Quantum Matter: Computation Meets Experiments 8-14 March, 2020 Aspen Center for Physics

Computational Material Designs

Material design methodology & examples:
I. Tl & In compounds
II. 112-family Fe-based superconductor

Department of Physics and Astronomy, Rutgers University Chang-Jong Kang

Rutgers University | Dept. of Physics & Astronomy

Chang-Jong Kang

Conventional Approach in Correlated Material Designs

Experiments lead Material Designs.

Materials discovery has historically proceeded via trial and error, or by accident. (ex) Hg SC, heavy fermions, cuprates, Fe-based SC

New Paradigm in Material Designs

New Paradigm in Material Designs

Examples: Theory-guided material search

Many accomplishments in theory-guided material search

R. Gautier et al., Nat. Chem. 7, 308 (2015)

FeO₂ (high pressure phase)

Q. Hu et al., Nature 534, 241 (2016)

Na₂He – X. Dong *et al.*, Nat. Chem. **9**, 440 (2017) Ca₂C – Y.-L. Li *et al.*, Nat. Commun. **6**, 6974 (2015)

Current Situation in Material Designs

There has been increasing interest in material designs.

S. Kirklin *et al.*, npj Comput. Mater. **1**, 15010 (2015)

Current Challenges in Material Designs

1. Computational error in DFT total energy calculations.

→ Empirical corrections are needed.

Material Designs – Computational Error

ΔH: comparison between DFT-GGA and experiment

DFT-GGA formation energies are overestimated. → Need corrections !!!

G. Hautier *et al.*, PRB **85**, 155208 (2012); S. Kirklin *et al.*, npj Comput Mater. **1**, 15010 (2015)
R. Adler, C.-J. Kang, C.-H. Yee, and G. Kotliar, Reports on Progress in Physics **82**, 012504 (2019)

Material Designs – Computational Error

Does inclusion of U (GGA + U) improve the DFT error ?

V. Stevanović *et al.*, PRB **85**, 115104 (2012); G. Hautier *et al.*, PRB **85**, 155208 (2012)
R. Adler, C.-J. Kang, C.-H. Yee, and G. Kotliar, Reports on Progress in Physics **82**, 012504 (2019)

V. Stevanović et al., PRB 85, 115104 (2012)

2. MP (Materials Project)

A. Jain et al., APL Materials 1, 011002 (2013)

3. OQMD (Open Quantum Materials Database)

S. Kirklin et al., npj Comput Mater. 1, 15010 (2015)

1. FERE	$\Delta \mathrm{H}^{\mathrm{exp}}(\mathrm{A}_m\mathrm{B}_n)$
All elements	$= \mathrm{E}^{\mathrm{GGA+U}}(\mathrm{A}_{m}\mathrm{B}_{n}) - m \ \mathbf{E}^{\mathrm{Fitted}}(\mathbf{A}) - n \ \mathbf{E}^{\mathrm{Fitted}}(\mathbf{B})$
2. MP / OQMD	$\Delta \mathrm{H}^{\mathrm{exp}}(\mathrm{A}_m\mathrm{B}_n)$
A = Selected TM $B = O or F$	$= \mathrm{E}^{\mathrm{GGA+U}}(\mathrm{A}_{m}\mathrm{B}_{n}) - m \mathrm{E}^{\mathrm{GGA}}(\mathrm{A}) - n \mathrm{E}^{\mathrm{GGA}}(\mathrm{B})$ $-\sum m \Delta E$
	ΔE: GGA versus GGA + U compatibility correction

Without corrections

With MP corrections

-200

-3

-2

 $\Delta H_{\rm MP}$ [eV/atom]

 $^{-1}$

0

1

0

200

400

R. Adler, C.-J. Kang, C.-H. Yee, and G. Kotliar, Reports on Progress in Physics 82, 012504 (2019)

FERE

Materials Project

R. Adler, C.-J. Kang, C.-H. Yee, and G. Kotliar, Reports on Progress in Physics 82, 012504 (2019)

Material Designs – Existence Probability

Chemical reaction for a new compound

$$A + B \leftrightarrow AB$$

Theory ΔH_{exact} "exact" formation energy ΔH_{calc} DFT formation energy with empirical correctionsExperiment ΔH_{exp} (unknown) experimental formation energy

 $\Delta H_{\text{exact}} < 0$ guarantees that $\Delta H_{\text{exp}} < 0$ \therefore The material will be synthesized in experiment.

However, we do not have the exact method.

