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 4Out of equilibrium & strong correlations

Pump probe Ultra-cold atomsNano-electronics

• Many new experiments : Pump probe,  quantum dots,  ultra-cold atoms, cavities.

• Computational physics challenge : 

• Exact methods for out of equilibrium systems, at strong coupling

• Control, speed and precision

• Long time (after quench), steady state.  Resolve various energy/time scales.



• Kondo effect.  
L .Glazman et al. 1988, P. Lee 1988.   
D. Goldhaber-Gordon, 1998

• High precision benchmark 
in equilibrium (Bethe Ansatz)

 5Road map

transmission probability of much less than one.
In addition, the on-site Coulomb energy U tends
to block the state with an extra electron on the
dot. Although U is an order of magnitude larger
than the characteristic energy scale kBTK (kB is
the Boltzmann constant), the Kondo effect com-
pletely determines electron tunneling at low en-
ergies (i.e., low T and VSD). In the absence of the
Kondo effect (e.g., for electron number N !
even), the system consists of two separated
Fermi seas. In contrast, for N ! odd, the screen-
ing of the local spin creates a single, extended
many-body system with a single, well-defined
Fermi surface extending throughout the whole
system. The quasiparticles at this Fermi surface
no longer experience the repulsive barrier po-
tentials nor the on-site Coulomb repulsion. Be-
cause the local spin for N ! odd is completely
screened and because the dot has zero spin for

N ! even, the whole system of leads and dot is
in a singlet state over a wide gate voltage range
(between –430 and –350 mV in Fig. 2A), al-
though the nature of the ground state in the even
and odd valleys is very different.

For a quantitative analysis, we rewrite Eq.
1 as ln(TK) ! "ε0(ε0 # U )/$U # constant,
indicating a quadratic dependence for ln(TK)
on gate voltage Vgl (16 ). Following the work
in (17 ), we fit G versus T for different gate
voltages (Fig. 3C) to the empirical function

G%T & ! G0! T K
'2

T 2 " T K
'2" s

(2)

with TK' ! TK/(21/s – 1)1/2, where the fit
parameter s ( 0.2 for a spin-1⁄2 system (17,
18). Figure 3B shows the obtained Kondo
temperatures TK versus Vgl. The red parabola

demonstrates that the obtained values for TK

are in excellent agreement with Eq. 1 (19).
The Kondo temperature, as derived above,

is obtained from the linear response conduc-
tance. In earlier works (8–12), estimates for TK

were obtained from measurements of dI/dVSD

versus VSD (I is the current between source and
drain). In that case, the full width at half max-
imum (FWHM) was set equal to kBTK/e. How-
ever, applying a finite VSD introduces dephas-
ing even at T ! 0 (6, 20). To compare these two
methods, we also plot FWHM/kB measured for
different gate voltages at the base temperature
(Fig. 3B). Also, now we find a parabolic de-
pendence, but the values are larger than TK

obtained from linear-response measurements.
The difference may indicate the amount of
dephasing due to a nonzero VSD.

The normalized conductance, G/(2e2/h), is

Fig. 1 (left). (A) Atomic force microscope image of the device. An AB ring is
defined in a 2DEG by dry etching of the dark regions (depth is ) 75 nm). The
2DEG with electron density nS! 2.6 * 1015 m+ 2 is situated 100 nm below
the surface of an AlGaAs/GaAs heterostructure. In both arms of the ring
(lithographic width, 0.5,m; inner perimeter, 6.6,m), a quantum dot can be
defined by applying negative voltages to gate electrodes. The gates at the
entry and exit of the ring are not used. A quantum dot of size ) 200 nm by
200 nm, containing ) 100 electrons, is formed in the lower arm using gate voltages Vgl and Vgr (the central plunger gate was not working). The average
energy spacing between single-particle states is ) 100 ,eV. The conductance of the upper arm, set by Vgu, is kept at zero, except for AB
measurements. (B) Color plot of the conductance G as function of Vgl and B for Vgr ! + 448 mV and T ! 15 mK. The upper arm of the AB ring
is pinched off by Vgu ! + 1.0 V. Red and blue correspond to high and low conductance, respectively. (C) Two selected traces G(Vgl) for B ! 0
and 0.4 T. The Coulomb oscillations at B ! 0 correspond to the oscillating color in (B). For some ranges of B, the valley conductance increases
considerably, reaching values close to 2e 2/h, i.e., the unitary limit [e.g., along the yellow dashed line at 0.4 T in (B)]. Fig. 2 (right). (A)
Coulomb oscillations in G versus Vgl at B ! 0.4 T for different temperatures. T ranges from 15 mK (thick black trace) up to 800 mK (thick red
trace). Vgr is fixed at + 448 mV. The red line in the right inset highlights the logarithmic T dependence between ) 90 and ) 500 mK for Vgl !
+ 413 mV. The left inset explains the variables used in the text with $ ! $L # $R. ε0 is negative and measured from the Fermi level in the leads
at equilibrium. (B) Differential conductance dI/dVSD versus dc bias voltage between source and drain contacts VSD for T ranging from 15 mK (thick
black trace) up to 900 mK (thick red trace), at Vgl ! + 413 mV and B ! 0.4 T. The inset shows that the width of the zero-bias peak, measured
from the FWHM, increases linearly with T. The red line indicates a slope of 1.7 kB/e. At 15 mK, the FWHM ! 64 ,V, and it starts to saturate
around 300 mK.
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Quantum dots Out of equilibrium  
DMFT solvers

