ML X Science Summer School

Optimization for ML

Robert M. Gower

SIMONS FOUNDATION TINSTITUTE

ML x science summer school, Flatiron Institute, June, New York

Outline of my classes

- Intro to empirical risk problem and gradient descent (GD)
- (Stochastic Gradient) SGD for convex optimization. Theory and variants
- SGD with momentum and some tricks
- Lecture slides, exercises, & jupyter notebook: gowerrobert.github.io/

Part I: An Introduction to Supervised Learning

References for my lectures

Chapter 2

Understanding Machine Learning: From Theory to Algorithms

Convex Optimization, Stephen Boyd

Pages 67 to 79

Stephen Boyd and Lieven Vandenberghe

Convex Optimization

Yes

Yes

No

Yes

x: Input/Feature

y: Output/Target

Find mapping *h* that assigns the "correct" target to each input $h: x \in \mathbf{R}^d \longrightarrow y \in \mathbf{R}$

y= *-1* means no/false

Example Hypothesis: Linear Model $h_w(x_1, x_2) = w_0 + x_1 w_1 + x_2 w_2 \stackrel{x_0=1}{=} \langle w, x \rangle$

Example Hypothesis: Linear Model $h_w(x_1, x_2) = w_0 + x_1w_1 + x_2w_2 \stackrel{x_0=1}{=} \langle w, x \rangle$

Example Training Problem: $\min_{w \in \mathbf{R}^3} \frac{1}{n} \sum_{i=1}^n \left(h_w(x_1^i, x_2^i) - y^i \right)^2$

Age

Linear Regression for Height Sex = 0Height Х Х $h_w(x_1, x_2)$ x_2 Age **The Training** Algorithm n $\min_{w \in \mathbf{R}^3} \frac{1}{n} \sum_{i=1}^{n} \left(h_w(x_1^i, x_2^i) - y^i \right)^2$ $\overline{i=1}$

Parametrizing the Hypothesis

Loss Functions

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \qquad \qquad \begin{array}{c} \text{Why a} \\ \text{Squared} \\ \text{Loss?} \end{array}$$

Loss Functions

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \qquad \begin{array}{c} \text{Why a} \\ \text{Squared} \\ \text{Loss?} \end{array}$$

Let
$$y_h := h_w(x)$$

Loss Functions $\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$ $(y_h, y) \to \ell(y_h, y)$

The Training Problem $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$

Loss Functions

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \qquad \begin{array}{c} \text{Why a} \\ \text{Squared} \\ \text{Loss?} \end{array}$$

Let
$$y_h := h_w(x)$$

Loss Functions $\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$ $(y_h, y) \to \ell(y_h, y)$ Typically a convex function

The Training Problem $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$

Different the Loss Functions

Let
$$y_h := h_w(x)$$

Square Loss $\ell(y_h, y) = (y_h - y)^2$
Binary Loss $\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$
Hinge Loss $\ell(y_h, y) = \max\{0, 1 - y_h y\}$

Different the Loss Functions

Let
$$y_h := h_w(x)$$

Hinge Loss

Square Loss $\ell(y_h, y) = (y_h - y)^2$

Binary Loss
$$\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$$

 $\ell(y_h, y) = \max\{0, 1 - y_h y\}$

Different the Loss Functions

Let
$$y_h := h_w(x)$$

Square Loss
$$\ell(y_h, y) = (y_h - y)^2$$

Binary Loss
$$\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$$

Hinge Loss $\ell(y_h, y) = \max\{0, 1 - y_h y\}$
XE: Plot the binary and hinge loss function in when $y = -1$

y=1 in all

figures

1

 y_h

 $\ell(y_h,1)$ (

Are we done?

Is a notion of Loss enough?

What happens when we do not have enough data?

Are we done?

The Training Problem $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$

Is a notion of Loss enough?

What happens when we do not have enough data?

Fitting 1st order polynomial $h_w = \langle w, x \rangle$ $w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$

Fitting 3rd order polynomial $h_w = \sum_{i=0}^{3} w_i x^i$ $w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} \left(h_w(x^i) - y^i \right)^2$

Fitting 9th order polynomial $h_w = \sum_{i=0}^9 w_i x^i$ $w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$

Regularization/Prior

Regularizor Functions

Regularization/Prior

Regularizor Functions

Regularization/Prior

Regularizor Functions

Regularization/Prior

Regularizor Functions

Controls tradeoff between fit and complexity

Regularization/Prior

Regularizor Functions

Controls tradeoff between fit and complexity

Exe: $R(w) = ||w||_2^2, \quad ||w||_1, \quad ||w||_p, \text{ other norms } \dots$

Overfitting and Model Complexity

Overfitting and Model Complexity

Exe: Ridge Regression

Linear hypothesis $h_w(x) = \langle w, x \rangle$

L2 regularizor $R(w) = ||w||_2^2$

L2 loss
$$\ell(y_h,y) = (y_h-y)^2$$

Ridge Regression $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n (y^i - \langle w, x^i \rangle)^2 + \lambda ||w||_2^2$

Exe: Support Vector Machines

Linear hypothesis $h_w(x) = \langle w, x \rangle$

2 regularizor
$$R(w) = ||w||_2^2$$

Hinge loss $\ell(y_h, y) = \max\{0, 1 - y_h y\}$

SVM with soft margin

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y^i \langle w, x^i \rangle\} + \lambda ||w||_2^2$$

