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Outline of my classes

● Intro to empirical risk problem and gradient descent (GD)

● (Stochastic Gradient) SGD for convex optimization. Theory 
and variants

● SGD with momentum and some tricks

● Lecture slides, exercises, & jupyter notebook: 
gowerrobert.github.io/
 



Part I: An Introduction 
to Supervised Learning



References for my lectures

Convex Optimization, 
Stephen Boyd

Pages 67 to 79

Understanding Machine 
Learning: From Theory to 
Algorithms

Chapter 2
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Find mapping  h that assigns the “correct” target to each input 

Is There a Cat in the Photo?

Yes

No

x: Input/Feature y: Output/Target
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Linear Regression for Height

The Training 
Algorithm

Age

Height Sex = 0



Linear Regression for Height

The Training 
Algorithm

Age

Height

Other options 
aside from linear?

Sex = 0



Parametrizing the Hypothesis
H
e
i
g
h
t

Age

Linear:

Polinomial:

Age

H
e
i
g
h
t

Neural Net:
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Squared
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Loss Functions
Why a 
Squared
Loss?

Loss Functions

The Training Problem

Typically a 
convex function
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Different the Loss Functions

Square Loss

Binary Loss

Hinge Loss

EXE: Plot the binary and hinge loss function in when           

y=1 in all 
figures
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Is a notion of Loss enough? 
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Are we done?
The Training Problem

Is a notion of Loss enough? 

What happens when we do not have enough data?
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Regularizor Functions

General Training Problem

Regularization/Prior

Exe:

Goodness of fit, 
fidelity term ...etc

Penalizes 
complexity

Controls tradeoff 
between fit and 
complexity



Overfitting and Model Complexity

Fitting kth order polynomial 



Overfitting and Model Complexity

Fitting kth order polynomial 

For λ big enough, 
the solution is a 2nd 
order polynomial



Linear hypothesis

Exe: Ridge Regression

Ridge Regression 

L2 loss

L2 regularizor



Linear hypothesis

Exe: Support Vector Machines

SVM with soft margin

Hinge loss

L2 regularizor



Linear hypothesis

Exe: Logistic Regression

Logistic Regression

Logistic loss

L2 regularizor
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ML as seen by Optimizer



Part II: Solving the 
Training Problem
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A Datum Function

Finite Sum Training Problem 

Re-writing as Sum of Terms

Ignore all 
structure for now
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The Training Problem



Optimization is hard (in general)

Need 
assumptions!
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Gradient Descent Example

A Logistic Regression 
problem using the 
fourclass labelled data 
from LIBSVM 

(n, d)= (862,2) 

Can we prove 
that this always 
works?

Logistic Regression
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  Optimal point

Gradient Descent Example

A Logistic Regression 
problem using the 
fourclass labelled data 
from LIBSVM 

(n, d)= (862,2) 

Can we prove 
that this always 
works?

Convex and 
smooth training 
problems

No! There is no 
universal optimization 
method. The “no free 
lunch” of Optimization 

Specialize

Logistic Regression



Main assumption
Nice property

All stationary points are 
global minima

Lemma: Convexity => Nice property 

PROOF: 



Data science methods most used 
(Kaggle 2017 survey)

Convex 
Optimization 

problems



Part II: Convexity, 
Smoothness, Gradient 

Descent



Convexity

w



Convexity: First derivative



Convexity: Second derivative



Convexity: Examples

Norms and squared norms:

Negative log and logistic:

Proof is in the  
“Convexity & 
smoothness” 
exercise list

Hinge loss

Negatives log determinant, exponentiation … etc



Assumption: Strong convexity

Hinge loss + L2

Quadratic lower bound

EXE:
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Assumption: Strong convexity

Hinge loss + L2

Quadratic lower bound

EXE:



Example: SVM with soft marginExample: SVM with soft margin

Assumption: Strong convexity

Not an Example: Neural networks, dictionary learning, 
Matrix completion, and more
Not an Example: Neural networks, dictionary learning, 
Matrix completion, and more
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Assumption: Smoothness

EXE: Using that

Show that



Important consequences of 
Smoothness



Smoothness: Examples

Convex quadratics:

Logistic:

Proof is an 
exercise!