Lattice models  
Real solid

Sr2RuO4 general

HALL

Dependence of the Hall coefficient in Sr2RuO4 
on temperature and impurity concentration.4

2x sign change

Sr

Ru
O

• 1 atom+ self-consistent bath

• Few exact solvers  
(inchworm Cf Cohen’s talk,  
our work)

  

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…
 Bath

Atom

• Equilibrium : cf talk by M. Ferrero

• Non equilibrium. Transport.

TODAY



 6Perturbation theory

Q(t) =
K

∑
n=0

Qn(t)Un

• Use perturbation theory (K=10-15), even deep in strong coupling regime  
(e.g. Kondo effect).

• Real time “diagrammatic” Quantum Monte Carlo (Cf talk of N. Prokof ’ev, M. Ferrero)

How to compute Qn(t) ?

How to sum the series ?
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• Schwinger-Keldysh formalism  
Qn is a n-dimensional integral

How to compute Qn(t) ?

Switch on  
interaction

t� t0�

t+ t0++ C

�
t

t0
tu1 u2 u3

α1 α2 α3 α

Vertices. Times ui.  
Keldysh indices α = -1,1

Profumo, Messio, OP,  Waintal  
PRB 91, 245154 (2015)

Qn(t) =
1
n! ∫

∞

t0

du1…dun ∑
αi=±1

∏
i

αi det(…)

≡ fn(t, u1, …, un)
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• Schwinger-Keldysh formalism  
Qn is a n-dimensional integral

How to compute Qn(t) ?

Switch on  
interaction

t� t0�

t+ t0++ C
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t

t0
tu1 u2 u3

α1 α2 α3 α

Vertices. Times ui.  
Keldysh indices α = -1,1

Profumo, Messio, OP,  Waintal  
PRB 91, 245154 (2015)

Qn(t) =
1
n! ∫

∞

t0

du1…dun ∑
αi=±1

∏
i

αi det(…)

(Quasi) Monte Carlo

≡ fn(t, u1, …, un)

Explicit sum

• Long time limit t➝∞ is easy.  fn is centered around t.  Massive cancellations in the sum.

• No “dynamical sign problem” contrary to previous real time QMC, e.g. P. Werner et al PRB 2009

• O(n3 2n) cost to compute fn(u). In practice, n = 10-15. 



 8How to sum the series ?

U0

U complex plane

0

Weak coupling Strong coupling

Q = ∑
n≥0

QnUn

Profumo et al.  PRB 91, 245154 (2015)  
Bertrand et al. Phys. Rev. X 9, 041008 (2019) 

A finite radius of convergence !  
Singularities poles, branch cuts
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U0

U complex plane

0

Weak coupling Strong coupling

Q = ∑
n≥0

QnUn

Profumo et al.  PRB 91, 245154 (2015)  
Bertrand et al. Phys. Rev. X 9, 041008 (2019) 

A finite radius of convergence !  
Singularities poles, branch cuts
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U0

U complex plane

0

Weak coupling Strong coupling

Q = ∑
n≥0

QnUn

Profumo et al.  PRB 91, 245154 (2015)  
Bertrand et al. Phys. Rev. X 9, 041008 (2019) 

A finite radius of convergence !  
Singularities poles, branch cuts

W0=W(U0)

0

W complex plane

W(U)

Riemann  
Schwartz-Christoffel



 8How to sum the series ?

U0

U complex plane

0

Weak coupling Strong coupling

Q = ∑
n≥0

QnUn

Converges at W0

Q = ∑
n≥0

QnUn = ∑
p≥0

Q̄pWp

• Change of variable W(U), with W(0) = 0

Profumo et al.  PRB 91, 245154 (2015)  
Bertrand et al. Phys. Rev. X 9, 041008 (2019) 

A finite radius of convergence !  
Singularities poles, branch cuts

W0=W(U0)

0

W complex plane

W(U)

Riemann  
Schwartz-Christoffel
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A few results 
on the quantum dot



•  Anderson model with two leads (L, R).