Exe: Logistic Regression

Linear hypothesis $h_w(x) = \langle w, x \rangle$

2 regularizor
$$R(w) = ||w||^2$$

Logistic loss $\ell(y_h, y) = \ln(1 + e^{-yy_h})$

Logistic Regression $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

(2) Choose a parametrization for hypothesis: $h_w(x)$

- (1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$

- (1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$
- (4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

- (1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$
- (4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

(5) Test and cross-validate. If fail, go back a few steps

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$

(4) Solve the training problem: $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$

(5) Test and cross-validate. If fail, go back a few steps

Part II: Solving the Training Problem

Re-writing as Sum of Terms

A Datum Function

$$f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} f_i(w) =: f(w)$$

Ignore all structure for now

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla\left(\frac{1}{n}\sum_{i=1}^{n}f_i(w)\right) = \frac{1}{n}\sum_{i=1}^{n}\nabla f_i(w)$$

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for $t = 0, 1, 2, \dots, T - 1$ $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^T

Optimization is hard (in general)

Gradient Descent Example

A Logistic Regression problem using the fourclass labelled data from LIBSVM (n, d)= (862,2)

Logistic Regression $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$

Can we prove that this always works?

Can we prove that this always works?

Can we prove that this always works?

No! There is no universal optimization method. The "no free lunch" of Optimization

Convex and smooth training problems

Main assumption

Nice property

If $\nabla f(w^*) = 0$ then $f(w^*) \le f(w), \quad \forall w \in \mathbb{R}^d$

All stationary points are global minima

Lemma: Convexity => Nice property

If
$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle$$
, $\forall w, y \in \mathbb{R}^d$

then nice property holds

PROOF: Choose
$$y = w^*$$

Data science methods most used (Kaggle 2017 survey)

Part II: Convexity, Smoothness, Gradient Descent

Convexity

We say $f : \operatorname{dom}(f) \subset \mathbb{R}^d \to \mathbb{R}$ is convex if $\operatorname{dom}(f)$ is convex and $f(\lambda w + (1 - \lambda)y) \le \lambda f(w) + (1 - \lambda)f(y), \quad \forall w, y \in \mathbb{R}^d, \lambda \in [0, 1]$ $\lambda f(w) + (1 - \lambda)f(y)$ f(w) $f(\lambda w + (1 - \lambda)y)$ \boldsymbol{y} W

Convexity: First derivative

A differentiable function $f : \operatorname{dom}(f) \subset \mathbb{R}^d \to \mathbb{R}$ is convex iff

 $f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle$

Convexity: Second derivative

A twice differentiable function $f : \operatorname{dom}(f) \subset \mathbb{R}^d \to \mathbb{R}$ is convex iff

Convexity: Examples

Extended-value extension:

Norms and squared norms:

Negative log and logistic:

 $f: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ $f(x) = \infty, \quad \forall x \not\in \operatorname{dom}(f)$ Proof is in the $x \mapsto ||x||$ "Convexity & smoothness" $x \mapsto ||x||^2$ exercise list $x \mapsto -\log(x)$ $x \mapsto \log\left(1 + e^{-y\langle a, x \rangle}\right)$ $x \mapsto \max\{0, 1 - yx\}$

Hinge loss

Negatives log determinant, exponentiation ... etc

We say $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ is μ -strongly convex if

We say $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ is μ -strongly convex if

We say $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ is μ -strongly convex if

Not an Example: Neural networks, dictionary learning, Matrix completion, and more

Assumption: Smoothness

We say $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^d$$

Assumption: Smoothness

We say $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^d$$

If a twice differentiable $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ is *L*-smooth then

1)
$$d^{\top} \nabla^2 f(x) d \leq L \cdot ||d||_2^2, \quad \forall x, d \in \mathbb{R}^d$$

2)
$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \quad \forall x, y \in \mathbb{R}^d$$

Assumption: Smoothness

We say $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^d$$

If a twice differentiable $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ is *L*-smooth then

1)
$$d^{\top} \nabla^2 f(x) d \leq L \cdot ||d||_2^2, \quad \forall x, d \in \mathbb{R}^d$$

2)
$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \quad \forall x, y \in \mathbb{R}^d$$

EXE: Using that $\sigma_{\max}(X)^2 ||d||_2^2 \ge ||X^{\top}d||_2^2$

Show that $\frac{1}{2}||X^{\top}w - b||_2^2$ is $\sigma_{\max}(X)^2$ -smooth

Smoothness: Examples

Convex quadratics:

Logistic:

Trigonometric:

$$x \mapsto x^\top A x + b^\top x + c$$

$$x \mapsto \log\left(1 + e^{-y\langle a, x \rangle}\right)$$

$$x \mapsto \cos(x), \sin(x)$$

Proof is an exercise!

Smoothness: Convex counter-example

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^d$$

$$\nabla_w \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2 \right) = \nabla f(y) + L(w - y) = 0$$

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^d$$

$$\nabla_{w} \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^{2} \right) = \nabla f(y) + L(w - y) = 0$$

$$w = y - \frac{1}{L} \nabla f(y)$$

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^d$$

$$\nabla_w \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2 \right) = \nabla f(y) + L(w - y) = 0$$

$$A \text{ gradient}$$

$$descent \text{ step !}$$

$$w = y - \frac{1}{L} \nabla f(y)$$

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^d$$

$$\begin{aligned} \nabla_{w} \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^{2} \right) &= \nabla f(y) + L(w - y) = 0 \\ \\ \textbf{Smoothness Lemma (EXE):} \\ \text{If } f \text{ is } L \text{-smooth, show that} \\ f(y - \frac{1}{L} \nabla f(y)) - f(y) &\leq -\frac{1}{2L} ||\nabla f(y)||_{2}^{2}, \forall y \\ f(w^{*}) - f(w) &\leq -\frac{1}{2L} ||\nabla f(w)||_{2}^{2}, \forall w \in \mathbb{R}^{n} \\ \text{where } f(w^{*}) \leq f(w), \quad \forall w \in \mathbb{R}^{n} \end{aligned}$$

