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Quantum gquench

p(¢))=Te M |cp

Parameters of the Hamiltonian changed in time at some arbitrary rate

Does the system thermalize to some effective temperature?

What happens when Hi is a band insulator but Hf is topological, what if
Hi supports one phase (metallic/paramagnetic/normal....) and
Hf supports another phase (insulating/magnetic/superconducting......).

THIS TALK: Initial system normal, final Hamiltonian can support superconductivity

Recent reviews:

Quantum quenches in 1+1 dimensional conformal field theories
Pasquale Calabrese, John Cardy arXiv:1603.02889

Quantum quench dynamics, Aditi Mitra, Annual Reviews of
Condensed Matter Physics, 2018.



An optically stimulated superconducting-like phase in K3Ceso far

above equilibrium T, Nature 53(} ,_16]_ (2016)

M. Mitranol, A. Cantaluppil, D. Nicoletti?, S. Kaiser?!, A. Perucchiz, S. Lupi3, P. Di
Pietroz, D. Pontirolit, M. Ricco?, A. Subedil, S. R. Clarks5:5, D. Jaksch5.6, A.
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Fig. 1. Structure and equilibrinum optical properties of Kz:Ceso. (A) Face -
centered cubic (fcc) unit cell of KzCgp==viii, Blue bonds link the C atoms on each + (0 r

Cep molecule. K atoms are represented as red spheres. (B) Cso molecular

distortion (red) along the Ti.(4) vibrational mode coordinates. Equilibrium

structure is displayed in blue. The displacement shown here corresponds to

~12% of the C-C bond length. (C-E) Equilibrium reflectivity and complex optical 3
conductivity of KsCep measured at T = 25 K (red) and T = 10 K (blue).



Nature 530, 461 (2016).
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Fig. 2. Transient optical response of photo-excited Kz:Csoat T=25Kand T =
100 K. Reflectivity and complex optical conductivity of KzCso at equilibrium
(red) and 1 ps after photo-excitation (blue) with a pump fluence of 1.1 m]/cm?2,
measured at base temperatures T = 25 K (A.1-3) and T = 100 K (B.1-3). Fits to
the data are displayed as dashed lines. Those at equilibrium were performed
with a Drude-Lorentz model, while those for the excited state using a model
describing the optical response of a superconductor with a gap of 11 meV. The
band at 55 meV was assumed to stay unaffected.

State lives for 2-10 pico seconds after the initial pump



Goal 1. How can one identify the onset of
superconductivity in short lived (few ps) states?



Theoretical proposals:

Pumped phonons affect the electrons by modifying the effective
electron band structure/electron-phonon couplings/attractive Hubbard-U.

Coulthard, J., Clark, S. R., Al-Assam, S., Cavalleri, A. & Jaksch, D. Enhancement of super-exchange
pairing in the periodically-driven Hubbard model. arXiv:1608.03964 (2016).

®

® ). Knap, M. Babadi, G. Refael, I. Martin, and E. Demler, Phys. Rev. B 94, 214504 (2016).
® D. M. Kennes, E. Y. Wilner, D. R. Reichman, and A. J. Millis, Nature Physics 13, 479 (2017).
®
®

M. A. Sentef, A. Tokuno, A. Georges, and C. Kollath, Phys. Rev. Lett. 118, 087002 (2017).
M. A. Sentef, Phys. Rev. B 95, 205111 (2017).

Non-superconducting scenarios:

Chiriaco, Millis, Aleiner, arxiv:1806.06645



Goal 2: Make predictions with as few material
dependent fitting parameters as possible.



Outline: Transient properties of the correlated
electron system

The pump acts like a “quench” where electrons are subjected to a time-
dependent attractive interaction.

NO TRUE LONG RANGE ORDER, YET SUPERCONDUCTING FLUCTUATIONS
ARE IMPORTANT

1.Signatures in time-resolved angle resolved photoemission tr-ARPES.

Yonah Lemonik and Aditi Mitra, Time-resolved spectral density of inferacting fermions fol
lowing a quench to a superconducting critical point, Phys. Rev. B 96, 104506 (2017).

2. Signatures in transport such as optical conductivity for a clean system.

Yonah Lemonik and Aditi Mitra, Transport signatures of transient superfluids, zatr:'::iF;ul':Q {Tr'_ll.l_ﬂ![}EE
in print.