 10A simple model for the quantum dot

R

Charge transport through single molecules, quantum dots, and quantum wires 27

µ RLµ
ΓL

LU
µ RLµ ε

RU

ΓRS
z / z /JJ

(a) (b)

Figure 8. (color online) Two fundamental quantum dot models. (a) is the Kondo
model, a spin- 12 coupled via exchange couplings Jz,⊥ to two reservoirs. (b) is the IRLM,
a spinless 1-level quantum dot coupled via tunneling rates ΓL,R and Coulomb couplings
UL,R to two reservoirs. The electrochemical potentials are given by µL/R = ±V/2

for the couplings. Similar schemes can be developed for the calculation of the transport

current [5] and correlation functions [189]. All RG equations involve resolvents similar

to the one occurring in (16) where z is replaced by Λ together with other physical energy

scales. As a consequence, it can be shown that, besides temperature, each term of the

RG equation has a specific cutoff scale Λi, which is generically of the form

Λi = |E +
∑

j

njµαj − hi + iΓi| ≡ |δi + iΓi| . (17)

Here, E is the real part of the Laplace variable, nj are integer numbers, and µα denotes

the electrochemical potential of reservoir α. It shows that the cutoff scale is given by the

distance δi to resonances. Furthermore, it provides the generic proof that, at resonance
δi = 0, the cutoff scale is given by the corresponding rate Γi. This issue was under

debate for some time because it was speculated that electrons tunneling in and out via

the same reservoir correspond to low-energy processes, which could possibly lead to a

strong coupling fixed point even in the presence of a finite bias voltage [195]. However,

it was argued that voltage-induced decay rates prevent the system from approaching

the strong coupling regime [177, 196, 197]. The microscopic inclusion of decay rates as
cutoff scales into nonequilibrium RG methods was achieved within RTRG [185–187],

flow equation methods [180], and RTRG-FS [5].

5.2. Applications

The two models used to illustrate the basic physics of spin and charge fluctuations are
sketched in figure 8. One model is the Kondo model at finite magnetic field h already

discussed in section 4, where a spin-1/2 couples via anisotropic exchange couplings Jz/⊥

to the spins of two reservoirs. We have assumed a symmetric coupling to the leads and

note that during the exchange it is also allowed that a particle is transferred between the

reservoirs. The model results from the Coulomb blockade regime of a quantum dot with

one level, where charge fluctuations are frozen out and only the spin can fluctuate. This

leads to an effective band width of the reservoirs of the order of the charging energy U .
Anisotropic exchange couplings can be realized for a molecular magnet, see section 2.

The other model is the IRLM, where the quantum dot consists of a single spinless energy

level at position ϵ. The dot interacts with the reservoirs via tunneling processes, which

εd

Vb

L R

transmission probability of much less than one.
In addition, the on-site Coulomb energy U tends
to block the state with an extra electron on the
dot. Although U is an order of magnitude larger
than the characteristic energy scale kBTK (kB is
the Boltzmann constant), the Kondo effect com-
pletely determines electron tunneling at low en-
ergies (i.e., low T and VSD). In the absence of the
Kondo effect (e.g., for electron number N !
even), the system consists of two separated
Fermi seas. In contrast, for N ! odd, the screen-
ing of the local spin creates a single, extended
many-body system with a single, well-defined
Fermi surface extending throughout the whole
system. The quasiparticles at this Fermi surface
no longer experience the repulsive barrier po-
tentials nor the on-site Coulomb repulsion. Be-
cause the local spin for N ! odd is completely
screened and because the dot has zero spin for

N ! even, the whole system of leads and dot is
in a singlet state over a wide gate voltage range
(between –430 and –350 mV in Fig. 2A), al-
though the nature of the ground state in the even
and odd valleys is very different.

For a quantitative analysis, we rewrite Eq.
1 as ln(TK) ! "ε0(ε0 # U )/$U # constant,
indicating a quadratic dependence for ln(TK)
on gate voltage Vgl (16 ). Following the work
in (17 ), we fit G versus T for different gate
voltages (Fig. 3C) to the empirical function

G%T & ! G0! T K
'2

T 2 " T K
'2" s

(2)

with TK' ! TK/(21/s – 1)1/2, where the fit
parameter s ( 0.2 for a spin-1⁄2 system (17,
18). Figure 3B shows the obtained Kondo
temperatures TK versus Vgl. The red parabola

demonstrates that the obtained values for TK

are in excellent agreement with Eq. 1 (19).
The Kondo temperature, as derived above,

is obtained from the linear response conduc-
tance. In earlier works (8–12), estimates for TK

were obtained from measurements of dI/dVSD

versus VSD (I is the current between source and
drain). In that case, the full width at half max-
imum (FWHM) was set equal to kBTK/e. How-
ever, applying a finite VSD introduces dephas-
ing even at T ! 0 (6, 20). To compare these two
methods, we also plot FWHM/kB measured for
different gate voltages at the base temperature
(Fig. 3B). Also, now we find a parabolic de-
pendence, but the values are larger than TK

obtained from linear-response measurements.
The difference may indicate the amount of
dephasing due to a nonzero VSD.

