A short introduction to (model-based)
reinforcement learning.

Wenda Zhou

April 7, 2021



Markov Decision Process (MDP)

A Markov Decision Process is a 4-tuple (S,.A, T, R) where:
> S denotes the state space
» A denotes the action space

» T(s,a) = M;i(S) denotes the transition function, a
probability measure giving the probability of transitioning to a
state s’ from state s using action a.

» R(s,a,s’) denotes the reward from going from state s to s’
using action a.

Example: Chess
» S: position of the pieces (+ castling rights and en passant)
> A: all legal piece moves
» T (s,a): deterministic transition of moving a piece

» R(s,a): 0 for all states, except +1 for winning, —1 for losing.



Policies and Problem Formulation

We consider an agent which acts in the environment according to a
policy m: § — Mj(A). We can then consider a trajectory
(St, at, re)¢ of the agent as follows:

> so~ po(S) ,

> dy ~ 7T(St),

» sep1 ~ T(st,at),

> ry = R(St, at,st+1).

Given a discount factor 0 < v < 1, we wish to optimize the
(expected) cumulative rewards:

J=Eny [é r]



Q-function and Bellman’s equation

To look at the cumulative reward in a more analytical fashion, we
define the action-value (or quality) function Q™ (s, a):

[oe)
Q7(s,a) = Er 1 [Z v<r | so=s,a0 = a]-
k=0

The recursive definition of the @-function is known as Bellman's
equation:

Q™(s,a) = Egu7(s,2) [F\’(s7 a,8") + By n(s) [Q7 (S, a’)H .
A related quantity is also often used, the value function:

Vﬂ(s) = anw(s) QW(Sa a)'



Applications of Reinforcement Learning

» Robotics and control problems

» Combinatorial optimization problems: many combinatorial
optimization problems can be expressed by building or
modifying the solution in an iterative fashion [2].

» E.g. Optimization of molecular properties by modifying
molecules iteratively.

> My current project: generating optimized (computer) programs
for computing simple programs (arithmetic circuits).

» Heuristics and meta-heuristics: reinforcement learning can be
seen as a learning framework to implement learning for
heuristics, e.g. tuning of search parameters, hyper-parameters
etc.



Sythesizing optimized programs from arithmetic circuits.

Act in the environment by emitting
instructions:

load a, %1

load b, %2

load c, %3 a b ¢
. . . N ¥

Valid actions are given by boundary of N

arithmetic circuit, e.g. here, can
consider:

load d, %4
add %1, %2, %4

Reward given by (negative) time taken
to execute the program.



Model-based vs. Model-free reinforcement learning

» Applications of reinforcement learning differ substantially
depending on their access (and knowledge) of 7 and R.

» Chess: T is fully known, cheap to compute.

» Recommendation system (e.g. Amazon/Netflix): 7 and R
highly complex (human behavior), unknown.

» Optimizing molecules: R may be require significant
computational expense to access, or only approximate access
available.

Model-free learning Learning only has forward access to the model
(must execute action to observe reward).
Model-based learning Learning has reversible / counter-factual
access to the model (what if | execute this action?).
Note: possibility (and large amount of research) on how to use
model-based techniques in model-free contexts: we can learn a
model!



Model-based reinforcement learning

| will try to explore three related facets of model-based
reinforcement learning techniques (but also see surveys [3, 4]):

1. Dynamics Model Learning: Dyna (Dyna-Q) [7]
2. Learning and planning with a known model: AlphaZero [6].

3. Implicit model-based reinforcement learning: MuZero [5].



Q-learning

Q-learning is a model-free approach which attempts to directly
estimate the Q-function by fixed-point iteration.

Q-learning

1. Initialize Q(s, a)

2. Act in environment to obtain tuples (r, s, a,s’), where
s’ ~T(s,a), and r = R(s, a,s).

3. Update Q-function:

Q(s,a) + Q(s,a) + a(r +7 max Q(s',d) — Q(s, a)).

In classical setup, Q is encoded as a table. Recent resurgence of
deep g-learning, where @ is encoded as a neural network.



Dyna-Q

Augment Q-learning with a learned model M(s, a).

Dyna-Q
1. Initialize Q(s, a)
2. Act in environment to obtain tuples (r,s, a,s’), where
s'~7T(s,a), and r = R(s,a,s’).
3. Update Q-function:
Q(s,a) « Q(s,a) + a(r +ymax Q(s',a) — Q(s, a)).
a/
4. Update Model:
M(s,a) < (s',r)
5. Repeat n times: generate tuples (r, s, a,s’) from model, and

update Q according to (3).



Learned dynamics model and science

» In many problems at Fl, dynamics are (at least approximately)
known, but may be expensive to compute.

» Learned surrogates can help speed-up inner loop.
» Multi-fidelity computation: optimize computational expense by
choosing accuracy of oracle to query.

» Bayesian Optimization: jointly learn model and optimize to
increase sample effectiveness.



Learning and planning with a known model

In some cases (e.g. board games), the model (i.e. 7 and R) is fully
known. We could thus (in principle) compute Q through its
definition.

Qﬂ(sv a) = ES’N'T(s,a) R(57 a, 5/) + VEa’Nw(s’) [QF(S/a a,)H :

Problem: this is typically not a computationally tractable quantity.



A detour into high-performance planning

The previously posed problem, with known 7 and R, can be seen
as a purely computational problem. There has been significant work
in obtaining tractable approximations to the computation through
tree search methods.

