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|Ψ ( t )⟩=Te
−i∫ dt ' H f ( t ')|ΦH i

⟩

Quantum quench

Does the system thermalize to some effective temperature?

What happens when Hi is a band insulator but Hf is topological, what if
Hi supports one phase (metallic/paramagnetic/normal….) and 
Hf supports another phase  (insulating/magnetic/superconducting……).

Parameters of the Hamiltonian changed in time at some arbitrary rate

Recent reviews:

Quantum quenches in 1+1 dimensional conformal field theories
Pasquale Calabrese, John Cardy  arXiv:1603.02889

Quantum quench dynamics, Aditi Mitra, Annual Reviews of 
Condensed Matter Physics, 2018.

THIS TALK: Initial system normal, final Hamiltonian can support superconductivity



3

Drude picture:

σ



4
State lives for 2-10 pico seconds after the initial pump
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Goal 1: How can one identify the onset of 
superconductivity in short lived (few ps) states?
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Theoretical proposals:

Pumped phonons affect the electrons by modifying the effective 
electron band structure/electron-phonon couplings/attractive Hubbard-U.  

Non-superconducting scenarios:

Chiriaco, Millis, Aleiner, arxiv:1806.06645
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Goal 2: Make predictions with as few material 
dependent fitting parameters as possible.
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Outline: Transient properties of the correlated 
electron system

The pump acts like a “quench” where electrons are subjected to a time-
dependent attractive interaction.

NO TRUE LONG RANGE ORDER, YET SUPERCONDUCTING FLUCTUATIONS 
ARE IMPORTANT

1.Signatures in time-resolved angle resolved photoemission tr-ARPES.

2. Signatures in transport such as optical conductivity for a clean system.

3. Signatures in the optical conductivity for a disordered system.

4. An example where the symmetry of the superconducting order-parameter    
 can be controlled by “quench” amplitude.

PRL in print.
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Model (clean system)

In a superconducting phase                            iis non-zero

For us on the other hand                                  will be zero.  However fluctuations
in this quantity will be large.

Effect of pumping the phonons:

F (q )=⟨|Δ (q ,t )|2⟩Fluctuations measured by:
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Superconducting Fluctuations in Equilibrium

H f=∫ dd x [12 Π2+
1
2

( ∇ ϕ )2+
1
2
rϕ2+

u
4 ! N

ϕ4 ]

r>0

r<0

ϕ

Free-energy

Δ≡ϕ
[ Π ,ϕ ]=i

r: detuning from critical point
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Universal power-laws at critical point (r=0)

⟨ϕ ( xt )ϕ ( x ' t ) ⟩≈
1

|x−x '|−2+d+η

⟨ϕ ( xt )ϕ ( xt ' )⟩≈
1

|t−t '|
(−2+d+η )

z

Halperin & Hohenberg, Theory of dynamic critical phenomena, Rev. Mod. Phys. 1977

Fluctuations of the order-parameter at two different positions and time are strongly 
correlated in that they show power-law correlations:
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2PI action

Thermalizing system
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Significant simplification possible by exploiting a separation of time scales:
Fermi Energy >> Temperature >>  r (distance from critical point)

Absence of higher order terms in F is due to a non-equilibrium version of
the Ginzburg-Levanyuk criterion:

In equilibrium, this criterion is: 

Thus even if r(t>0)=0, the post quench transient dynamics could obey the 
Ginzburg-Levanyuk criterion.
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HARD QUENCH SOFT QUENCH

100K=1/80fs
=8.6meV
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Electron Andreev reflects into a hole. This process
is resonant for electrons at the Fermi energy.

Non-Fermi liquid as life-time is shorter at the Fermi-energy.