The normalized conductance, G/(2e2/h), is

Fig. 1 (left). (A) Atomic force microscope image of the device. An AB ring is
defined in a 2DEG by dry etching of the dark regions (depth is ) 75 nm). The
2DEG with electron density nS! 2.6 * 1015 m+ 2 is situated 100 nm below
the surface of an AlGaAs/GaAs heterostructure. In both arms of the ring
(lithographic width, 0.5,m; inner perimeter, 6.6,m), a quantum dot can be
defined by applying negative voltages to gate electrodes. The gates at the
entry and exit of the ring are not used. A quantum dot of size ) 200 nm by
200 nm, containing ) 100 electrons, is formed in the lower arm using gate voltages Vgl and Vgr (the central plunger gate was not working). The average
energy spacing between single-particle states is ) 100 ,eV. The conductance of the upper arm, set by Vgu, is kept at zero, except for AB
measurements. (B) Color plot of the conductance G as function of Vgl and B for Vgr ! + 448 mV and T ! 15 mK. The upper arm of the AB ring
is pinched off by Vgu ! + 1.0 V. Red and blue correspond to high and low conductance, respectively. (C) Two selected traces G(Vgl) for B ! 0
and 0.4 T. The Coulomb oscillations at B ! 0 correspond to the oscillating color in (B). For some ranges of B, the valley conductance increases
considerably, reaching values close to 2e 2/h, i.e., the unitary limit [e.g., along the yellow dashed line at 0.4 T in (B)]. Fig. 2 (right). (A)
Coulomb oscillations in G versus Vgl at B ! 0.4 T for different temperatures. T ranges from 15 mK (thick black trace) up to 800 mK (thick red
trace). Vgr is fixed at + 448 mV. The red line in the right inset highlights the logarithmic T dependence between ) 90 and ) 500 mK for Vgl !
+ 413 mV. The left inset explains the variables used in the text with $ ! $L # $R. ε0 is negative and measured from the Fermi level in the leads
at equilibrium. (B) Differential conductance dI/dVSD versus dc bias voltage between source and drain contacts VSD for T ranging from 15 mK (thick
black trace) up to 900 mK (thick red trace), at Vgl ! + 413 mV and B ! 0.4 T. The inset shows that the width of the zero-bias peak, measured
from the FWHM, increases linearly with T. The red line indicates a slope of 1.7 kB/e. At 15 mK, the FWHM ! 64 ,V, and it starts to saturate
around 300 mK.
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Bath Dot Hybridization

H =
X

k�
↵=L,R

"k↵c
†
k↵ck�↵ +

X

�

"dd
†
�d� + Und"nd# +

X

k�
↵=L,R

gk�↵(c
†
k�↵d� + h.c.)

<latexit sha1_base64="FFNu//BZjFxVDZDX8xNC32U5aq0="></latexit>

• We want : current I(Vb), spectral function on the dot, Kondo effect, …



• Benchmark with NRG (numerical renormalisation group)
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Bertrand et al. 2019 
Phys. Rev. X 9, 041008 (2019) 
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 12Fermi liquid at low energy 

Self energy (Re)

Self energy (Im)

Bertrand et al. 2019 
Phys. Rev. X 9, 041008 (2019) • Equilibrium.  

Self-energy, away from particle-hole symmetry

ImΣ(ω) ∼ ω2

QMC

NRG



 13Out of equilibrium Bertrand et al. 2019 
Phys. Rev. X 9, 041008 (2019) 
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transmission probability of much less than one.
In addition, the on-site Coulomb energy U tends
to block the state with an extra electron on the
dot. Although U is an order of magnitude larger
than the characteristic energy scale kBTK (kB is
the Boltzmann constant), the Kondo effect com-
pletely determines electron tunneling at low en-
ergies (i.e., low T and VSD). In the absence of the
Kondo effect (e.g., for electron number N !
even), the system consists of two separated
Fermi seas. In contrast, for N ! odd, the screen-
ing of the local spin creates a single, extended
many-body system with a single, well-defined
Fermi surface extending throughout the whole
system. The quasiparticles at this Fermi surface
no longer experience the repulsive barrier po-
tentials nor the on-site Coulomb repulsion. Be-
cause the local spin for N ! odd is completely
screened and because the dot has zero spin for

N ! even, the whole system of leads and dot is
in a singlet state over a wide gate voltage range
(between –430 and –350 mV in Fig. 2A), al-
though the nature of the ground state in the even
and odd valleys is very different.

For a quantitative analysis, we rewrite Eq.
1 as ln(TK) ! "ε0(ε0 # U )/$U # constant,
indicating a quadratic dependence for ln(TK)
on gate voltage Vgl (16 ). Following the work
in (17 ), we fit G versus T for different gate
voltages (Fig. 3C) to the empirical function

G%T & ! G0! T K
'2

T 2 " T K
'2" s

(2)

with TK' ! TK/(21/s – 1)1/2, where the fit
parameter s ( 0.2 for a spin-1⁄2 system (17,
18). Figure 3B shows the obtained Kondo
temperatures TK versus Vgl. The red parabola

demonstrates that the obtained values for TK

are in excellent agreement with Eq. 1 (19).
The Kondo temperature, as derived above,

is obtained from the linear response conduc-
tance. In earlier works (8–12), estimates for TK

were obtained from measurements of dI/dVSD

versus VSD (I is the current between source and
drain). In that case, the full width at half max-
imum (FWHM) was set equal to kBTK/e. How-
ever, applying a finite VSD introduces dephas-
ing even at T ! 0 (6, 20). To compare these two
methods, we also plot FWHM/kB measured for
different gate voltages at the base temperature
(Fig. 3B). Also, now we find a parabolic de-
pendence, but the values are larger than TK

obtained from linear-response measurements.
The difference may indicate the amount of
dephasing due to a nonzero VSD.