Qﬂ'(S7 a) = ES/NT(s,a) {R(S, a, S/) + FYEBINTA'(SI) [Q”(s/, a’)H .




Monte-Carlo Tree Search

> Trees are exponentially large, computationally intractable to
search them completely.

» How to decide which nodes to explore? (Breadth vs. depth,
exploration / exploitation trade-offs).

Monte-Carlo Tree Search
Bayesian formalism to decide on exploration-exploitation trade-off.

Exploration Search actions that have not been evaluated much,

Exploitation Search actions that are the most promising so far.



Monte-Carlo Tree Search

MCTS is usually formulated with four
steps:

1.

Select. Find out which node to
explore next.

Expand. Execute an action from
that node.

. Simulate. Compute a value

estimate for the new node (e.g. by
playing the game until the end).

Backpropagate. Update value
estimates of the tree.

S
al az
ORNC
a4 as
as
® G
S6



Monte-Carlo Tree Search: UCT selection rule
Selection is the crucial step in the algorithm. It controls the
trade-off between exploration and exploitation.
Upper-Confidence Bound for Trees (UCT) [1]

At a given state s, select the action a which maximizes:

~ log N
Qs a) + ¢y 2=,

na

where we have:

> Q(s, a), the current estimate of the value of that action
(average value of all simulations).

» n,: number of simulations containing the action a.

» N: number of simulations containing the parent node.

» ¢ > 0: coefficient adjusting exploration / exploitation
trade-off.

See also: optimism under uncertainty (multi-armed bandits).



Learning and planning: AlphaZero

Leverage learning to more efficiently explore the tree.

AlphaZero selection rule
At a given state s, select the action a which maximizes:

A VN

Q(s,a) + cP(s,a) .

where here, P(s, a) is a prior policy.
Idea: learn prior policy P through policy refinement.



Learning and planning: AlphaZero

MCTS as policy refinement
Given a prior policy with weights 6
Py(s, a), we wish to obtain a better
policy.
» Given a state s
» Run MCTS from s for K
iterations
> Obtain new policy as normalized
counts P(s,a) = n,/K.
Update 6 to better approximate

A

P(s, a), repeat.




How effective is learning to plan?

» In general, evaluating the prior policy P can be expensive (it's
a neural network).

» LeelaChess (MCTS + NN) evaluates 30k positions per second.

> Stockfish (Alpha-Beta search) evaluates 200M positions per
second.

> Large continuum between the two (e.g. recent innovations in
Stockfish NNUE for efficiently updateable networks to evaluate
a neural network at 100M positions per second).

» Compared to heuristics / meta-heuristics in combinatorial
optimization, often faster but similar quality solutions.

» Cost of policy P is only part of the picture, dynamics 7 and R
may also be potentially expensive to evaluate.



Implicit / Latent Models

» Can we combine learning of both dynamics and planning?

> Wish to tackle problems which require both high performance
(learning to plan) with complex environments (learn dynamics).

» Wish to bypass necessity to encode state s (e.g. complex /
not completely observed state).

Value equivalent models / implicit dynamics
Observation: we only require the value of each state, not the full
state.
» Learn a reduced model and implicit dynamics to predict value
(and policy).



MuZero

Learning the reduced model

Suppose that we observe transitions (st, a¢, rt). We wish to obtain
latents u; € RY, by learning a function g(u, a) and a function
#(u, a) such that:

urr1 = B(ut, ar) and Fug, ar) = ry.

a a
s (5 —2 (55

3 54

n Py \J\
A P /_\/
up > u >

~
~

%




MuZero

» Use learned dynamics g(u, a) to plan action using MCTS.
» Learn value and policy functions from latent w.

» Achieves state of the art performance in board games (e.g.
Chess / Go) without “knowing” the rules.

A B
22} ¥ i #
N ',‘ ) $ e 2
g/ ~(ral— A il
P
&Y C
-
e @@
) ‘
3
J
P N A H# # %

Figure: Figure taken from MuZero paper [5]



References |

[1] Hyeong Soo Chang et al. “An Adaptive Sampling Algorithm
for Solving Markov Decision Processes”. In: Oper. Res. 53.1
(2005), pp. 126-139

[2] Nina Mazyavkina et al. “Reinforcement Learning for
Combinatorial Optimization: a Survey”. In: arXiv e-print
(2020).

[3] Thomas M. Moerland, Joost Broekens, and
Catholijn M. Jonker. “Model-based Reinforcement Learning: A
Survey”. In: arXiv e-print (2020).

[4] Aske Plaat, Walter A. Kosters, and Mike Preuss.
“Model-Based Deep Reinforcement Learning for
High-Dimensional Problems, a Survey”. In: arXiv e-print
(2020).



References |l

[5]

[6]

[7]

Julian Schrittwieser et al. “Mastering Atari, Go, chess and
shogi by planning with a learned model”. In: Nature 588.7839
(2020), pp. 604-609. ISSN: 0028-0836. DOI:
10.1038/s41586-020-03051-4.

David Silver et al. “Mastering the game of Go without human
knowledge”. In: Nat. 550.7676 (2017), pp. 354-359. URL:
https://doi.org/10.1038/nature24270.

Richard S. Sutton. “Dyna, an Integrated Architecture for
Learning, Planning, and Reacting”. In: SIGART Bull. 2.4
(1991), pp. 160-163. DOI: 10.1145/122344.122377.


https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/nature24270
https://doi.org/10.1145/122344.122377

	References