Trigonometric:



Smoothness: Convex 
counter-example

Does not fit. 
Not smooth

Non-smooth can be 
solved with proximal SGD 



Gradient Descent via Smoothness

Minimizing the upper bound in w we get:
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Gradient Descent via Smoothness

Minimizing the upper bound in w we get:

A gradient 
descent step !

Smoothness Lemma (EXE): 
If f is L-smooth, show that 



81

Convergence GD strongly convex 

Theorem

Let f be m-strongly convex and L-smooth. 

Where

49 / 120



82

Convergence GD strongly convex 

Theorem

Let f be m-strongly convex and L-smooth. 

Where

49 / 120



83

Convergence GD strongly convex 

Theorem

Let f be m-strongly convex and L-smooth. 

Where

EXE: Solve the questions in “Complexity rates.pdf”           
49 / 120



Gradient Descent Example: logistic 



Gradient Descent Example: logistic 

Logistic Regression

Linear Regression

Exe: strongly convex + smooth
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Proof:

Proof Convergence GD strongly 
convex + smooth
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(EXE): Repeat proof for                                   
 

Proof Convergence GD strongly 
convex + smooth

Smoothness Lemma (EXE): 
 

         

52 / 120
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Convergence GD for smooth + convex

Theorem

Let f be convex and L-smooth. 

Where

53 / 120



Proof:

Co-coercivity Lemma

Convex and Smooth Properties

Adding together the last two inequalities gives the result.
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Proof:

Co-coercivity Lemma

Convex and Smooth Properties

Use convexity Use smoothness

Minimizing in z gives:

Inserting this z in bound (and after some computations) gives: 

Switching x for y gives:

Adding together the last two inequalities gives the result.

101



Proof Sketch of GD smooth + convex 
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Proof Sketch of GD smooth + convex 
Use co-coercivity



Co-coercivity:

Proof Sketch of GD smooth + convex 
Use co-coercivity



Inserting above shows decreasing

Co-coercivity:

Proof Sketch of GD smooth + convex 
Use co-coercivity



Decreasing:

Proof Sketch of GD smooth + convex 
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Subtracting f(w*) =f* from the Smoothness Lemma bound gives

Decreasing:

Proof Sketch of GD smooth + convex 

Using convexity:



Returning to smoothness bound

See “Gradient convergence notes.pdf” for a solution to this nonlinear 
recurrence relation of the form 

Subtracting f(w*) =f* from the Smoothness Lemma bound gives

Decreasing:

Proof Sketch of GD smooth + convex 

Using convexity:



Acceleration and 
lower bounds



The Accelerated gradient method

Let f be m-strongly convex and L-smooth. 



The Accelerated gradient method

Weird 
extrapolation, 
but it works

Let f be m-strongly convex and L-smooth. 



115Convergence lower bounds 
strongly convex

Theorem (Nesterov)

such that

Yuri Nesterov (1998), Springer Publishing,  Introductory Lectures 
on Convex Optimization: A Basic Course 

For any optimization algorithm where

Accelerated 
gradient has 

this rate!
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The Accelerated gradient method

Weird 
extrapolation, 
but it works

Let f be convex and L-smooth. 
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Convergence lower bounds convex

Theorem (Nesterov)

Yuri Nesterov (1998), Springer Publishing,  Introductory Lectures on Convex 
Optimization: A Basic Course 

such that

For any optimization algorithm where

Accelerated 
gradient has 

this rate!
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Convergence lower bounds convex

Theorem (Nesterov)

Yuri Nesterov (1998), Springer Publishing,  Introductory Lectures on Convex 
Optimization: A Basic Course 

such that

For any optimization algorithm where

Accelerated 
gradient has 

this rate!