The normalized conductance, G/(2e2/h), is

Fig. 1 (left). (A) Atomic force microscope image of the device. An AB ring is
defined in a 2DEG by dry etching of the dark regions (depth is ) 75 nm). The
2DEG with electron density nS! 2.6 * 1015 m+ 2 is situated 100 nm below
the surface of an AlGaAs/GaAs heterostructure. In both arms of the ring
(lithographic width, 0.5,m; inner perimeter, 6.6,m), a quantum dot can be
defined by applying negative voltages to gate electrodes. The gates at the
entry and exit of the ring are not used. A quantum dot of size ) 200 nm by
200 nm, containing ) 100 electrons, is formed in the lower arm using gate voltages Vgl and Vgr (the central plunger gate was not working). The average
energy spacing between single-particle states is ) 100 ,eV. The conductance of the upper arm, set by Vgu, is kept at zero, except for AB
measurements. (B) Color plot of the conductance G as function of Vgl and B for Vgr ! + 448 mV and T ! 15 mK. The upper arm of the AB ring
is pinched off by Vgu ! + 1.0 V. Red and blue correspond to high and low conductance, respectively. (C) Two selected traces G(Vgl) for B ! 0
and 0.4 T. The Coulomb oscillations at B ! 0 correspond to the oscillating color in (B). For some ranges of B, the valley conductance increases
considerably, reaching values close to 2e 2/h, i.e., the unitary limit [e.g., along the yellow dashed line at 0.4 T in (B)]. Fig. 2 (right). (A)
Coulomb oscillations in G versus Vgl at B ! 0.4 T for different temperatures. T ranges from 15 mK (thick black trace) up to 800 mK (thick red
trace). Vgr is fixed at + 448 mV. The red line in the right inset highlights the logarithmic T dependence between ) 90 and ) 500 mK for Vgl !
+ 413 mV. The left inset explains the variables used in the text with $ ! $L # $R. ε0 is negative and measured from the Fermi level in the leads
at equilibrium. (B) Differential conductance dI/dVSD versus dc bias voltage between source and drain contacts VSD for T ranging from 15 mK (thick
black trace) up to 900 mK (thick red trace), at Vgl ! + 413 mV and B ! 0.4 T. The inset shows that the width of the zero-bias peak, measured
from the FWHM, increases linearly with T. The red line indicates a slope of 1.7 kB/e. At 15 mK, the FWHM ! 64 ,V, and it starts to saturate
around 300 mK.
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Vb increases

• Destruction of the Kondo resonance by voltage bias
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 14I-Vb Characteristics

• Particle hole asymmetric case
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Bertrand et al. 2019 
Phys. Rev. X 9, 041008 (2019) 

transmission probability of much less than one.
In addition, the on-site Coulomb energy U tends
to block the state with an extra electron on the
dot. Although U is an order of magnitude larger
than the characteristic energy scale kBTK (kB is
the Boltzmann constant), the Kondo effect com-
pletely determines electron tunneling at low en-
ergies (i.e., low T and VSD). In the absence of the
Kondo effect (e.g., for electron number N !
even), the system consists of two separated
Fermi seas. In contrast, for N ! odd, the screen-
ing of the local spin creates a single, extended
many-body system with a single, well-defined
Fermi surface extending throughout the whole
system. The quasiparticles at this Fermi surface
no longer experience the repulsive barrier po-
tentials nor the on-site Coulomb repulsion. Be-
cause the local spin for N ! odd is completely
screened and because the dot has zero spin for

N ! even, the whole system of leads and dot is
in a singlet state over a wide gate voltage range
(between –430 and –350 mV in Fig. 2A), al-
though the nature of the ground state in the even
and odd valleys is very different.

For a quantitative analysis, we rewrite Eq.
1 as ln(TK) ! "ε0(ε0 # U )/$U # constant,
indicating a quadratic dependence for ln(TK)
on gate voltage Vgl (16 ). Following the work
in (17 ), we fit G versus T for different gate
voltages (Fig. 3C) to the empirical function

G%T & ! G0! T K
'2

T 2 " T K
'2" s

(2)

with TK' ! TK/(21/s – 1)1/2, where the fit
parameter s ( 0.2 for a spin-1⁄2 system (17,
18). Figure 3B shows the obtained Kondo
temperatures TK versus Vgl. The red parabola

demonstrates that the obtained values for TK

are in excellent agreement with Eq. 1 (19).
The Kondo temperature, as derived above,

is obtained from the linear response conduc-
tance. In earlier works (8–12), estimates for TK

were obtained from measurements of dI/dVSD

versus VSD (I is the current between source and
drain). In that case, the full width at half max-
imum (FWHM) was set equal to kBTK/e. How-
ever, applying a finite VSD introduces dephas-
ing even at T ! 0 (6, 20). To compare these two
methods, we also plot FWHM/kB measured for
different gate voltages at the base temperature
(Fig. 3B). Also, now we find a parabolic de-
pendence, but the values are larger than TK

obtained from linear-response measurements.
The difference may indicate the amount of
dephasing due to a nonzero VSD.