 $\Delta H_{calc} < 0$ does not guarantee that $\Delta H_{exp} < 0$ due to DFT errors Q) What is probability of $\Delta H_{exp} < 0$ given that $\Delta H_{calc} = x$?

Material Designs – Existence Probability

Probability density function

1. Merge all databases and obtain PDF

$$P(\Delta H_{\text{calc}} - \Delta H_{\text{exp}} = d) = F_{\alpha\beta\mu}(d)$$

2. Estimate probability that $\Delta H_{exp} < 0$

$$P(x) = P(\Delta H_{exp} < 0 | \Delta H_{calc} = x)$$
$$= \int_{-\infty}^{0} P(\Delta H_{exp} = y | \Delta H_{calc} = x) dy$$
$$= \int_{-\infty}^{0} F_{\alpha\beta\mu} (x - y) dy$$

3. Test with experiments

Adler, **Kang**, Yee, and Kotliar, Reports on Progress in Physics **82**, 012504 (2019)

Material Designs – Existence Probability

Existence probability

P(x): probability for a compound to exist

"Good indicator for Material Designs"

R. Adler, C.-J. Kang, C.-H. Yee, and G. Kotliar, Reports on Progress in Physics 82, 012504 (2019)

Current Challenges in Material Designs

2. Currently, DFT formation energies (with empirical

corrections) are only available in material databases.

(DFT database) Materials Project, AFLOW, OQMD, ...

→ DFT+Gutzwiller / DFT+DMFT database is necessary for

strongly correlated material designs.

Why Many-body Database is Necessary

BaCoSO was synthesized experimentally in Oxford chemistry group.

(Ref.) Edward J. T. Salter et al., Inorg. Chem. 55, 1697 (2016)

R. Adler, C.-J. Kang, C.-H. Yee, and G. Kotliar, Reports on Progress in Physics 82, 012504 (2019)

Why Many-body Database is Necessary

Material	Determinant reaction	$\Delta H_{ m Materials proj.}$ (eV/atom)	$\mathcal{P}(x)$	$\Delta H_{\text{Gutzwiller}}$ (eV/atom)
La ₂ CuS ₂ O ₂	$La_2SO_2 + CuS \rightarrow La_2CuS_2O_2$	0.232	0.06	0.214
La ₂ CuSO ₃	$3 \text{ La}_2 \text{SO}_2 + 4 \text{ Cu} + \text{La}_2 \text{SO}_6 \rightarrow 4 \text{ La}_2 \text{CuSO}_3$	0.324	0.02	0.286
Hg(CaS) ₂ CuO ₂	$HgO + 2 CaS + CuO \rightarrow Hg(CaS)_2CuO_2$	0.170	0.09	-0.151
CsTlCl ₃	$TlCl + Cs_2TlCl_5 \rightarrow 2 CsTlCl_3$	0.003	0.41	_
CaFeAs ₂	$CaAs + FeAs \rightarrow CaFeAs_2$	0.013	0.37	0.007
BaCoSO	$4 \text{ Co} + 3 \text{ BaS} + \text{BaSO}_4 \rightarrow 4 \text{ BaCoSO}$	0.102	0.17	-0.209

DFT+Gutzwiller / DFT+DMFT database would provide better statistics and more reliable computational results

in strongly correlated electron systems.

H. He, C.-H. Yee et al., PNAS 115, 7890 (2018)

C.-H. Yee, T. Birol, and G. Kotliar, EPL 111, 17002 (2015)

R. Adler, C.-J. Kang, C.-H. Yee, and G. Kotliar, Reports on Progress in Physics 82, 012504 (2019)

Material Designs with Advanced Methods

DFT+Gutzwiller / DFT+DMFT database would provide

better statistics and more reliable computational results.

Example of Materials Design I. Tl & In compounds (Impact of static correlation)

Rutgers University | Dept. of Physics & Astronomy

Chang-Jong Kang

New Type of Superconductor, Ba_{1-x}K_xBiO₃

$$Ba_{1-x}K_xBiO_3$$
 (cubic perovskite)
 $T_C \sim 30 \text{ K}$

R. J. Cava et al., Nature 332, 814 (1988)

(LDA)
$$\lambda_{el-ph} = 0.33 \rightarrow T_C \sim 1 \text{ K}$$

Meregalli and Savrasov, PRB 57, 14453 (1998)

(HSE06 / GW) $\lambda_{el-ph} \sim 1 \rightarrow T_C \sim 30 \text{ K}$

Yin, Kutepov, and Kotliar, PRX **3**, 021011 (2013) Z. Li *et al.*, PRL **122**, 186402 (2019)

Static correlation enhances λ_{el-ph} !