Convergence GD strongly convex

Theorem

Let *f* be μ -strongly convex and *L*-smooth.

$$||w^{t} - w^{*}||_{2}^{2} \le \left(1 - \frac{\mu}{L}\right)^{t} ||w^{1} - w^{*}||_{2}^{2}$$

Where

$$w^{t+1} = w^t - \frac{1}{L} \nabla f(w^t), \text{ for } t = 1, \dots, T$$

Convergence GD strongly convex

Theorem

Let *f* be μ -strongly convex and *L*-smooth.

$$||w^{t} - w^{*}||_{2}^{2} \le \left(1 - \frac{\mu}{L}\right)^{t} ||w^{1} - w^{*}||_{2}^{2}$$

Where

$$w^{t+1} = w^t - \frac{1}{L} \nabla f(w^t), \text{ for } t = 1, \dots, T$$

$$\Rightarrow \text{ for } \frac{||w^T - w^*||_2^2}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{L}{\mu} \log\left(\frac{1}{\epsilon}\right) = O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

Convergence GD strongly convex

Theorem

Let *f* be μ -strongly convex and *L*-smooth.

$$||w^{t} - w^{*}||_{2}^{2} \le \left(1 - \frac{\mu}{L}\right)^{t} ||w^{1} - w^{*}||_{2}^{2}$$

Where

$$w^{t+1} = w^t - \frac{1}{L} \nabla f(w^t), \text{ for } t = 1, \dots, T$$

$$\Rightarrow \text{ for } \frac{||w^T - w^*||_2^2}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{L}{\mu} \log\left(\frac{1}{\epsilon}\right) = O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

EXE: Solve the questions in "Complexity rates.pdf"

49 / 120

Gradient Descent Example: logistic

Gradient Descent Example: logistic

Proof:

$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2$$

$$w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$$

$$= ||w^t - w^*||_2^2 + \frac{2}{L}\langle\nabla f(w^t), w^* - w^t\rangle + \frac{1}{L^2}||\nabla f(w^t)||_2^2$$

Proof: $||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2$ $w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$ $= ||w^t - w^*||_2^2 + \frac{2}{L}\langle \nabla f(w^t), w^* - w^t \rangle + \frac{1}{L^2}||\nabla f(w^t)||_2^2$

Proof:

Proof:
$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2 \qquad \qquad w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$$

$$= ||w^{t} - w^{*}||_{2}^{2} + \frac{2}{L} \langle \nabla f(w^{t}), w^{*} - w^{t} \rangle + \frac{1}{L^{2}} ||\nabla f(w^{t})||_{2}^{2}$$

Strong convexity: $f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w - w^*||^2$ $\langle \nabla f(w), w^* - w \rangle \le -\frac{\mu}{2} ||w - w^*||^2 - (f(w) - f(w^*))$

Proof:

Proof:
$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2 \qquad \qquad w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$$

$$= ||w^{t} - w^{*}||_{2}^{2} + \frac{2}{L} \langle \nabla f(w^{t}), w^{*} - w^{t} \rangle + \frac{1}{L^{2}} ||\nabla f(w^{t})||_{2}^{2}$$

$$\begin{aligned} & \text{Strong convexity:} \\ & f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w - w^*||^2 \\ & \langle \nabla f(w), w^* - w \rangle \le -\frac{\mu}{2} ||w - w^*||^2 - (f(w) - f(w^*)) \\ & w^{t+1} - w^* ||_2^2 \le \left(1 - \frac{\mu}{L}\right) ||w^t - w^*||^2 - \frac{2}{L} (f(w^t) - f(w^*)) + \frac{1}{L^2} ||\nabla f(w^t)||^2 \end{aligned}$$

51/120

$$||w^{t+1} - w^*||_2^2 \le \left(1 - \frac{\mu}{L}\right) ||w^t - w^*||^2 - \frac{2}{L}(f(w^t) - f(w^*)) + \frac{1}{L^2} ||\nabla f(w^t)||^2$$

$$||w^{t+1} - w^*||_2^2 \le \left(1 - \frac{\mu}{L}\right) ||w^t - w^*||^2 - \frac{2}{L}(f(w^t) - f(w^*)) + \frac{1}{L^2} ||\nabla f(w^t)||^2$$

Smoothness Lemma (EXE):

$$f(w^*) - f(w) \le -\frac{1}{2L} ||\nabla f(w)||_2^2$$

$$||\nabla f(w)||_2^2 \le 2L(f(w) - f(w^*))$$

$$||w^{t+1} - w^*||_2^2 \le \left(1 - \frac{\mu}{L}\right) ||w^t - w^*||^2 - \frac{2}{L}(f(w^t) - f(w^*)) + \frac{1}{L^2} ||\nabla f(w^t)||^2$$

Smoothness Lemma (EXE):

