

Profumo, Messio, OP, Waintal
PRB 91, 245I54 (2015)

How to compute $\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$?

- Schwinger-Keldysh formalism Q_{n} is a n -dimensional integral

$$
Q_{n}(t)=\frac{1}{n!} \int_{t_{0}}^{\infty} d u_{1} \ldots d u_{n} \sum_{\equiv f_{n}\left(t, u_{1}, \ldots, u_{n}\right)}^{\left.\prod_{\alpha_{i}= \pm 1} \alpha_{i} \operatorname{det}(\ldots)\right)}
$$

Vertices.Times u_{i}. Keldysh indices $\alpha=-I, I$

Profumo, Messio, OP, Waintal PRB 91, 245I54 (2015)

How to compute $\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$?

- Schwinger-Keldysh formalism Q_{n} is a n -dimensional integral

$$
Q_{n}(t)=\frac{1}{n!} \underbrace{\left.\int_{t_{0}}^{\infty} d u_{1} \ldots d u_{n} \sum_{\alpha_{i}= \pm 1} \prod_{i} \alpha_{i} \operatorname{det}(\ldots)\right)}_{\equiv f_{n}\left(t, u_{1}, \ldots, u_{n}\right)}
$$

Vertices.Times u_{i}. Keldysh indices $\alpha=-I, I$

Profumo, Messio, OP, Waintal PRB 91, 245I54 (2015)
(Quasi) Monte Carlo Explicit sum

- Schwinger-Keldysh formalism Q_{n} is a n -dimensional integral

Vertices.Times u_{i}. Keldysh indices $\alpha=-I$, I

Profumo, Messio, OP, Waintal PRB 91, 245154 (2015) (Quasi) Monte Carlo Explicit sum

- Long time limit $\mathrm{t} \rightarrow \infty$ is easy. f_{n} is centered around t . Massive cancellations in the sum.
- No "dynamical sign problem" contrary to previous real time QMC, e.g. P.Werner et al PRB 2009
- $O\left(n^{3} 2^{n}\right)$ cost to compute $f_{n}(u)$. In practice, $n=10-15$.

How to sum the series?

A finite radius of convergence! Singularities poles, branch cuts

A finite radius of convergence ! Singularities poles, branch cuts

How to sum the series?

Profumo et al. PRB 91, 245154 (2015)
Bertrand et al. Phys. Rev. X 9, 041008 (2019)

A finite radius of convergence !
Singularities poles, branch cuts

A finite radius of convergence ! Singularities poles, branch cuts

- Change of variable $\mathrm{W}(\mathrm{U})$, with $\mathrm{W}(0)=0$

$$
Q=\sum_{n \geq 0} Q_{n} U^{n}=\sum_{p \geq 0} \bar{Q}_{p} W^{p}
$$

A few results on the quantum dot

A simple model for the quantum dot

- Anderson model with two leads (L, R).

$$
\begin{gathered}
H=\sum_{\substack{k \sigma \\
\alpha=L, R}} \varepsilon_{k \alpha} c_{k \alpha}^{\dagger} c_{k \sigma \alpha}+\sum_{\sigma} \varepsilon_{d} d_{\sigma}^{\dagger} d_{\sigma}+U n_{d \uparrow} n_{d \downarrow}+\sum_{\substack{k \sigma \\
\alpha=L, R}} g_{k \sigma \alpha}\left(c_{k \sigma \alpha}^{\dagger} d_{\sigma}+\text { h.c. }\right) \\
\text { Bath } \quad \text { Dot Hybridization }
\end{gathered}
$$

- We want : current $\mathrm{I}\left(\mathrm{V}_{\mathrm{b}}\right)$, spectral function on the dot, Kondo effect, ...

Kondo effect in equilibrium

- Benchmark with NRG (numerical renormalisation group)

Spectral function on the dot

Kondo temperature

Fermi liquid at low energy

- Equilibrium.

Self-energy, away from particle-hole symmetry

Bertrand et al. 2019
Phys. Rev. X 9, 041008 (2019)

Self energy (Re)

Self energy (Im)

Out of equilibrium

- Destruction of the Kondo resonance by voltage bias

$$
T=0
$$

$$
T=\Gamma / 50
$$

- Particle hole asymmetric case

Out of equilibrium distribution function of the dot

- Not a Fermi function

Bertrand et al. 2019
Phys. Rev. X 9, 041008 (2019)

- At $\mathrm{U}=0$ double step, due to the 2 Fermi leads.

