Challenges and Prospects of ML for the Physical Sciences

America/New_York
Ingrid Daubechies Auditorium/2-IDA (162 5th Avenue)

Ingrid Daubechies Auditorium/2-IDA

162 5th Avenue

Flatiron Institute Entrance on 21st St.
200
Description
Our goal is to gather a diverse community of researchers at the cross-roads of ML, Statistics, Applied Mathematics and Physics to exchange views and ideas on current successes and roadblocks of data-driven tools applied to computational science. 
Wi-Fi Network: SimonsGuests Password: simonsnyc
    • 8:30 AM
      Breakfast 162 Fifth Avenue/2-2nd Floor Promenade

      162 Fifth Avenue/2-2nd Floor Promenade

      162 5th Avenue

      200
    • 1
      Joan Bruna

      Exponential Separations in Symmetric and Anti-Symmetric Neural Networks

      Speaker: Joan Bruna (NYU / CCM)
    • Q&A
    • 2
      Alberto Bietti

      Benefits of convolutional models: a kernel perspective

      Speaker: Alberto Bietti (NYU)
    • Q&A
    • 10:30 AM
      Coffee Break
    • 3
      Yi Ma

      CTRL: Closed-Loop Data Transcription via Rate Reduction

      Speaker: Yi Ma (University of California, Berkeley)
    • Q&A
    • 4
      Soledad Villar

      Dimensionless machine learning: Imposing exact units equivariance

      Speaker: Soledad Villar (Johns Hopkins University)
    • Q&A
    • 12:30 PM
      Lunch 162 Fifth Avenue/2-2nd Floor Promenade

      162 Fifth Avenue/2-2nd Floor Promenade

      162 5th Avenue

      200
    • 5
      CCN - Eero Simoncelli

      Image Priors in the Era of Machine Learning

    • 6
      Jiequn Han

      Developing reduced-order PDEs with machine learning-based closure models

      Speaker: Jiequn Han (CCM, Flatiron Institute)
    • Q&A
    • 3:15 PM
      Coffee Break
    • 3:45 PM
      Working Session
    • 8:30 AM
      Breakfast 162 Fifth Avenue/2-2nd Floor Promenade

      162 Fifth Avenue/2-2nd Floor Promenade

      162 5th Avenue

      200
    • 7
      Lawrence Saul

      The method of sparse similarity matching for high dimensional data analysis

      Speaker: Lawrence Saul (UCSD/CCM )
    • Q&A
    • 8
      SueYeon Chung

      Efficient representation geometry in distributed neural networks

      Speaker: SueYeon Chung (CCN)
    • Q&A
    • 10:30 AM
      Coffee Break
    • 9
      Rose Yu

      Approximately Equivariant Networks for Imperfectly Symmetric Dynamics

      Speaker: Rose Yu (UCSD)
    • Q&A
    • 10
      Léon Bottou

      Out-of-distribution generalization and causation

      Speaker: Léon Bottou (Facebook)
    • Q&A
    • 12:30 PM
      Lunch
    • 2:00 PM
      CCB - Mike Shelley
    • 11
      Michael Mahoney

      Continuous Network Models for Sequential Predictions

      Speaker: Michael Mahoney (UC Berkeley )
    • Q&A
    • 12
      Kyle Cranmer
      Speaker: Kyle Cranmer (NYU)
    • Q&A
    • 4:00 PM
      Coffee Break
    • 4:30 PM
      Working Session
    • 8:30 AM
      Breakfast 162 Fifth Avenue/2-2nd Floor Promenade

      162 Fifth Avenue/2-2nd Floor Promenade

      162 5th Avenue

      200
    • 13
      Maarten de Hoop

      Deep learning, active tectonics and planetary exploration

      Speaker: Maarten de Hoop (Rice University )
    • Q&A
    • 14
      Marylou Gabrié

      Enhancing Sampling with Learning

      Speaker: Marylou Gabrié (Ecole Polytechnique)
    • Q&A
    • 10:30 AM
      Coffee Break
    • 15
      Shirley Ho

      Interpretable Machine Learning for Astrophysics

      Speaker: Shirley Ho (CCA )
    • Q&A
    • 16
      Giuseppe Carleo

      Variational quantum states in the age of machine learning

      Speaker: Giuseppe Carleo (École Polytechnique)
    • Q&A
    • 12:30 PM
      Lunch
    • 2:00 PM
      CCA - David Hogg
    • 17
      Wenda Zhou

      Spatial equivariance and deep networks: practical approaches and challenges

      Speaker: Wenda Zhou (NYU/CCM )
    • Q&A
    • 18
      Tommaso Biancalani

      Deep learning for virtual screens of antibiotics

      Speaker: Tommaso Biancalani (Genentech )
    • Q&A
    • 4:00 PM
      Coffee Break
    • 4:30 PM
      Working Session
    • 5:30 PM
      Dinner at BLACKBARN Restaurant

      19 E 26th St, New York, NY 10010

    • 8:30 AM
      Breakfast 162 Fifth Avenue/2-2nd Floor Promenade

      162 Fifth Avenue/2-2nd Floor Promenade

      162 5th Avenue

      200
    • 19
      Robert Gower

      Adaptive Stochastic Gradient Methods that leverage Interpolation

      Speaker: Robert Gower (CCM )
    • Q&A
    • 20
      Eric Vanden Eijnden

      Probability flow solution of the Fokker-Planck equation

      Speaker: Eric Vanden Eijnden (NYU)
    • Q&A
    • 10:30 AM
      Coffee Break
    • 21
      Leslie Greengard

      Electromagnetic/acoustic design optimization

      Speaker: Leslie Greengard (CCM )
    • Q&A
    • 22
      Yongji Wang

      Physics-informed Neural Networks for fluid dynamics

      Speaker: Yongji Wang (Princeton University )
    • Q&A
    • 12:30 PM
      Lunch
    • 2:00 PM
      CCQ - Domenico Di Sante
    • 23
      Miles Cranmer

      One Trick to Improve Regularized Training of Neural Networks

      Speaker: Miles Cranmer (Princeton University/CCA)
    • Q&A
    • 24
      Stéphane Mallat

      Learning and Generating Multiscale Physics

      Speaker: Stéphane Mallat (Collège de France/CCM )
    • Q&A
    • 4:00 PM
      Working Session
    • 8:30 AM
      Breakfast
    • 9:00 AM
      Working Session
    • 11:00 AM
      Lunch to-go