 $f(w^*) - f(w) \le -\frac{1}{2L} ||\nabla f(w)||_2^2$

$$||\nabla f(w)||_2^2 \le 2L(f(w) - f(w^*))$$

$$\begin{split} ||w^{t+1} - w^*||_2^2 &\leq \left(1 - \frac{\mu}{L}\right) ||w^t - w^*||^2 - \frac{2}{L} (f(w^t) - f(w^*)) + \frac{2}{L} (f(w^t) - f(w^*)) \\ &= \left(1 - \frac{\mu}{L}\right) ||w^t - w^*||^2 \quad \blacksquare$$

$$||w^{t+1} - w^*||_2^2 \le \left(1 - \frac{\mu}{L}\right) ||w^t - w^*||^2 - \frac{2}{L}(f(w^t) - f(w^*)) + \frac{1}{L^2} ||\nabla f(w^t)||^2$$

Smoothness Lemma (EXE):

 $f(w^*) - f(w) \le -\frac{1}{2L} ||\nabla f(w)||_2^2$

$$||\nabla f(w)||_2^2 \le 2L(f(w) - f(w^*))$$

93

$$\begin{split} ||w^{t+1} - w^*||_2^2 &\leq \left(1 - \frac{\mu}{L}\right) \|w^t - w^*\|^2 - \frac{2}{L}(f(w^t) - f(w^*)) + \frac{2}{L}(f(w^t) - f(w^*)) \\ &= \left(1 - \frac{\mu}{L}\right) \|w^t - w^*\|^2 \quad \blacksquare$$

(EXE): Repeat proof for $w^{t+1} = w^t - \alpha \nabla f(w^t)$ where $\alpha > 0$. For what values of α does $w^t \to w^*$ converge? 52/120

Convergence GD for smooth + convex

Theorem

Let *f* be convex and *L*-smooth.

$$f(w^t) - f(w^*) \le \frac{2L||w^1 - w^*||_2^2}{t - 1} = O\left(\frac{1}{t}\right)$$

Where

$$w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$$

$$\Rightarrow \text{ for } \frac{f(w^T) - f(w^*)}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{2L}{\epsilon} = O\left(\frac{1}{\epsilon}\right)$$

Co-coercivity Lemma

If
$$f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$$
 convex and L -smooth then
 $f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$
and $\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$

Proof:

Co-coercivity Lemma

If
$$f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$$
 convex and L -smooth then
 $f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$
and $\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$

Use convexity Use smoothness

Proof:
$$f(y) - f(x) = f(y) - f(z) + f(z) - f(x)$$

Co-coercivity Lemma

If
$$f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$$
 convex and L -smooth then
 $f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$
and $\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$

$$\begin{array}{l} \text{Use convexity Use smoothness} \\ \text{Proof: } f(y) - f(x) = \overbrace{f(y) - f(z)}^{} + \overbrace{f(z) - f(x)}^{} \\ \leq \langle \nabla f(y), y - z \rangle + \langle \nabla f(x), z - x \rangle + \frac{L}{2} ||z - x||^2, \quad \forall z \end{array}$$

Co-coercivity Lemma

If
$$f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$$
 convex and L -smooth then
 $f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$
and $\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$

Co-coercivity Lemma

If
$$f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$$
 convex and L -smooth then
 $f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$
and $\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$

Use convexity Use smoothness
Proof:
$$f(y) - f(x) = \overline{f(y) - f(z)} + \overline{f(z) - f(x)}$$

 $\leq \langle \nabla f(y), y - z \rangle + \langle \nabla f(x), z - x \rangle + \frac{L}{2} ||z - x||^2, \quad \forall z$
Minimizing in z gives: $z = x - \frac{1}{L} (\nabla f(x) - \nabla f(y)).$
Inserting this z in bound (and after some computations) gives:
 $f(y) - f(x) \leq \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$

Co-coercivity Lemma

If
$$f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$$
 convex and L -smooth then
 $f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$
and $\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$

Use convexity Use smoothness
Proof:
$$f(y) - f(x) = f(y) - f(z) + f(z) - f(x)$$

 $\leq \langle \nabla f(y), y - z \rangle + \langle \nabla f(x), z - x \rangle + \frac{L}{2} ||z - x||^2, \quad \forall z$
Minimizing in z gives: $z = x - \frac{1}{L} (\nabla f(x) - \nabla f(y)).$
Inserting this z in bound (and after some computations) gives:

$$f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$$

Switching *x* for *y* gives:

$$f(x) - f(y) \le \langle \nabla f(x), x - y \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$$

$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2$$
$$= ||w^t - w^*||_2^2 + \frac{2}{L}\langle \nabla f(w^t), w^* - w^t \rangle + \frac{1}{L^2}||\nabla f(w^t)||_2^2$$

$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2$$
$$= ||w^t - w^*||_2^2 + \frac{2}{L}\langle \nabla f(w^t), w^* - w^t \rangle + \frac{1}{L^2}||\nabla f(w^t)||_2^2$$

$$\begin{aligned} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2 & \text{Use co-coercivity} \\ &= ||w^t - w^*||_2^2 + \frac{2}{L}\langle \nabla f(w^t), w^* - w^t \rangle + \frac{1}{L^2}||\nabla f(w^t)||_2^2 \end{aligned}$$

$$\begin{aligned} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2 & \text{Use co-coercivity} \\ &= ||w^t - w^*||_2^2 + \frac{2}{L}\langle \nabla f(w^t), w^* - w^t \rangle + \frac{1}{L^2}||\nabla f(w^t)||_2^2 \end{aligned}$$

Co-coercivity:
$$\langle \nabla f(y) - \nabla f(w), y - w \rangle \ge \frac{1}{L} ||\nabla f(w) - \nabla f(y)||_2$$