The normalized conductance, G/(2e2/h), is

Fig. 1 (left). (A) Atomic force microscope image of the device. An AB ring is
defined in a 2DEG by dry etching of the dark regions (depth is ) 75 nm). The
2DEG with electron density nS! 2.6 * 1015 m+ 2 is situated 100 nm below
the surface of an AlGaAs/GaAs heterostructure. In both arms of the ring
(lithographic width, 0.5,m; inner perimeter, 6.6,m), a quantum dot can be
defined by applying negative voltages to gate electrodes. The gates at the
entry and exit of the ring are not used. A quantum dot of size ) 200 nm by
200 nm, containing ) 100 electrons, is formed in the lower arm using gate voltages Vgl and Vgr (the central plunger gate was not working). The average
energy spacing between single-particle states is ) 100 ,eV. The conductance of the upper arm, set by Vgu, is kept at zero, except for AB
measurements. (B) Color plot of the conductance G as function of Vgl and B for Vgr ! + 448 mV and T ! 15 mK. The upper arm of the AB ring
is pinched off by Vgu ! + 1.0 V. Red and blue correspond to high and low conductance, respectively. (C) Two selected traces G(Vgl) for B ! 0
and 0.4 T. The Coulomb oscillations at B ! 0 correspond to the oscillating color in (B). For some ranges of B, the valley conductance increases
considerably, reaching values close to 2e 2/h, i.e., the unitary limit [e.g., along the yellow dashed line at 0.4 T in (B)]. Fig. 2 (right). (A)
Coulomb oscillations in G versus Vgl at B ! 0.4 T for different temperatures. T ranges from 15 mK (thick black trace) up to 800 mK (thick red
trace). Vgr is fixed at + 448 mV. The red line in the right inset highlights the logarithmic T dependence between ) 90 and ) 500 mK for Vgl !
+ 413 mV. The left inset explains the variables used in the text with $ ! $L # $R. ε0 is negative and measured from the Fermi level in the leads
at equilibrium. (B) Differential conductance dI/dVSD versus dc bias voltage between source and drain contacts VSD for T ranging from 15 mK (thick
black trace) up to 900 mK (thick red trace), at Vgl ! + 413 mV and B ! 0.4 T. The inset shows that the width of the zero-bias peak, measured
from the FWHM, increases linearly with T. The red line indicates a slope of 1.7 kB/e. At 15 mK, the FWHM ! 64 ,V, and it starts to saturate
around 300 mK.
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• Not a Fermi function 

• At U = 0 double step, due to the 2 Fermi leads.

• Finite U,  T=0

• Experiments ?

 15Out of equilibrium distribution function of the dot
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Quantum Quasi-Monte Carlo



 17

Qn(t) =
1
n! ∫

∞

t0

du1…dun fn(t, u1, …, un)

 Qn(t)  : a n-dimensional integral

• How to integrate in large dimensions ?

• Using a minimal number of evaluations of fn which costs O(2n)



 18Integration in large dimensions

Monte Carlo

Dimension  
 of the integral

n1 4,5

1

N

Quadratures

N  = Number of computed points  of the integrand 

e−aNError  
scaling



 19Integration in large dimensions

Monte Carlo

1 4, 5

1

N

Quadratures

e−aN

200-300

Quasi-Monte Carlo

1
N

J. Dick, F.Y. Kuo, I.H. Sloan
“High-dimensional integration:  
The Quasi-Monte Carlo way,”  

Acta Numerica 22, 133 (2013).

Error  
scaling

N  = Number of computed points  of the integrand 

Dimension  
 of the integral

n



• Evaluate the function on some special points.  
Low discrepancy sequences, e.g.  Sobol’.  

• Theorems 
  If the function f is “smooth enough”  
  (i.e. proper functional space), then 

 20Quasi-Monte Carlo
J. Dick, F.Y. Kuo, I.H. Sloan

“High-dimensional integration:  
The Quasi-Monte Carlo way,”  

Acta Numerica 22, 133 (2013).

∫ dnx f(x) −
1
N

N

∑
n=1

f(x̄i) ≤ C( f )
log(N)n

N

Sobol’ sequence Mathematical bound  
 In practice O(1/N)

Quasi-Monte Carlo IS NOT Monte Carlo.  
No random numbers. 

Quasi-Random (Sobol’) Pseudo-Random (MT)Sobol’
Pseudo Random  
Mersenne twister
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Is our function smooth enough ?

No, but …



• u(x) constructed from a model function pn(u)  such that

 22Warp the integral

• Change of variable u(x) in n dimensions.

• Goal : make the function flat/smooth

����
@u

@x

���� =
C

pn(u)
<latexit sha1_base64="yU2dMeNKGw715ZDOae0fxEIxG/4="></latexit>

• Then use quasi-Monte Carlo in new variable x.