3. Signhatures in the optical conductivity for a disordered system.

Yonah Lemonik and Aditi Mitra, Quench dynamics of superconducting fluctuations and op-
tical conductivity in a disordered system, arxiv:1804.09280

4. An example where the symmetry of the superconducting order-parameter
can be controlled by “quench” amplitude.

Hossein Dehghani and Aditi Mitra, Dynamical generation of superconducting order of different
symmetries in heragonal lattices, Phys. Rev. B 96, 195110 (2017).



Model (clean system)

H; = Y e(k+ A(t) clyrcror
o=t L r—1..M

Effect of pumping the phonons:

Hf—H+ Zﬂ\T;\

A E: . AT E: N i
Ay = Ck, 0, 7C—k+q,|,7; "—\q — C_k+q,l,7CktT
kT k.T

In a superconducting phase (.l‘\ ({T — U)> IS non-zero

For us on the other hand (A({T — U)> will be zero. However fluctuations
in this quantity will be large.

Fluctuations measured by: F(CI): <‘A(q ,t)‘2>



Superconducting Fluctuations in Equilibrium
A _— rocU—U.(T)
— r: detuning from critical point

Hf:fddXBHz”—(VW“l’"CbZJ'LW] 11,0|=i
Freg\-energy

r>0

r<0
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rocU—-U.(T)

T
— ﬂ2|q|2/T_|_T; ’Uq {":: T:, T{": T,

Feq(q)

Universal power-laws at critical point (r=0)

Fluctuations of the order-parameter at two different positions and time are strongly
correlated in that they show power-law correlations:

Bt —
Glxt/plac)=

1
(—2+d+17)
-t

Z

Halperin & Hohenberg, Theory of dynamic critical phenomena, Rev. Mod. Phys. 1977 11
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Thermalizing system




Significant simplification possible by exploiting a separation of time scales:

Fermi Energy >> Temperature >> r (distance from critical point)

The dynamics for the fluctuations are,

v?|ql?

(@+mﬁﬂ4 T)ﬂmﬂ:T

Absence of higher order terms in F is due to a non-equilibrium version of
the Ginzburg-Levanyuk criterion:

Flg=0.t) < Ep/T

In equilibrium, this criterion is:

r=> TZ/EF

Thus even if r(t>0)=0, the post quench transient dynamics could obey the
Ginzburg-Levanyuk criterion.
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HARD QUENCH SOFT QUENCH
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FIG. 1. Growth of superfluid fluctuations F(q,t) following
an interaction quench. Fluctuations at several different mo-
menta g are shown. The times are measured in units of 7!
(lower axis) and in terms of ps (upper axis) for T" ~ 100K.
The quantity T'/r is the inverse of the detuning from the crit-
ical point, which at equilibrium is equal to F'(g = 0). Left:
hard quench from the normal state to T /r = 20. Right: Soft 14
quench, with r(t > 0) = T'[1 — (t/ts)eexp(—t/t+)], t+T = 30.



HARD QUENCH Electron Andreev reflects into a hole. This process
IS resonant for electrons at the Fermi energy.

Lifetime @{ersal
Can we see this in observables? ImE =77 = %7 ga(E2T1)

Fermi-liquid result: parabola ¢

15
Non-Fermi liquid as life-time is shorter at the Fermi-energy.



Conductivity of transient state

J(t) = / dt'o(t, t)E(t'),
Optical conductivity g ((w, = fd.'?' o(t + T, t) exp (?'.L:JT)

Galilean invariant system: Momentum is proportional to velocity.
Since momentum is conserved, current never decays

o(t.t') o< O(t —t')

Broken Galilean invariance: Momentum and velocity no longer
proportional. This implies a component of the current will decay.
(We neglect Umklapp processes)

16



In diagrammatic  Fluctuation Electron
language: propagator propagator

t

8,J(t) — LE() = —-

m

Azlamazov-Larkin
diagram
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Conductivity for the hard quench. » =0

=

-

+
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In the inset are the tails of o(t+7.¢). Tt > 30. plottedas T'To(t + 7.1) to improve visibility.



Time-evolution of the optical conductivity, =20
f itical h
or a critical quenc 125~
. 5 15
o(w,t) = [dro(t+ T,t)exp (iwr) o
0 i o
0.0 0.5 - 10w
. w/T a's
Low-frequency conductivity <
changes as log(t). Saturation a —Tt=0 —Tt=4 -5
Log[min(frequency,1/t)] e Tt=1 —=Tt=28
=2 ==]t=16
0
|
.0 0.5
w/T

Re [o(w,t) — o(w,t — o0)] for different times since the
quench. Note the times increase in a geometric fashion. Inset:
Reo(w,t — 00). This diverges as logw as w — 0 so all curves

are clipped at w = .017T
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Scaling plot of the o(7,0) at a = 0 for different detunings r.
Inset: unscaled o(7,0). Plots shown for T'r, = 5.
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Optical conductivity for the soft quench
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Drude scattering time defined as:
or(w) = Im o] / [wReo]
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1. Real systems have disorder.