With
$$y = w^*$$
 gives $\langle \nabla f(w), w^* - w \rangle \leq -\frac{1}{L} ||\nabla f(w)||_2$

$$\begin{aligned} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2 & \text{Use co-coercivity} \\ &= ||w^t - w^*||_2^2 + \frac{2}{L}\langle \nabla f(w^t), w^* - w^t \rangle + \frac{1}{L^2}||\nabla f(w^t)||_2^2 \end{aligned}$$

Co-coercivity:
$$\langle \nabla f(y) - \nabla f(w), y - w \rangle \geq \frac{1}{L} ||\nabla f(w) - \nabla f(y)||_2$$

With
$$y = w^*$$
 gives $\langle \nabla f(w), w^* - w \rangle \leq -\frac{1}{L} ||\nabla f(w)||_2$

Inserting above shows decreasing

$$||w^{t+1} - w^*||_2^2 \le ||w^t - w^*||_2^2 - \frac{1}{L^2}||\nabla f(w^t)||_2^2$$

Thus $||w^t - w^*||$ is a decreasing sequence :

$$||w^{t+1} - w^*|| \le ||w^t - w^*|| \le \dots \le ||w^1 - w^*||$$

Decreasing: $||w^{t+1} - w^*|| \le ||w^t - w^*|| \le \dots \le ||w^1 - w^*||$

Decreasing:
$$||w^{t+1} - w^*|| \le ||w^t - w^*|| \le \dots \le ||w^1 - w^*||$$

Subtracting $f(w^*) = f^*$ from the Smoothness Lemma bound gives $f(w^{t+1}) - f^* \le f(w^t) - f^* - \frac{1}{2L} ||\nabla f(w^t)||_2^2$

Decreasing:
$$||w^{t+1} - w^*|| \le ||w^t - w^*|| \le \dots \le ||w^1 - w^*||$$

Subtracting $f(w^*) = f^*$ from the Smoothness Lemma bound gives $f(w^{t+1}) - f^* \le f(w^t) - f^* - \frac{1}{2L} ||\nabla f(w^t)||_2^2$

Decreasing:
$$||w^{t+1} - w^*|| \le ||w^t - w^*|| \le \dots \le ||w^1 - w^*||$$

Subtracting $f(w^*) = f^*$ from the Smoothness Lemma bound gives $f(w^{t+1}) - f^* \le f(w^t) - f^* - \frac{1}{2L} ||\nabla f(w^t)||_2^2$

Using convexity:

$$f(w^{t}) - f^{*} \leq \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle$$

$$\leq ||\nabla f(w^{t})||_{2} ||w^{t} - w^{*}||_{2} \longrightarrow -||\nabla f(w^{t})||_{2} \leq -\frac{f(w^{t}) - f^{*}}{||w^{t} - w^{*}||_{2}}$$

$$\leq ||\nabla f(w^{t})||_{2} ||w^{1} - w^{*}||_{2}$$
Proof Sketch of GD smooth + convex

Decreasing:
$$||w^{t+1} - w^*|| \le ||w^t - w^*|| \le \dots \le ||w^1 - w^*||$$

Subtracting $f(w^*) = f^*$ from the Smoothness Lemma bound gives $f(w^{t+1}) - f^* \le f(w^t) - f^* - \frac{1}{2L} ||\nabla f(w^t)||_2^2$

Using convexity:

$$f(w^{t}) - f^{*} \leq \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle$$

$$\leq ||\nabla f(w^{t})||_{2} ||w^{t} - w^{*}||_{2} \qquad -||\nabla f(w^{t})||_{2} \leq -\frac{f(w^{t}) - f^{*}}{||w^{t} - w^{*}||_{2}}$$

$$\leq ||\nabla f(w^{t})||_{2} ||w^{1} - w^{*}||_{2}$$

Returning to smoothness bound

$$f(w^{t+1}) - f^* \le f(w^t) - f^* - \frac{1}{2L} \frac{(f(w^t) - f^*)^2}{\|w^t - w^1\|^2} \bullet$$

See "Gradient convergence notes.pdf" for a solution to this nonlinear recurrence relation of the form $\delta_{t+1} \leq \delta_t - C\delta_t^2$

Acceleration and lower bounds

The Accelerated gradient method $\min_{w \in \mathbb{R}^d} f(w)$

Let *f* be μ -strongly convex and *L*-smooth.

Accelerated gradient for strong convex Set $w^1 = 0 = y^1$ for $t = 1, 2, 3, \dots, T$ $y^{t+1} = w^t - \frac{1}{L} \nabla f(w^t)$ $w^{t+1} = y^{t+1} + \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right) (y^{t+1} - w^t)$ Output w^{T+1}

The Accelerated gradient method $\min_{w \in \mathbb{R}^d} f(w)$

Let *f* be μ -strongly convex and *L*-smooth.

Accelerated gradient for strong convex Set $w^1 = 0 = y^1$ for $t = 1, 2, 3, \dots, T$ Weird $y^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$ $w^{t+1} = y^{t+1} + \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)(y^{t+1} - w^t)$ Output w^{T+1} extrapolation, but it works

Convergence lower bounds strongly convex

Theorem (Nesterov)

Yuri Nesterov (1998), Springer Publishing, Introductory Lectures on Convex Optimization: A Basic Course

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is *L*-smooth and μ -strongly convex such that

$$f(w^{T}) - f(w^{*}) \ge \frac{\mu}{2} \left(1 - \frac{2}{\sqrt{\kappa + 1}} \right)^{2(T-1)} ||w^{1} - w^{*}||_{2}^{2}$$

$$\kappa := \frac{L}{\mu} = O\left(\left(\left(1 - \frac{1}{\sqrt{\kappa}} \right)^{2T} \right) - \frac{\operatorname{Accelerated}}{\operatorname{gradient} \operatorname{has}}$$

$$\operatorname{this rate!}$$

115

Convergence lower bounds strongly convex

Theorem (Nesterov)

Yuri Nesterov (1998), Springer Publishing, Introductory Lectures on Convex Optimization: A Basic Course

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is *L*-smooth and μ -strongly convex such that

$$f(w^{T}) - f(w^{*}) \ge \frac{\mu}{2} \left(1 - \frac{2}{\sqrt{\kappa + 1}} \right)^{2(T-1)} ||w^{1} - w^{*}||_{2}^{2}$$

$$\kappa := \frac{L}{\mu} = O\left(\left(\left(1 - \frac{1}{\sqrt{\kappa}} \right)^{2T} \right) \right)$$

Accelerated gradient has this rate!