Sobol’ sequence
Qn ⇡ Qn(N) =

C
N

NX

i=0

fn [u(x̄i)]

pn [u(x̄i)]
<latexit sha1_base64="UnUp36MSph+Vb4+4syMGuzQP3z0="></latexit>

Qn =

Z

[0,1]n
dnx fn [u(x)]

����
@u

@x

����
<latexit sha1_base64="OnrBzGsH9/NSxKjFn91sSxGXFcE="></latexit>

Qn =

Z
dnu fn(u1, . . . , un)

<latexit sha1_base64="WO9eI7+T3Erf+YJMvQ/hoqcw2oc="></latexit>



 23Model function

• In general, a large class of possible functions, e.g.  functional tensor trains / MPS

• Here, even the simplest case, without any optimization, already gives excellent results.

pn(u) = h(1)
a (t� u1)h

(2)
ab (u1 � u2) · · ·h(n�1)

cd (un�2 � un�1)h
(n)
d (un�1 � un),

<latexit sha1_base64="CbJC5gk8QhGE56yHleLcnzjmxts=">AAAC83icbVHLjtMwFHXCawgDdIBhw8ZiBGqlaZUUxGOBNIINy0Gi05GaEjmO21rjR+RHUWVZ4idYsUNs+SB+gO/ASQY0D65k+ficc+3re8uaUW3S9FcUX7l67fqNrZvJre3bd+72du4daWkVJhMsmVTHJdKEUUEmhhpGjmtFEC8ZmZYn7xp9uiZKUyk+mk1N5hwtBV1QjEygit6XuhD9fE2ws34A38DVJ9fPBr5wyPfN0BbZoKXGLVX6fmDgENpiPIA5rqTRrSyGbQ6uGoMTw7FvTQFlHnY3iMbwV886XQz2k6K3l47SNuBlkJ2CvYOnD6b+63T3sNiJZnklseVEGMyQ1rMsrc3cIWUoZsQnudWkRvgELcksQIE40XPXtsrDJ4Gp4EKqsISBLXs2wyGu9YaXwcmRWemLWkP+T5tZs3g1d1TU1hCBu4cWlkEjYdN3WFFFsGGbABBWNNQK8QophE2YTpLkigjyGUvOkahcMxDv8lKyqilGsvCrs7KtgtrUoHjo6QVxjRTx3VZryqTwyXlDvarQ0rsGIGEkd3k4L4ny4aZ2HK+bePGv+ZfB0XiUPRs9/xDm8hZ0sQUegcegDzLwEhyA9+AQTAAGv6PtaDd6GNv4W/w9/tFZ4+g05z44F/HPPxbO7zs=</latexit>

h(i)(u) = e−u/τpn(u) =
nY

i=1

h(i)
�
ui�1 � ui

�

<latexit sha1_base64="BkBX97ArtdVeLmz/tzextt9ERlA="></latexit>

• Model function : approximation of the integrand in n dimensions.  
Optimized for quicker convergence. 

• Machine learning problem.
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Qn(N)/QBethe
n

QQMC, n = 8 DiagQMC, n = 8

• Compute the integral of the quantum problem with Quasi-Monte Carlo

 24Quantum Quasi-Monte Carlo (QQMC)
ArXiv:2002.12372

Dot occupation, equilibrium  
normalized by Bethe Ansatz solution  

vs number of sampling points
Q = ∑

n≥0

QnUn

Real time  
Diagrammatic QMCQuantum Quasi-Monte Carlo  

(QQMC)

Log scale !
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 25Error scaling with N

• Same curve in log-log 

����
Q8(N)

QBethe
8

� 1

����
<latexit sha1_base64="+yNUXDX/vos2dzSTCKn0S9h8Ptg="></latexit> 1

N

1
N

1
Nδ

δ ≈ 0.9
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Real time Diagrammatic QMC
Sobol’ only
QQMC : Warp + Sobol’
Warp + Pseudo-Random

Real time Diagrammatic QMC
Sobol’ only
QQMC : Warp + Sobol’
Warp + Pseudo-Random

 26Warping the integral is crucial

����
Q8(N)