ARPES $(Ba_{0.51}K_{0.49}BiO_3)$

C. H. P. Wen et al., PRL 121, 117002 (2018)

New Type of Superconductor, $CsTlX_3$ (X = F, Cl)

Theory

CsTlF₃, CsTlCl₃

Not reported in ICSD

0.35 hole-doped compounds

CsTlF ₃	λ_{el-ph}	T _C
LDA	0.55	5.2
HSE06	1.51	30

CsTlCl ₃	λ_{el-ph}	T _C
LDA	0.91	9.0
HSE06	2.32	21

Yin and Kotliar, EPL 101, 27002 (2013)

CsTlF₃, CsTlCl₃

CsTlF₃: Fm-3m (cubic)

Experiment

CsTlCl₃: two polymorphs,

I4/m (tetra) and Fm-3m

Band gap is reduced upon pressure.

Attempts to dope were unsuccessful.

M. Retuerto et al., Chem. Mater. 25, 4071 (2013)

Material Design of Indium Compounds

Indium compounds do not have the toxicity problems associated with Thallium and are expected to be synthesized more easily.

- 1. Predict new materials with high confidence
- 2. Predict crystal structures with less confidence

C.-J. Kang and G. Kotliar, PRM 3, 015001 (2019)

Material Design of Indium Compounds

Superconductivity of Indium Compounds

0.5 hole-doped CsInF₃ (cubic perovskite)

Existence probability: 0.78

How to prepare the hope-doped $CsInF_3$ 1. O substitution for F: $CsIn(F_{1-x}O_x)_3$ 2. Cs vacancy: $Cs_{1-\delta}InF_3$

	GGA	HSE06
REPME (eV/Å)	5.00	6.95
λ	1.80	3.48
ω_{\log} (K)	157	124
T_c (K)	21 (18)	24 (22)

Hope-doped CsInF₃ under pressure shows superconductivity with $T_C \sim 24$ K.

C.-J. Kang and G. Kotliar, PRM 3, 015001 (2019)

Example of Material Design II. 112-family Fe-based superconductor (Impact of dynamic correlation)

Rutgers University | Dept. of Physics & Astronomy

Chang-Jong Kang

1st & 2nd Steps: Qualitative Idea & Electronic Structure Calculations

1111 **FeAs layer** Insulating **spacer layers** LaFeAsO

The simple substitution of As for O leads to

a 112-family Fe-based superconductor.

Hypothetical BaFe Pn_2 (Pn = As, Sb)

Tetragonal structure (space group: P4/nmm, No. 129)

J. H, Shim, K. Haule, and G. Kotliar, PRB 79, 060501 (R) (2009)

3rd Step: Crystal Structure Prediction

4th Step: Global Stability of CaFeAs₂

Determinant reaction

 $CaAs + FeAs \rightarrow CaFeAs_2$

DFT w/ empirical corrections

 $\Delta H_{DFT-MP} = +13 \text{ meV/atom}$

Existence probability: 0.39

DFT + Gutzwiller

 $\Delta H_{Gutz} = +7 \text{ meV/atom}$

4th Step: Global Stability of CaFeAs₂

Determinant reaction

 $CaAs + FeAs \rightarrow CaFeAs_{2}$

DFT w/ empirical corrections

 $\Delta H_{DFT-MP} = +13 \text{ meV/atom}$

Existence probability: 0.39

DFT + Gutzwiller

$$\Delta H_{Gutz} = +7 \text{ meV/atom}$$

Superconducting mechanism in Fe112 family

As spacer layer: metallic Dirac cone

S. Jiang et al., PRB 93, 054522 (2016)

C.-J. Kang, T. Birol, and G. Kotliar, PRB **95**, 014511 (2017)

Superconducting mechanism in Fe112 family

As spacer layer: metallic Dirac cone

S. Jiang et al., PRB 93, 054522 (2016)

C.-J. Kang, T. Birol, and G. Kotliar, PRB **95**, 014511 (2017)

Superconducting T_c vs. Anion height

It supports the spin fluctuation mediated superconductivity.

Acknowledgement

• Theory		• Experiment
Gabriel Kotliar	(Rutgers)	- Material synthesis
Ran Adler	(Rutgers)	Martha Greenblatt (Rutgers)
Turan Birol	(U. Minnesota)	Xiaoyan Tan (George Mason)
Chuck-Hou Yee	(Rutgers / Bloomberg)	

Thank you for your attention!