HARD QUENCH

Fermi-liquid result: parabola
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Galilean invariant system: Momentum is proportional to velocity.
Since momentum is conserved, current never decays

Conductivity of transient state

Broken Galilean invariance: Momentum and velocity no longer
proportional. This implies a component of the current will decay.
(We neglect Umklapp processes)

Optical conductivity
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In diagrammatic 
language:

t’ t

tt’

tt’ tt’

Electron 
propagator

Fluctuation 
propagator

Azlamazov-Larkin 
diagram
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t=Delay time between 
quench and probe

J (τ )=σ (t+τ , t ) ,
E( t )=δ( t )
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Time-evolution of the optical conductivity,
for a critical quench 

Low-frequency conductivity 
changes as log(t). Saturation at
Log[min(frequency,1/t)] 
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Drude scattering time defined as:
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1. Real systems have disorder. 

2. Fluctuation conductivity for a strongly disordered metal is well studied.
Kubo formalism (linear response) for the optical conductivity is used.

We  generalize these studies to a quantum quench.
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Disorder

As before: 
Electrons assumed to thermalize rapidly at temperature T,
Fluctuation propagators are slow due to proximity to critical point.

We also assume strong disorder:
(many scatterings within a de-Broglie wave-length)
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Conductivity = Drude formula   +  fluctuation correction 

σ=
ne2τ
m

+. .. .. . .. .
Azlamazov-Larkin

Maki-Thompson
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Conductivity in Equilibrium (d=2)

Detuning from critical point
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Time-evolution of 
superconducting 
fluctuations

: Phase coherence time

Detuning from critical point
B=F = Superconducting fluctuations
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HARD QUENCH SOFT QUENCH
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AGING FOR A CRITICAL QUENCH:

Azlamazov-Larkin

Maki-Thompson

Experimentally determine the phase-breaking time?
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HARD QUENCH
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SOFT QUENCH



Initially free system of electrons. Quench 
involves turning on attractive BCS 
interactions.

Many competing superconducting order-
parameters in realistic systems. By tuning 
the quench amplitude, order parameters of 
different symmetries can be realized. 
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Graphene irradiated 
with circularly 
polarized laser

U (T+t , t )=e
−iH

eff
T

H eff Maps onto the Haldane model

H eff≈k xσ x τ z+k yσ y+
A0

2

Ω
σ z τ z

:Sublattice index

:K,K’ points

σ
τ

Breaks time-reversal

G. Jotzu, T. Esslinger et al.:
Experimental realization of the topological Haldane model
Nature 515, 237-240 (2014).

Oka and Aoki PRB 2009 in graphene
Other models:
Kitagawa et  al PRB 2011, 
Lindner et al Nature 2011
Yao, MacDonald, Niu et al PRL 2007
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Initial Hamiltonian Heff: Graphene and/or Haldane model
Final Hamiltonian H: Attractive BCS interactions

We will monitor how an initial superconducting fluctuation evolves in time.

SC in doped graphene in
 equilibrium
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Graphene: C3 symmetry and time-reversal symmetry

Haldane model: C3 symmetry but broken time-reversal symmetry

Eigenvalues (EV): s-wave. And two degenerate EV: d+id and d-id

3 Non-degenerate eigenvalues: s-wave, d+id and d-id.
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Dephasing effects due to excited quasi-particles detrimental for d-wave pairing 



38



Conclusions:

1. Pump-probe spectroscopy of correlated materials, and near unitary 
dynamics of cold-atomic gases, has opened up exciting new regimes 
of non-equilibrium physics of interacting systems.

2. Results were presented for an interacting electron gas that traverses 
arbitrarily close to a superconducting critical point. Even though the 
system is not ordered in the conventional sense, time-dependent 
behavior is strongly influenced by superconducting fluctuations.

3. Time resolved optical conductivity and time resolved ARPES show 
clear features of approaching a superconducting critical point.

4. Strongly disordered case reveals power-law scaling of the conductivity 
for critical quenches whose functional form depends on the relative 
importance of Azlamazov-Larkin and Maki-Thompson terms.

5.  An example was also presented of how the symmetries of a 
superconducting order parameter may be influenced by the interaction 
quench amplitude.
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