116

Convergence lower bounds strongly convex

Theorem (Nesterov)

Yuri Nesterov (1998), Springer Publishing, Introductory Lectures on Convex Optimization: A Basic Course

117

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is *L*-smooth and μ -strongly convex such that

$$f(w^{T}) - f(w^{*}) \ge \frac{\mu}{2} \left(1 - \frac{2}{\sqrt{\kappa + 1}} \right)^{2(T-1)} ||w^{1} - w^{*}||_{2}^{2}$$

$$\kappa := \frac{L}{\mu} = O\left(\left(\left(1 - \frac{1}{\sqrt{\kappa}} \right)^{2T} \right) \right)$$

Accelerated gradient has this rate!

$$\Rightarrow \text{for } \frac{||w^T - w^*||_2^2}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \sqrt{\frac{L}{\mu}} \log\left(\frac{1}{\epsilon}\right) = O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

The Accelerated gradient method $\min_{w \in \mathbb{R}^d} f(w)$

Let *f* be convex and *L*-smooth.

Accelerated gradient for convex Set $w^1 = 0 = y^1, \alpha^1 = 1$ for $t = 1, 2, 3, \dots, T$ $y^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$ $\alpha^{t+1} = \frac{1 + \sqrt{1 + \alpha^t}}{2}$ $w^{t+1} = y^{t+1} + \left(\frac{\alpha^t - 1}{\alpha^{t+1}}\right) (y^{t+1} - w^t)$ Output w^{T+1}

The Accelerated gradient method $\min_{w \in \mathbb{R}^d} f(w)$

Let f be convex and L-smooth.

Accelerated gradient for convex Set $w^1 = 0 = y^1, \alpha^1 = 1$ for $t = 1, 2, 3, \dots, T$ Weird $y^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$ extrapolation, but it works $\alpha^{t+1} = \frac{1 + \sqrt{1 + \alpha^t}}{2}$ $w^{t+1} = y^{t+1} + \left(\frac{\alpha^t - 1}{\alpha^{t+1}}\right) (y^{t+1} - w^t)$ Output w^{T+1}

Convergence lower bounds convex

Theorem (Nesterov)

PDF

Adobe

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is L-smooth and convex Accelerated gradient has such that

$$\min_{i=1,\dots,T} f(w^i) - f(w^*) \ge \frac{3L||w^1 - w^*||_2^2}{32(T+1)^2} = O\left(\frac{1}{T^2}\right)$$

this rate!

62 / 120

Convergence lower bounds convex

Theorem (Nesterov)

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is L-smooth and convex Accelerated gradient has such that

$$\min_{i=1,\dots,T} f(w^i) - f(w^*) \ge \frac{3L||w^1 - w^*||_2^2}{32(T+1)^2} = O\left(\frac{1}{T^2}\right)$$

Yuri Nesterov (1998), Springer Publishing, Introductory Lectures on Convex **Optimization: A Basic Course**

62 / 120

this rate!

Exercises !

Solve Exercises lists:

- Complexity and convergence rates
- Convexity and smoothness, complexity
- Ridge regression and gradient descent
 - > gowerrobert.github.io <</p>

Exercises !

Solve Exercises lists:

- Complexity and convergence rates
- Convexity and smoothness, complexity
- Ridge regression and gradient descent
 - > gowerrobert.github.io <</p>

Part III: Stochastic Gradient Descent

The Training Problem

Solving the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Problem with Gradient Descent:

Each iteration requires computing a gradient $\nabla f_i(w)$ for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for t = 0, 1, 2, ..., T $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^T

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let *j* be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_{j}[\nabla f_{j}(w)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(w) = \nabla f(w)$$

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let *j* be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_j[\nabla f_j(w)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w) = \nabla f(w)$$

Use
$$\nabla f_j(w) \approx \nabla f(w)$$

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let *j* be a random index sampled from {1, ..., n} selected uniformly at random. Then

$$\mathbb{E}_j[\nabla f_j(w)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w) = \nabla f(w)$$

Use
$$\nabla f_j(w) \approx \nabla f(w)$$

EXE: Let $\sum_{i=1}^{n} p_i = 1$ and $j \sim p_j$. Show $\mathbb{E}[\nabla f_j(w)/(np_j)] = \nabla f(w)$

SGD 0.0 Constant stepsize
Set
$$w^0 = 0$$
, choose $\alpha > 0$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha \nabla f_j(w^t)$
Output w^T

More reason why ML likes SGD

The training problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

More reason why ML likes SGD

The training problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

But we already know these labels

More reason why ML likes SGD

The training problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

Test problem
But we already know these labels

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

SGD can be applied to the statistical learning problem!