Rutgers University | Dept. of Physics & Astronomy

Chang-Jong Kang

Supplementary

Global Stability of La₂CuO₄

ΔE	ΔV	Synthesis pathwa	у
232	-1.92	$La_2SO_2 + CuS$	$\rightarrow La_2 Cu S_2 O_2$
362	-1.45	$Y_2SO_2 + CuS$	$\rightarrow Y_2 Cu S_2 O_2$
415	-1.36	$Lu_2SO_2 + CuS$	$\rightarrow Lu_2 Cu S_2 O_2$
542	-1.04	$Sc_2SO_2 + CuS$	$\rightarrow Sc_2CuS_2O_2$
304	-2.00	$La_2O_3 + CuS$	$\rightarrow La_2CuSO_3$
780	-1.11	$Sc_2O_3 + CuS$	$\rightarrow Sc_2CuSO_3$
217	-1.28	$La_2SO_2 + CuO$	$\rightarrow La_2CuSO_3$
519	-0.54	$Sc_2SO_2 + CuO$	\rightarrow Sc ₂ CuSO ₃
65	-2.71	$LaCuO_2 + 2 La_2O_3 + La(CuO_2)_2$	$\rightarrow 3 \; La_2 CuO_4$

La₂CuO₄: ΔH_{DFT-MP} = +65 meV/atom (Existence probability = 0.26)

R. Adler, C.-J. Kang, C.-H. Yee, and G. Kotliar, Reports on Progress in Physics 82, 012504 (2019)

1. Gas Correction

2. Anion Correction

3. Coulomb-U Correction

TABLE I. U values used in this work for all oxide systems. Multiple values for Wang *et al.* indicate fits to different reactions; for details see Ref. 15. We also present in the last column the energy adjustments that are used to adjust GGA + U energies (derived in Sec. III B).

Element	U value used in this work (oxides, eV)	<i>U</i> values fit by Wang <i>et al.</i> ¹⁵	Average $\Delta E_{\rm M} ({\rm eV})$
v	3.1	3.0, 3.1, 3.3	1.764
Cr	3.5	3.5	2.067
Mn	3.9	3.5, 3.8, 4.0	1.687
Fe	4.0	3.9, 4.1	1.723
Co	3.4	3.3	1.751
Ni	6.0	6.4	2.164
Cu	4.0	4.0	1.156
Mo	3.5	N/A	2.668

$$\Delta H^{\rm Expt} = \Delta H^{\rm GGA+U} - \sum_{M} n_{M} \Delta E_{M}$$

A. Jain *et al.*, PRB **84**, 045115 (2011)

1. Gas Correction

 $\Delta \mathbf{H}^{\mathrm{Expt}} = \Delta \mathbf{H}^{\mathrm{DFT}} + \mathbf{C}$

The constant C could be varied with the exchange-correlation functional.

S. Grindy *et al.*, PRB **87**, 075150 (2013)

FIG. 1. (Color online) Total energy curves of the H_2 molecule versus interatomic distance *R* calculated by different methods: LDA+DMFT, HF+DMFT, LDA, and HF. The *GW* and exact result are also presented for comparison.

J. Lee *et al.*, PRB **91**, 155144 (2015)

Evolutionary Algorithm

It adopts Charles Darwin's Theory of Evolution.

The process continues until the selected fittest does

not change over a certain number of generations.

Crystal structure could be represented by genetic information.

Crystal structure

Genetic information

One-to-one correspondence between crystal structure and generic information

1. Heredity

2. Mutation

3. Permutation

- •
- •
- •

Applications of Evolutionary Algorithm

Structure predictions in (Sr, Ba)FeAs₂

SrFeAs₂

Space group: P2₁/m (# 11) Monoclinic structure a = 4.022 Å, b = 3.947 Å, c = 10.786 Å $\beta = 91.416^{\circ}$ ($\alpha = \gamma = 90^{\circ}$) **BaFeAs₂**

Space group: Imm2 (# 44) Orthorhombic structure a = 4.059 Å, b = 3.984 Å, c = 23.161 Å $(\alpha = \beta = \gamma = 90^{\circ})$

Lack of inversion symmetry

C.-J. Kang et al., PRB 95, 014511 (2017)

Global stability of Fe 112 phase materials

 $E_{hull} = +7 \text{ meV/atom}$