62 / 120
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Exercises !

Solve Exercises lists:
➢ Complexity and convergence rates
➢ Convexity and smoothness, complexity
➢ Ridge regression and gradient descent

>  gowerrobert.github.io <

63 / 120
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Part III: Stochastic 
Gradient Descent
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The Training Problem
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Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single 
data function         at each iteration?

Unbiased Estimate
Let j be a random index sampled from {1, …, n} selected 
uniformly at random. Then

   
 

EXE: 
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Stochastic Gradient Descent
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More reason why ML likes SGD
The training problem
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The training problem
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The statistical learning problem:
Minimize the expected loss over an unknown expectation 
The statistical learning problem:
Minimize the expected loss over an unknown expectation 

More reason why ML likes SGD
The training problem

Test problem

SGD can be applied to the
 statistical learning problem!

But we already know these labels
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Why Machine Learners like SGD
The statistical learning problem:
Minimize the expected loss over an unknown expectation 
The statistical learning problem:
Minimize the expected loss over an unknown expectation 
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Stochastic Gradient Descent

  Optimal point
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GD vs Stochastic Gradient Descent

Optimal point  

Gradient Descent Stochastic Gradient 
Descent

 Why does this happen? Need Assumptions
71 / 120
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Strongly quasi-convexity 

Assumptions for Convergence

Each f
i
 is convex and L

i
 smooth

Definition: Gradient Noise
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Assumptions for Convergence

EXE:  Calculate the L
i 
’s and L

max
 for
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Complexity / Convergence

Theorem

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. 
Richtarik, ICML 2019, arXiv:1901.09401
SGD: General Analysis and Improved Rates.
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Proof:
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Taking total expectation
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Complexity / Convergence

Theorem

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. 
Richtarik, ICML 2019, arXiv:1901.09401
SGD: General Analysis and Improved Rates.
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averaging 
the points

1) Start with 
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end with 
smaller steps
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Stochastic Gradient Descent 
α =0.5

2) Try 
averaging 
the points

1) Start with 
big steps and 
end with 
smaller steps
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Stepsize 
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SGD shrinking stepsize

Shrinking 
Stepsize How should we 

 sample j ?

Does this converge?
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Complexity / Convergence
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Complexity / Convergence

Theorem for switching to shrinking stepsizes
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Complexity / Convergence

Theorem for switching to shrinking stepsizes
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Stochastic Gradient Descent with 
switch to decreasing stepsizes

Switch 
point
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Stochastic Gradient Descent with 
switch to decreasing stepsizes

Switch 
point

Noisy iterates. 
Take 
averages?
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SGD with (late start) averaging

B. T. Polyak and A. B. Juditsky,  SIAM Journal on Control 
and Optimization (1992)
Acceleration of stochastic approximation by averaging
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SGD with (late start) averaging

B. T. Polyak and A. B. Juditsky,  SIAM Journal on Control 
and Optimization (1992)
Acceleration of stochastic approximation by averaging

This is not efficient. 
How to make this 
efficient?
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Stochastic Gradient Descent 
Averaging the last few iterates
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Stochastic Gradient Descent 
Averaging the last few iterates

Averaging starts 
here



Part III.2: Stochastic 
Gradient Descent for 

Sparse Data
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Finite Sum Training Problem 

Lazy SGD updates for Sparse Data
L2 regularizor + 
linear hypothesis

Sparse Examples: 
encoding of categorical 
variables (hot one encoding), 
word2vec, recommendation 
systems ...etc
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Finite Sum Training Problem 

Lazy SGD updates for Sparse Data
L2 regularizor + 
linear hypothesis

Rescaling 
O(d)

Addition sparse 
vector O(s)

Sparse Examples: 
encoding of categorical 
variables (hot one encoding), 
word2vec, recommendation 
systems ...etc
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SGD step