2. Fluctuation conductivity for a strongly disordered metal is well studied.

Kubo formalism (linear response) for the optical conductivity is used.

A. I. Larkin and A. A. Varlamov, in Handbook on Super-
conductivity: Conventional and Unconventional Super-

conductors, edited by K.-H.Bennemann and J. Ketterson
(Springer, 2002).

We generalize these studies to a quantum quench.

22



/ Disorder

H=>) [(Ekékwr‘v’h—m ChsCi's
k' s

E r T ]
‘|‘U{t) C.Ffsck—‘?ﬂck’—qsfck’rf
qs’

{qu Lf_q}} — dqq"/gﬂfx"'?_

As before:
Electrons assumed to thermalize rapidly at temperature T,
Fluctuation propagators are slow due to proximity to critical point.

We also assume strong disorder: ['7/h < 1
(many scatterings within a de-Broglie wave-length)

23



Conductivity = Drude formula + fluctuation correction

2
g=—+

m Azlamazov-Larkin

h)

i)

Maki-Thompson

8]

24



Conductivity in Equilibrium (d=2)

W
€ Detuning from critical point D= - -
167
4e logo —iW 0> ey
—iw 2 € - » 19
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€ — i 0% € g 0g € I o E
1+ 27;_.5 log 12 €,V > W
\ . '

A. I. Larkin and A. A. Varlamov, in Handbook on Super-
conductivity: Conventional and Unconventional Super-

conductors, edited by K.-H.Bennemann and J. Ketterson o5
(Springer, 2002).



€ Detuning from critical point
B=F = Superconducting fluctuations

i i o 16T |

Time-evolution of v 5 9 \
superconducting > [81- + - (E(t) _|_£ q ) Bq(t) T.
fluctuations

tlatﬁ) — 32/ ds 2?]')2 4g2u2|DR(q}t1}S)|EBG(5)

(11a)
d*q 1412\ —2(A+Da?)(t1—t2)
MT ol 1 2 : T q 1—La
a (tl,tg) 16D/(2TT)E Bq ( 9 ) =
(11Db)

T4 - Phase coherence time 26



HARD QUENCH SOFT QUENCH
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FIG. 1. The growth of the superconducting fluctuation at dif-
ferent lengths (¢—') under a changing detuning e(t) from the
superconducting critical point. The time is given in units
of mh/8T. The dashed line shows w/16€(t) which equals
B(g = 0) in equilibrium. The dotted purple line in the right
panel gives €(t) at arbitrary scale. In the left panel the de-
tuning saturates at the value e = 0.05. In the right panel, the
detuning is €(t) = €g + (€min — €0)(t/t.€) exp(—t/t.)0(t) with
the parameters t. = 30, eg = 1, €min = —0.05.

coherence length ¢ = /7D /8T | |D = -uf;’r/d is the diffusion constant

27



AGING FOR A CRITICAL QUENCH:

Azlamazov-Larkin

9T

/

t
o(t1,t2) = - [—a — log (1— f)

_l_e—i}(h—ti}f?',i, ]Dg (1 _I_

141 + 1o
2t — ts

)|

Maki-Thompson

Experimentally determine the phase-breaking time?
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HARD QUENCH
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FIG. 3. Conductivity [e*/h] as a function of frequency for
several times. The left panel shows real part, the right panel
shows the imaginary part. All times are in units of wh/8T.
The detuning e varies according to Fig. 1, left panel and 74 =
20 x (hm/8T). The dashed line gives the equilibrium result
for the final value of the detuning € = .05.
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SOFT QUENCH

100

- /5

- 50
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k25

FIG. 4. Conductivity [e?/h] as a function of frequency for
several times, all in units of wh/8T. The detuning is given
in Fig. 1, right panel and 74 = 20 x (hw/8T). In order to
improve clarity, lines for ¢ < 2 are shown with full lines and
those for ¢ > 2 are shown with dashed lines. The conductivity
g as w — 0 reaches a maximum of ~ 175 at £t = 7.
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Initially free system of electrons. Quench
iInvolves turning on attractive BCS
interactions.

Many competing superconducting order-
parameters in realistic systems. By tuning
the quench amplitude, order parameters of
different symmetries can be realized.