QBethe
8

� 1

����
<latexit sha1_base64="+yNUXDX/vos2dzSTCKn0S9h8Ptg="></latexit> 1

N

1
N

1
Nδ

δ ≈ 0.9

Sobol’ only : no warp

Warp + Monte-Carlo

• Model function + quasi-MC = best method



 27Large orders 

101 102 103 104 105 106 107

N

100

10�2

10�4

10�6

��Qn(N)/QBethe
n � 1

��

n = 4
n = 8
n = 12

n = 4
n = 8
n = 12

• Error vs analytical Bethe Ansatz result, vs the number of sampling points N 

Q12 =
13749310575

⇡12
� 2505809831525

1458⇡10
+

90628717412233

2531250⇡8

� 84543422632097

283618125⇡6
+

131145705977

100018800⇡4
� 83711

27720⇡2

⇡ 0.00048443(7)
<latexit sha1_base64="79nSzaP8ncOweEDoqX92UZwr6Mw="></latexit>

• Precision with N = 107 points

1

N

1
N



• Many calculations (“parametric runs”), for various U and εd.  
About 25 cpu hours/point for order 10.
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Figure 1 |Anomalous temperature dependence of the current noise at the onset of the Kondo effect. a, Colour-scale plot of the differential conductance
as a function of the gate voltage VG and the source–drain bias Vsd at temperature T = 1.4 K. The characteristic horizontal lines in the middle of the Coulomb
diamonds signalling the Kondo effect are observed. Orange lines, the linear conductance curves at T = 1.4 K (solid line) and T = 12 K (dashed line).
b, Simplified diagram of the noise-measurement scheme and scanning electron microscope picture of a typical sample. The bar corresponds to 1 µm.
c, Left, the non-monotonic temperature dependence of the equilibrium current fluctuations on the Kondo ridge SAR1 (VG = 11.26 V (black squares)). Blue
circles, the corresponding variation of G(T,Vsd = 0). Solid black line, the dependence of SI predicted from the Johnson–Nyquist formula. Right, SI versus
4kBTG(T,Vsd = 0). The line corresponds to the expected slope of unity. The error bars correspond to the mean square root of the statistical error and the
systematic error due to fluctuations of the background.

the current flowing through the nanotube atVsd =0.84mV, is about
0.84±0.09(0.89±0.1) for SAR1 (SAR2) respectively. Therefore, the
noise remains sub-Poissonian.

In general, the noise properties of carbon nanotubes are
affected by the existence of a possible orbital degeneracy, which
arises from the band structure of graphene, as recently shown
in the non-interacting limit16. Therefore, a first step towards the
understanding of the measurements presented in Fig. 2 is to use a
resonant tunnellingmodel with two spin-degenerate channels, with
transmissioneDi,res(✏)=di/(1+✏2/� 2), di being the transmission of
the channel of index i 2 {1,2}, � being the width of the resonant
level and ✏ being the energy. From the non-interacting scattering
theory11, the current and the noise associatedwitheDi,res read

I (Vsd)=
2e
h

X

i=1,2

Z 1

�1
eDi,res(✏)(fL � fR) d✏ (1)

SI (Vsd) = 4e2

h

X

i=1,2

Z
d✏

�eDi,res(✏)[fL(1� fL)+ fR(1� fR)]

+ eDi,res(✏)[1�eDi,res(✏)](fL � fR)2
 

(2)

with fL = f (eVsd/2 + ✏) and fR = f (�eVsd/2 + ✏), f (✏) being
the Fermi function at temperature T . The fits of dI/dV using

equation (1) andeDi,res, shown in blue dashed lines in Fig. 2a,b, yield
d1 = d2 = 0.95 (d1 = d2 = 0.99) and � = 0.11meV (� = 0.09meV)
respectively. These fits are poor because the Lorentzian line shape
with constant � assumed for eDi,res is not able to account for both
the height and the width of the measured dependence of dI/dV
as a function of Vsd. Furthermore, the noise variation obtained
with formula (2) using the above values for d1, d2 and � , in blue
dashed lines in the lower panels of Fig. 2a,b, is about an order of
magnitude smaller than our experimental findings. Therefore, a
simple non-interacting resonant-tunnelling theory cannot account
either for the conductance or for the noise that we observe.

In the Kondo regime, in the case of a fourfold degeneracy and
single charge occupancy, themaximumof the Kondo resonance lies
at TK above the Fermi energy of the leads according to the Friedel
sum rule, as depicted in Fig. 3b. From this, we can infer that, if
the couplings of the level to the left �L and the right �R electrodes
are the same (hereafter called the symmetric case), the differential
conductance which saturates at 2e2/h corresponds to two channels
of transmission 1/2 ((1/2)(4�L�R/(�L +�R)2) in the general case).
This corresponds to the so-called SU(4) Kondo effect, where the
spin and the orbital degree of freedom play equivalent roles17,18 in
the Kondo screening.

Unfortunately, no full out-of-equilibrium theory of the Kondo
effect is available. As shown below, our experiments are carried
out in a regime where T ⇠ TK/3 and eVsd . 3kBTK. Therefore, we

NATURE PHYSICS | VOL 5 | MARCH 2009 | www.nature.com/naturephysics 209

T. Delattre et al.  
 Nat. Phys. 208 (2009)

Experiment
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Conclusion

• Solution of the out of equilibrium quantum dot.

• Perturbation theory even at strong coupling (with resummation)

• Quantum Quasi-Monte Carlo 

• Roadmap : DMFT solvers, lattice problems …

 29
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Thank you for your attention!



• Illustration in d = 2

 31Sobol’ points

Quasi-Random (Sobol’): N = 100 Quasi-Random (Sobol’): N = 500 Quasi-Random (Sobol’): N = 1000 Quasi-Random (Sobol’): N = 5000 Quasi-Random (Sobol’): N = 10000

N = 100 N = 500 N = 1000 N = 5000 N = 10000



• Optimization of model function from the data

• Proof of concepts : gain speed factor x2, using a projection technique

 32Learning the model function
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