Lazy SGD updates for Sparse Data

EXE: 
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SGD step
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SGD step

Lazy SGD updates for Sparse Data

EXE: 
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SGD step

Lazy SGD updates for Sparse Data

O(1) scaling + 
O(s) sparse add = 
O(s) update

EXE: 



Part IV: Momentum and 
gradient descent



Back to Gradient Descent

Step size/
 Learning rate



Local rate of changeLocal rate of change

GD motivated through local rate of change



Max local rateMax local rate

Local rate of changeLocal rate of change

GD motivated through local rate of change

GD is the “steepest descent”



Local motivation not good for global

Solution

Get’s stuck in “flat” valleys



Local motivation not good for global

Solution

Get’s stuck in “flat” valleys Give momentum to keep going



Heavey Ball Method:Heavey Ball Method:

Adding Momentum to GD 

Adds “Inertia” to update, 
like friction for a heavy ball 

Additional momentum
 parameter ≈ 0.99 
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Heavey Ball Method:Heavey Ball Method:

Equivalent Momentum formulation
GD with momentum:GD with momentum:
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Heavey Ball Method:Heavey Ball Method:

Equivalent Iterate Averaging 
formulation

Adds “Inertia” to update

Iterate Averaging:Iterate Averaging:

Additional sequence 
of variables

Averaging of 
variables

New parameters



Define:Define:

Equivalent Iterate Averaging 
formulation
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Heavey Ball Method:Heavey Ball Method:

Define:Define:

Equivalent Iterate Averaging 
formulation

Iterate Averaging:Iterate Averaging:



Part IV.2: Convergence 
of Momentum with 
gradient descent



Convergence of Gradient Descent 

Theorem Theorem 

stepsize
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Theorem Theorem 
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CorollaryCorollary



Convergence of Gradient Descent with 
Momentum

Theorem Theorem 

stepsize

Polyak 1964
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Momentum

Theorem Theorem 

stepsize
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Convergence of Gradient Descent with 
Momentum

Theorem Theorem 

stepsize

CorollaryCorollary

Polyak 1964

Optimal iteration complexity
 for this function class
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Fundamental Theorem of CalculusFundamental Theorem of Calculus

Proof: Convergence of Heavy Ball. Two 
time steps

Depends on two times steps
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EXE on Eigenvalues: EXE on Eigenvalues: 



Part V: Momentum with 
SGD



Stochastic Heavey Ball Method:Stochastic Heavey Ball Method:

Adding Momentum to SGD

SGD with momentum:SGD with momentum:

Sampled i.i.d
  

Rumelhart, Hinton, 
Geoffrey, Ronald, 
1986, Nature

Iterate Averaging:Iterate Averaging:



SGDm and Averaging 

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
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Momentum as exponentiated average:Momentum as exponentiated average:

SGDm and Averaging 

Acts like an approximate 
variance reduction since

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html

This is why momentum
 works well with SGD
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Stochastic Gradient Descent with 
momentum

SGDm =
 SGD with 
momentum



255
Stochastic Gradient Descent with 
momentum vs GD

Can we prove momentum 
always works? Difficult: Recent 2019 results only



Convergence of Gradient Descent with 
Momentum

Does momentum make 
SGD converge faster?

Not clear, recently same 
rate as SGD + averaging
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2020



Convergence of Gradient Descent with 
Momentum

Does momentum make 
SGD converge faster?

Not clear, recently same 
rate as SGD + averaging

Sebbouth, Defazio, 
RMG, online soon, 
2020

Results use iterate averaging
 to crack the proof!



Part V: Test error and 
Validation
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Validation Error
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Validation Error
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Validation Error
Train set Validation set
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Validation Error
Train set Validation set

Use to train
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Validation Error
Train set Validation set

Use to train

Use to validate
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Stochastic Gradient Descent with 
momentum vs GD on validation set

This is why SGD is popular in ML
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