Quantum Quasi-Monte Carlo

$\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$: a n -dimensional integral

$$
Q_{n}(t)=\frac{1}{n!} \int_{t_{0}}^{\infty} d u_{1} \ldots d u_{n} f_{n}\left(t, u_{1}, \ldots, u_{n}\right)
$$

- How to integrate in large dimensions ?
- Using a minimal number of evaluations of f_{n} which costs $O\left(2^{n}\right)$

Integration in large dimensions

Dimension
of the integral

$\mathbf{N}=$ Number of computed points of the integrand

Integration in large dimensions
J. Dick, F.Y. Kuo, I.H. Sloan
"High-dimensional integration:
The Quasi-Monte Carlo way," Acta Numerica 22, I 33 (2013).

Dimension
of the integral

$\mathbf{N}=$ Number of computed points of the integrand

Quasi-Monte Carlo

- Evaluate the function on some special points. Low discrepancy sequences, e.g. Sobol'.
- Theorems

If the function f is "smooth enough" (i.e. proper functional space), then

Sobol'sequence

Sobol'

Quasi-Monte Carlo IS NOT Monte Carlo. No random numbers.

Is our function smooth enough ?
No, but ...

- Change of variable $u(x)$ in n dimensions.
- Goal : make the function flat/smooth

$$
Q_{n}=\int d^{n} \boldsymbol{u} f_{n}\left(u_{1}, \ldots, u_{n}\right) \quad \longrightarrow \quad Q_{n}=\int_{[0,1]^{n}} \mathrm{~d}^{n} \boldsymbol{x} f_{n}[\boldsymbol{u}(\boldsymbol{x})]\left|\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right|
$$

- $u(x)$ constructed from a model function $p_{n}(\mathbf{u})$ such that

$$
\left|\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right|=\frac{\mathcal{C}}{p_{n}(\boldsymbol{u})}
$$

- Then use quasi-Monte Carlo in new variable x.

$$
Q_{n} \approx Q_{n}(N)=\frac{\mathcal{C}}{N} \sum_{i=0}^{N} \frac{f_{n}\left[\boldsymbol{u}\left(\bar{x}_{i}\right)\right]}{p_{n}\left[\boldsymbol{u}\left(\bar{x}_{i}\right)\right]} \text { Sobol'sequence }
$$

Model function

- Model function : approximation of the integrand in n dimensions.

Optimized for quicker convergence.

- Machine learning problem.
- In general, a large class of possible functions, e.g. functional tensor trains / MPS

$$
p_{n}(\boldsymbol{u})=h_{a}^{(1)}\left(t-u_{1}\right) h_{a b}^{(2)}\left(u_{1}-u_{2}\right) \cdots h_{c d}^{(n-1)}\left(u_{n-2}-u_{n-1}\right) h_{d}^{(n)}\left(u_{n-1}-u_{n}\right)
$$

- Here, even the simplest case, without any optimization, already gives excellent results.

$$
p_{n}(\boldsymbol{u})=\prod_{i=1}^{n} h^{(i)}\left(u_{i-1}-u_{i}\right) \quad h^{(i)}(u)=e^{-u / \tau}
$$

Quantum Quasi-Monte Carlo (QQMC)

- Compute the integral of the quantum problem with Quasi-Monte Carlo

Error scaling with N

- Same curve in log-log

Warping the integral is crucial

- Model function + quasi-MC = best method

Large orders

- Error vs analytical Bethe Ansatz result, vs the number of sampling points \mathbf{N}

Kondo ridge

Experiment

T. Delattre et al. Nat. Phvs. 208 (2009)

Coulomb diamond $T=0$. vs U and ε_{d}

M. Macek, P. Dumitrescu, C. Bertrand, B.Triggs, OP, X. Waintal ArXiv:2002.I 2372

- Many calculations ("parametric runs"), for various U and ε_{d}.

About 25 cpu hours/point for order 10.

Conclusion

- Solution of the out of equilibrium quantum dot.
- Perturbation theory even at strong coupling (with resummation)
- Quantum Quasi-Monte Carlo
- Roadmap : DMFT solvers, lattice problems ...

Thank you for your attention!

Sobol' points

- Illustration in $d=2$

$$
N=100 \quad N=500 \quad N=1000
$$

Learning the model function

- Optimization of model function from the data
- Proof of concepts : gain speed factor $\times 2$, using a projection technique