Why Machine Learners like SGD

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

SGD for learning
Set
$$w^0 = 0, \alpha_t > 0$$

for $t = 0, 1, 2, ..., T - 1$
sample $(x, y) \sim \mathcal{D}$
 $w^{t+1} = w^t - \alpha_t \nabla \ell(h_{w^t}(x), y)$
Output $\overline{w}^T = \frac{1}{T} \sum_{t=1}^T w^t$

GD vs Stochastic Gradient Descent

GD vs Stochastic Gradient Descent

Why does this happen?

GD vs Stochastic Gradient Descent

Strongly quasi-convexity

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2, \quad \forall w$$

Each f_i is convex and L_i smooth $f_i(y) \le f_i(w) + \langle \nabla f_i(w), y - w \rangle + \frac{L_i}{2} ||y - w||_2^2, \quad \forall w$ $L_{\max} := \max_{i=1,...,n} L_i$

Definition: Gradient Noise

$$\sigma^2 \quad := \quad \mathbb{E}_j[||\nabla f_j(w^*)||_2^2]$$

EXE: Calculate the L_i 's and L_{max} for

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i -smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i \|v\|^2, \forall v$

EXE: Calculate the L_i 's and L_{max} for

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i -smooth if and only if $\nabla^2 f_i(w) \leq L_i I \Leftrightarrow v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$ 1. $f(w) = \frac{1}{2n} ||X^\top w - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (x_i^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$ $= \frac{1}{n} \sum_{i=1}^n f_i(w)$

EXE: Calculate the L_i 's and L_{max} for

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i -smooth if and only if $\nabla^2 f_i(w) \leq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (x_{i}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

 $\nabla^2 f_i(w) = x_i x_i^\top + \lambda \quad \preceq \quad (||x_i||_2^2 + \lambda)I \quad = \quad L_i \ I$

EXE: Calculate the L_i 's and L_{max} for

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i -smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (x_{i}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

 $\nabla^2 f_i(w) = x_i x_i^\top + \lambda \quad \preceq \quad (||x_i||_2^2 + \lambda)I \quad = \quad L_i I$ $L \quad = \quad \max \quad (||x_i||_2^2 + \lambda) \quad = \quad \max \quad ||x_i||_2^2 + \lambda$

$$L_{\max} = \max_{i=1,...,n} (||x_i||_2^2 + \lambda) = \max_{i=1,...,n} ||x_i||_2^2 + \lambda$$

EXE: Calculate the L_i 's and L_{max} for 2. $f(w) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$

EXE: Calculate the
$$L_i$$
's and L_{max} for
2. $f(w) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$

2.
$$f_i(w) = \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2,$$

EXE: Calculate the
$$L_i$$
's and L_{max} for
2. $f(w) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$
2. $f_i(w) = \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$,
 $\nabla f_i(w) = \frac{-y_i a_i e^{-y_i \langle w, a_i \rangle}}{1 + e^{-y_i \langle w, a_i \rangle}} + \lambda w$
 $\nabla^2 f_i(w) = a_i a_i^\top \left(\frac{(1 + e^{-y_i \langle w, a_i \rangle}) e^{-y_i \langle w, a_i \rangle}}{(1 + e^{-y_i \langle w, a_i \rangle}) 2} - \frac{e^{-2y_i \langle w, a_i \rangle}}{(1 + e^{-y_i \langle w, a_i \rangle}) 2} \right) + \lambda I$

$$= a_i a_i^{\top} \frac{e^{-y_i \langle w, a_i \rangle}}{(1 + e^{-y_i \langle w, a_i \rangle})^2} + \lambda I \quad \preceq \quad \left(\frac{||a_i||_2^2}{4} + \lambda\right) I = L_i I$$
Theorem

If f is μ -str. convex, f_i is convex, L_i -smooth, $\alpha \in [0, \frac{1}{2L_{\max}}]$ then the iterates of the SGD satisfy $\sigma^2 := \mathbb{E}_j[||\nabla f_j(w^*)||_2^2]$

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \leq (1 - \alpha \mu)^{t} ||w^{0} - w^{*}||_{2}^{2} + \frac{2\alpha}{\mu} \sigma^{2}$$

Shows that $\alpha \approx \frac{1}{\mu}$ Shows that $\alpha \approx 0$

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. Richtarik, ICML 2019, arXiv:1901.09401 SGD: General Analysis and Improved Rates. **Lemma** If $f_i : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L_{\max} -smooth then $\mathbb{E}[\|\nabla f_j(w)\|^2] \leq 4L_{\max}(f(w) - f(w^*)) + 2\sigma^2$

Proof:

Lemma If $f_i : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L_{\max} -smooth then $\mathbb{E}[\|\nabla f_j(w)\|^2] \leq 4L_{\max}(f(w) - f(w^*)) + 2\sigma^2$

Co-coercivity Lemma (recall slide 55)

Proof:

$$f_i(y) - f_i(x) \le \langle \nabla f_i(y), y - x \rangle - \frac{1}{2L_{\max}} ||\nabla f_i(y) - \nabla f_i(x)||_2^2$$

If $f_i : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L_{\max} -smooth then Lemma $\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] \leq 4L_{\max}(f(w) - f(w^{*})) + 2\sigma^{2}$

Co-coercivity Lemma (recall slide 55)

Ρ

1 ____ n

roof:

$$f_{i}(y) - f_{i}(x) \leq \langle \nabla f_{i}(y), y - x \rangle - \frac{1}{2L_{\max}} ||\nabla f_{i}(y) - \nabla f_{i}(x)||_{2}^{2}$$

$$\sum_{i=1}^{n} ||\nabla f_{i}(y) - \nabla f_{i}(x)||_{2}^{2} \leq 2L_{\max} \frac{1}{n} \sum_{i=1}^{n} (f_{i}(x) - f_{i}(y) + \langle \nabla f_{i}(y), y - x \rangle)$$

