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Fig. 3.4. Accelerated compression using proxy surfaces. The field within a region B due to a
distribution of exterior sources (left) can be decomposed into neighboring and well-separated contri-
butions. By representing the latter via a proxy surface Γ (center), the matrix dimension to compress
against for the block corresponding to B (right) can be reduced to the number of neighboring points
plus a constant set of points on Γ, regardless of how many points lie beyond Γ.

Similar arguments hold for other kernels of potential theory including the heat,
Helmholtz, Yukawa, Stokes, and elasticity kernels, though care must be taken for
oscillatory problems which could require a combination of single and double layer
potentials to avoid spurious resonances in the representation for the exterior.

3.3. Compressed matrix-vector multiplication. The compressed represen-
tation (3.1) admits an obvious fast algorithm for computing the matrix-vector product
y = Ax. As shown in [17], one simply applies the matrices in (3.1) from right to left.
Like the FMM, this procedure can be thought of as occurring in two passes:

1. an upward pass, corresponding to the sequential application of the column
projection matrices R(l), which hierarchically compress the input data x to the column
(outgoing) skeleton subspace;

2. a downward pass, corresponding to the sequential application of the row
projection matrices L(l), which hierarchically project onto the row (incoming) skeleton
subspace and, from there, back onto the output elements y.

3.4. Compressed matrix inversion. The representation (3.1) also permits a
fast algorithm for the direct inversion of nonsingular matrices. The one-level scheme
was discussed in section 2. In the multilevel scheme, the system Sz = y in (2.3) is
itself expanded in the same form, leading to the sparse embedding
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To understand the consequences of this sparse representation, it is instructive
to consider the special case in which the row and column skeleton dimensions are
identical for each block, say, k, so that the total row and column skeleton dimensions
are K ≡ Kr = Kc = pk. Then, studying (2.3) first and assuming that D is invertible,
block elimination of x and y yields

(Λ+ S) z = ΛRD−1b,