31



G. Jotzu, T. Esslinger et al.:
Experimental realization of the topological Haldane model
Nature 515, 237-240 (2014).

Graphene irradiated
with circularly

pOlaI’iZEd laser Oka and Aoki PRB 2009 in graphene

Other models:

Kitagawa et al PRB 2011,

Lindner et al Nature 2011

Yao, MacDonald, Niu et al PRL 2007

—IH T
UlT+t,t]=e
2
AO O‘.Sublattice Index
Heff K 0, T +ky0 t Q GZTZ T :K,K’ points

i | Breaks time-reversal
” Heff Maps onto the Haldane model

\4

Floquet pseudo-energy




Initial Hamiltonian Heff: Graphene and/or Haldane model
Final Hamiltonian H: Attractive BCS interactions V] Z [5—;- g

_:E".l_j

ﬂﬂ = J<E'Ji_|_ﬂ‘|ft1ﬂ~ — bf_|_ﬂ1~f1-t'¢>

a = 1.2, 3 denote the three nearest neighbor bonds
H=H eft

— Z ;ﬁﬂeﬂ_":ﬁ“ bT i Wi ambT gt | T h.c.

1 - -
— ani.”j

We will monitor how an initial superconducting fluctuation evolves in time.

A (t)_JZ/ dt' T (g = 0,¢,t")As(t)

R. Nandkishore, L. Levitov, and A. Chubukov, Nature

SC in doped graphene in Physics 8, 158 (2012).
equ”ibrium A. Black-Schaffer and C. Honerkamp, Journal of Physic
Condensed Matter 26 (2014).
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1 1

1 1 . ) |
&3 — = [1 1, 1] A id = ——= Egﬂif?" Ag ;0= — edmi/3
ﬂ i \/g Eril:rrifﬂ V3 e2mi/3

Graphene: C3 symmetry and time-reversal symmetry
A(t) B(f) B(t)
M%) = [ B(t) A(t) B(t)|.
B(t) B(t) A(t)

Eigenvalues (EV): s-wave. And two degenerate EV: d+id and d-id

Haldane model: C3 symmetry but broken time-reversal symmetry
A(t) B(t) C(t)
e(t) = | C(t) A(t) B(t) | .
B(t) C(t) Alt)

3 Non-degenerate eigenvalues: s-wave, d+id and d-id.
34



Log[order—parameter]

0 10 20 30 40

time[t,™']

FIG. 1: Haldane model
Apga = 0.5, = 10t;,, J = 1.82t},,T = 0.01t and doping
0 = 0.1. Time-evolution of the logarithm of an initial
random vector. The time-evolution is projected along
the three orthogonal directions with s, d 4 id, d — id
symmetry. The slopes indicate that for the chosen
parameters d + id is the fastest growing instability,

followed by d — id and then s. Time is in units of t;l. 35



(Vasia=Vs)[n]
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J[1]

FIG. 2: Haldane model Aga = 0.5, = 10¢;,. T = 0.01ty
and doping § = 0.1 (same as Fig. 1). As the quench
amplitude .J is increased, the difference between the
growth rate of chiral d-wave (v4+iq) and s-wave (vg)
varies as shown above. The difference first increases,
and then decreases rapidly. For quench amplitudes
larger than J. ~ 1.9 the s-wave is preferred. 36
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FIG. 5: Haldane model Aga = 1.0, 2 = 10¢;, and doping
d = 0.1. The phase diagram determined by the fastest
growing order parameter. The line corresponding to the
transition from the disordered (normal) phase to the
chiral d-wave phase coincides with the equilibrium
phase diagram. As the quench amplitude is increased,

the s-wave phase is preferred.
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Dephasing effects due to excited quasi-particles detrimental for d-wave pairing
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Conclusions:

Pump-probe spectroscopy of correlated materials, and near unitary
dynamics of cold-atomic gases, has opened up exciting new regimes
of non-equilibrium physics of interacting systems.

Results were presented for an interacting electron gas that traverses
arbitrarily close to a superconducting critical point. Even though the
system is not ordered in the conventional sense, time-dependent
behavior is strongly influenced by superconducting fluctuations.

Time resolved optical conductivity and time resolved ARPES show
clear features of approaching a superconducting critical point.

Strongly disordered case reveals power-law scaling of the conductivity
for critical quenches whose functional form depends on the relative
Importance of Azlamazov-Larkin and Maki-Thompson terms.

An example was also presented of how the symmetries of a
superconducting order parameter may be influenced by the interaction
guench amplitude.
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