
A short introduction to (model-based)
reinforcement learning.

Wenda Zhou

April 7, 2021

Markov Decision Process (MDP)

A Markov Decision Process is a 4-tuple (S,A, T ,R) where:
I S denotes the state space
I A denotes the action space
I T (s, a)→M1(S) denotes the transition function, a

probability measure giving the probability of transitioning to a
state s ′ from state s using action a.

I R(s, a, s ′) denotes the reward from going from state s to s ′

using action a.

Example: Chess
I S: position of the pieces (+ castling rights and en passant)
I A: all legal piece moves
I T (s, a): deterministic transition of moving a piece
I R(s, a): 0 for all states, except +1 for winning, −1 for losing.

Policies and Problem Formulation

We consider an agent which acts in the environment according to a
policy π : S →M1(A). We can then consider a trajectory
(st , at , rt)t of the agent as follows:
I s0 ∼ p0(S) ,
I at ∼ π(st),
I st+1 ∼ T (st , at),
I rt = R(st , at , st+1).

Given a discount factor 0 < γ ≤ 1, we wish to optimize the
(expected) cumulative rewards:

J = Eπ,T
[∞∑
k=0

γk rk

]

Q-function and Bellman’s equation

To look at the cumulative reward in a more analytical fashion, we
define the action-value (or quality) function Qπ(s, a):

Qπ(s, a) = Eπ,T
[∞∑
k=0

γk rk | s0 = s, a0 = a
]
.

The recursive definition of the Q-function is known as Bellman’s
equation:

Qπ(s, a) = Es′∼T (s,a)

[
R(s, a, s ′) + γEa′∼π(s′)

[
Qπ(s ′, a′)

]]
.

A related quantity is also often used, the value function:

V π(s) = Ea∼π(s)Q
π(s, a).

Applications of Reinforcement Learning

I Robotics and control problems
I Combinatorial optimization problems: many combinatorial

optimization problems can be expressed by building or
modifying the solution in an iterative fashion [2].
I E.g. Optimization of molecular properties by modifying

molecules iteratively.
I My current project: generating optimized (computer) programs

for computing simple programs (arithmetic circuits).

I Heuristics and meta-heuristics: reinforcement learning can be
seen as a learning framework to implement learning for
heuristics, e.g. tuning of search parameters, hyper-parameters
etc.

Sythesizing optimized programs from arithmetic circuits.

Act in the environment by emitting
instructions:

l o ad a , %1
load b , %2
load c , %3

Valid actions are given by boundary of
arithmetic circuit, e.g. here, can
consider:

l o ad d , %4
add %1, %2, %4

Reward given by (negative) time taken
to execute the program.

a b c d

+ +

×

Model-based vs. Model-free reinforcement learning

I Applications of reinforcement learning differ substantially
depending on their access (and knowledge) of T and R .
I Chess: T is fully known, cheap to compute.
I Recommendation system (e.g. Amazon/Netflix): T and R

highly complex (human behavior), unknown.
I Optimizing molecules: R may be require significant

computational expense to access, or only approximate access
available.

Model-free learning Learning only has forward access to the model
(must execute action to observe reward).

Model-based learning Learning has reversible / counter-factual
access to the model (what if I execute this action?).

Note: possibility (and large amount of research) on how to use
model-based techniques in model-free contexts: we can learn a
model!

Model-based reinforcement learning

I will try to explore three related facets of model-based
reinforcement learning techniques (but also see surveys [3, 4]):
1. Dynamics Model Learning: Dyna (Dyna-Q) [7]
2. Learning and planning with a known model: AlphaZero [6].
3. Implicit model-based reinforcement learning: MuZero [5].

Q-learning

Q-learning is a model-free approach which attempts to directly
estimate the Q-function by fixed-point iteration.

Q-learning

1. Initialize Q(s, a)

2. Act in environment to obtain tuples (r , s, a, s ′), where
s ′ ∼ T (s, a), and r = R(s, a, s ′).

3. Update Q-function:

Q(s, a)← Q(s, a) + α
(
r + γmax

a′
Q(s ′, a′)− Q(s, a)

)
.

In classical setup, Q is encoded as a table. Recent resurgence of
deep q-learning, where Q is encoded as a neural network.

Dyna-Q

Augment Q-learning with a learned model M(s, a).

Dyna-Q

1. Initialize Q(s, a)

2. Act in environment to obtain tuples (r , s, a, s ′), where
s ′ ∼ T (s, a), and r = R(s, a, s ′).

3. Update Q-function:

Q(s, a)← Q(s, a) + α
(
r + γmax

a′
Q(s ′, a′)− Q(s, a)

)
.

