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Fig. 6.6. Instantaneous intensity [!(u)]2 of the pressure field in response to an incoming
vertical plane wave for various scattering geometries characterized by the separation distance δ/λ
in wavelengths between the centers of two identical scatterers.

Table 6.7
Numerical results for the multiple scattering example, consisting of six configurations with var-

ious separation distances δ/λ, relative to the wavelength, between the centers of two identical scat-
terers, solved to precision ε = 10−6: TFMM, time for FMM/GMRES solve (s); TRS, time for
preconditioned FMM/GMRES solve (s); nFMM, number of iterations required for FMM/GMRES;
nRS, number of iterations required for preconditioned FMM/GMRES; E, relative error; Tcm, matrix
compression time for scatterer (s); Tlu, sparse matrix factorization time for scatterer (s).

δ/λ TFMM TRS nFMM nRS E
30.0 7.9E+1 8.9E−1 697 8 1.3E−8
20.0 7.7E+1 1.1E+0 694 10 5.8E−9
15.0 8.0E+1 1.2E+0 695 11 6.9E−9
12.5 7.9E+1 1.3E+0 695 12 7.8E−9
11.0 7.9E+1 1.4E+0 704 14 8.7E−9
10.5 8.0E+1 1.5E+0 706 14 1.3E−8
Tcm 6.6E−1
Tlu 9.3E−2
total 4.7E+2 8.1E+0

7. Generalizations and conclusions. We have presented a multilevel matrix
compression algorithm and demonstrated its efficiency at accelerating matrix-vector
multiplication and matrix inversion in a variety of contexts. The matrix structure
required is fairly general and relies only on the assumption that the matrix have low-
rank off-diagonal blocks. As a fast direct solver for the boundary integral equations of
potential theory, we found our algorithm to be competitive with fast iterative methods
based on FMM/GMRES in both 2D and 3D, provided that the integral equation kernel
is not too oscillatory and that the system size is not too large in 3D. In such cases,
the total solution times for both methods were very comparable. Our solver has clear