4. Update Model:
M(s, a)← (s ′, r)

5. Repeat n times: generate tuples (r , s, a, s ′) from model, and
update Q according to (3).

Learned dynamics model and science

I In many problems at FI, dynamics are (at least approximately)
known, but may be expensive to compute.

I Learned surrogates can help speed-up inner loop.
I Multi-fidelity computation: optimize computational expense by

choosing accuracy of oracle to query.
I Bayesian Optimization: jointly learn model and optimize to

increase sample effectiveness.

Learning and planning with a known model

In some cases (e.g. board games), the model (i.e. T and R) is fully
known. We could thus (in principle) compute Q through its
definition.

Qπ(s, a) = Es′∼T (s,a)

[
R(s, a, s ′) + γEa′∼π(s′)

[
Qπ(s ′, a′)

]]
.

Problem: this is typically not a computationally tractable quantity.

A detour into high-performance planning

The previously posed problem, with known T and R , can be seen
as a purely computational problem. There has been significant work
in obtaining tractable approximations to the computation through
tree search methods.

Qπ(s, a) = Es′∼T (s,a)

[
R(s, a, s ′) + γEa′∼π(s′)

[
Qπ(s ′, a′)

]]
.

s

s1 s2

s3 s4 s5

a1 a2

a3
a4 a5

Monte-Carlo Tree Search

I Trees are exponentially large, computationally intractable to
search them completely.

I How to decide which nodes to explore? (Breadth vs. depth,
exploration / exploitation trade-offs).

Monte-Carlo Tree Search
Bayesian formalism to decide on exploration-exploitation trade-off.
Exploration Search actions that have not been evaluated much,
Exploitation Search actions that are the most promising so far.

Monte-Carlo Tree Search

MCTS is usually formulated with four
steps:
1. Select. Find out which node to

explore next.
2. Expand. Execute an action from

that node.
3. Simulate. Compute a value

estimate for the new node (e.g. by
playing the game until the end).

4. Backpropagate. Update value
estimates of the tree.

s

s1 s2

s3 s4 s5

s6

a1 a2

a3
a4 a5

Monte-Carlo Tree Search: UCT selection rule
Selection is the crucial step in the algorithm. It controls the
trade-off between exploration and exploitation.

Upper-Confidence Bound for Trees (UCT) [1]
At a given state s, select the action a which maximizes:

Q̂(s, a) + c

√
logN

na
,

where we have:
I Q̂(s, a), the current estimate of the value of that action

(average value of all simulations).
I na: number of simulations containing the action a.
I N: number of simulations containing the parent node.
I c > 0: coefficient adjusting exploration / exploitation

trade-off.

See also: optimism under uncertainty (multi-armed bandits).

Learning and planning: AlphaZero

Leverage learning to more efficiently explore the tree.

AlphaZero selection rule
At a given state s, select the action a which maximizes:

Q̂(s, a) + cP(s, a)

√
N

1+ na
.

where here, P(s, a) is a prior policy.
Idea: learn prior policy P through policy refinement.

Learning and planning: AlphaZero

MCTS as policy refinement
Given a prior policy with weights θ
Pθ(s, a), we wish to obtain a better
policy.
I Given a state s

I Run MCTS from s for K
iterations

I Obtain new policy as normalized
counts P̂(s, a) = na/K .

Update θ to better approximate
P̂(s, a), repeat.

s

s1 s2

s3 s4 s5

s6

a1(2/6) a2(4/6)

a3
a4 a5

How effective is learning to plan?

I In general, evaluating the prior policy P can be expensive (it’s
a neural network).
I LeelaChess (MCTS + NN) evaluates 30k positions per second.
I Stockfish (Alpha-Beta search) evaluates 200M positions per

second.
I Large continuum between the two (e.g. recent innovations in

Stockfish NNUE for efficiently updateable networks to evaluate
a neural network at 100M positions per second).

I Compared to heuristics / meta-heuristics in combinatorial
optimization, often faster but similar quality solutions.

I Cost of policy P is only part of the picture, dynamics T and R
may also be potentially expensive to evaluate.

Implicit / Latent Models

I Can we combine learning of both dynamics and planning?
I Wish to tackle problems which require both high performance

(learning to plan) with complex environments (learn dynamics).
I Wish to bypass necessity to encode state s (e.g. complex /

not completely observed state).

Value equivalent models / implicit dynamics
Observation: we only require the value of each state, not the full
state.
I Learn a reduced model and implicit dynamics to predict value

(and policy).

MuZero

Learning the reduced model
Suppose that we observe transitions (st , at , rt). We wish to obtain
latents ut ∈ Rd , by learning a function g(u, a) and a function
r̂(u, a) such that:

ut+1 = ĝ(ut , at) and r̂(ut , at) ≈ rt .

s1 s2 s3 s4
a1 a2 a3

u1 u2 u3 u4

ĝ(u1, a1) ĝ(u2, a2) ĝ(u3, a3)

≈
r̂1

r1
≈

r̂2

r2
≈

r̂3

r3

MuZero
I Use learned dynamics g(u, a) to plan action using MCTS.
I Learn value and policy functions from latent u.
I Achieves state of the art performance in board games (e.g.

Chess / Go) without “knowing” the rules.

Figure 1: Planning, acting, and training with a learned model. (A) How MuZero uses its model to plan.
The model consists of three connected components for representation, dynamics and prediction. Given a previous
hidden state sk−1 and a candidate action ak, the dynamics function g produces an immediate reward rk and a new
hidden state sk. The policy pk and value function vk are computed from the hidden state sk by a prediction function
f . The initial hidden state s0 is obtained by passing the past observations (e.g. the Go board or Atari screen) into
a representation function h. (B) How MuZero acts in the environment. A Monte-Carlo Tree Search is performed
at each timestep t, as described in A. An action at+1 is sampled from the search policy πt, which is proportional
to the visit count for each action from the root node. The environment receives the action and generates a new
observation ot+1 and reward ut+1. At the end of the episode the trajectory data is stored into a replay buffer. (C)
How MuZero trains its model. A trajectory is sampled from the replay buffer. For the initial step, the representation
function h receives as input the past observations o1, ..., ot from the selected trajectory. The model is subsequently
unrolled recurrently for K steps. At each step k, the dynamics function g receives as input the hidden state sk−1

from the previous step and the real action at+k. The parameters of the representation, dynamics and prediction
functions are jointly trained, end-to-end by backpropagation-through-time, to predict three quantities: the policy
pk ≈ πt+k, value function vk ≈ zt+k, and reward rt+k ≈ ut+k, where zt+k is a sample return: either the final
reward (board games) or n-step return (Atari).

Value equivalent models were subsequently extended to optimising value (with actions). TreeQN [10] learns
an abstract MDP model, such that a tree search over that model (represented by a tree-structured neural network)
approximates the optimal value function. Value iteration networks [44] learn a local MDP model, such that value
iteration over that model (represented by a convolutional neural network) approximates the optimal value function.
Value prediction networks [28] are perhaps the closest precursor to MuZero: they learn an MDP model grounded
in real actions; the unrolled MDP is trained such that the cumulative sum of rewards, conditioned on the actual
sequence of actions generated by a simple lookahead search, matches the real environment. Unlike MuZero there
is no policy prediction, and the search only utilizes value prediction.

3 MuZero Algorithm
We now describe the MuZero algorithm in more detail. Predictions are made at each time-step t, for each of
k = 1...K steps, by a model µθ, with parameters θ, conditioned on past observations o1, ..., ot and future actions
at+1, ..., at+k. The model predicts three future quantities: the policy pkt ≈ π(at+k+1|o1, ..., ot, at+1, ..., at+k), the
value function vkt ≈ E [ut+k+1 + γut+k+2 + ...|o1, ..., ot, at+1, ..., at+k], and the immediate reward rkt ≈ ut+k,

3

Figure: Figure taken from MuZero paper [5]

References I

[1] Hyeong Soo Chang et al. “An Adaptive Sampling Algorithm
for Solving Markov Decision Processes”. In: Oper. Res. 53.1
(2005), pp. 126–139.

[2] Nina Mazyavkina et al. “Reinforcement Learning for
Combinatorial Optimization: a Survey”. In: arXiv e-print
(2020).

[3] Thomas M. Moerland, Joost Broekens, and
Catholijn M. Jonker. “Model-based Reinforcement Learning: A
Survey”. In: arXiv e-print (2020).

[4] Aske Plaat, Walter A. Kosters, and Mike Preuss.
“Model-Based Deep Reinforcement Learning for
High-Dimensional Problems, a Survey”. In: arXiv e-print
(2020).

References II

[5] Julian Schrittwieser et al. “Mastering Atari, Go, chess and
shogi by planning with a learned model”. In: Nature 588.7839
(2020), pp. 604–609. ISSN: 0028-0836. DOI:
10.1038/s41586-020-03051-4.

[6] David Silver et al. “Mastering the game of Go without human
knowledge”. In: Nat. 550.7676 (2017), pp. 354–359. URL:
https://doi.org/10.1038/nature24270.

[7] Richard S. Sutton. “Dyna, an Integrated Architecture for
Learning, Planning, and Reacting”. In: SIGART Bull. 2.4
(1991), pp. 160–163. DOI: 10.1145/122344.122377.

https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/nature24270
https://doi.org/10.1145/122344.122377

	References