If $f_i : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L_{\max} -smooth then Lemma $\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] \leq 4L_{\max}(f(w) - f(w^{*})) + 2\sigma^{2}$

Pr

1

n

roof:

$$\begin{aligned} \sum_{i=1}^{n} ||\nabla f_i(y) - \nabla f_i(x)||_2^2 &\leq 2L_{\max} \frac{1}{n} \sum_{i=1}^{n} (f_i(x) - f_i(y) + \langle \nabla f_i(y), y - x \rangle) \\ &= 2L_{\max} \left(f(x) - f(y) + \langle \nabla f(y), y - x \rangle \right) \end{aligned}$$

Lemma If $f_i : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L_{\max} -smooth then $\mathbb{E}[\|\nabla f_j(w)\|^2] \leq 4L_{\max}(f(w) - f(w^*)) + 2\sigma^2$

Proof:

$$f_i(y) - f_i(x) \le \langle \nabla f_i(y), y - x \rangle - \frac{1}{2L_{\max}} ||\nabla f_i(y) - \nabla f_i(x)||_2^2$$

$$\frac{1}{n} \sum_{i=1}^{n} ||\nabla f_i(y) - \nabla f_i(x)||_2^2 \le 2L_{\max} \frac{1}{n} \sum_{i=1}^{n} (f_i(x) - f_i(y) + \langle \nabla f_i(y), y - x \rangle)$$
$$= 2L_{\max} (f(x) - f(y) + \langle \nabla f(y), y - x \rangle)$$

Take $y = x^* \in \arg\min f(x)$, thus $\nabla f(x^*) = 0$ and

(*)
$$\frac{1}{n} \sum_{i=1}^{n} ||\nabla f_i(x^*) - \nabla f_i(x)||_2^2 \le 2L_{\max} \left(f(x) - f(x^*) \right)$$

If $f_i : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L_{\max} -smooth then Lemma $\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] \leq 4L_{\max}(f(w) - f(w^{*})) + 2\sigma^{2}$

 $f_i(y) - f_i(x) \le \langle \nabla f_i(y), y - x \rangle - \frac{1}{2L_{\max}} ||\nabla f_i(y) - \nabla f_i(x)||_2^2$

Co-coercivity Lemma (recall slide 55)

$$\frac{1}{n} \sum_{i=1}^{n} ||\nabla f_i(y) - \nabla f_i(x)||_2^2 \le 2L_{\max} \frac{1}{n} \sum_{i=1}^{n} (f_i(x) - f_i(y) + \langle \nabla f_i(y), y - x \rangle)$$
$$= 2L_{\max} (f(x) - f(y) + \langle \nabla f(y), y - x \rangle)$$

Take $y = x^* \in \arg\min f(x)$, thus $\nabla f(x^*) = 0$ and

(*)
$$\frac{1}{n} \sum_{i=1}^{n} ||\nabla f_i(x^*) - \nabla f_i(x)||_2^2 \le 2L_{\max} \left(f(x) - f(x^*)\right)$$

IJ

sing
$$||\nabla f_i(x)||_2^2 \le 2||\nabla f_i(x^*) - \nabla f_i(x)||_2^2 + 2||\nabla f_i(x^*)||_2^2$$

$$\mathbb{E}_{j}||\nabla f_{j}(x)||_{2}^{2} = \frac{1}{n}\sum_{i=1}^{n}||\nabla f_{i}(x)||_{2}^{2} \le \frac{1}{n}\sum_{i=1}^{n}||\nabla f_{i}(x^{*}) - \nabla f_{i}(x)||_{2}^{2} + 2\sigma^{2}$$

Lemma If $f_i : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L_{\max} -smooth then $\mathbb{E}[\|\nabla f_j(w)\|^2] \leq 4L_{\max}(f(w) - f(w^*)) + 2\sigma^2$

Co-coercivity Lemma (recall slide 55) Proof: $f_i(y) - f_i(x) \le \langle \nabla f_i(y), y - x \rangle - \frac{1}{2L_{\max}} ||\nabla f_i(y) - \nabla f_i(x)||_2^2$ $\frac{1}{n}\sum_{i=1}^{n}||\nabla f_{i}(y) - \nabla f_{i}(x)||_{2}^{2} \leq 2L_{\max}\frac{1}{n}\sum_{i=1}^{n}\left(f_{i}(x) - f_{i}(y) + \langle \nabla f_{i}(y), y - x \rangle\right)$ $= 2L_{\max}\left(f(x) - f(y) + \langle \nabla f(y), y - x \rangle\right)$ Take $y = x^* \in \arg\min f(x)$, thus $\nabla f(x^*) = 0$ and $\sigma^2 := \mathbb{E}_i[||\nabla f_i(w^*)||_2^2]$ $\frac{1}{n} \sum_{i=1}^{n} ||\nabla f_i(x^*) - \nabla f_i(x)||_2^2 \le 2L_{\max} \left(f(x) - f(x^*) \right) \\ ||\nabla f_i(x)||_2^2 \le 2||\nabla f_i(x^*) - \nabla f_i(x)||_2^2 + 2||\nabla f_i(x^*)||_2^2$ (*)Using $\mathbb{E}_{j}||\nabla f_{j}(x)||_{2}^{2} = \frac{1}{n}\sum_{i=1}^{n}||\nabla f_{i}(x)||_{2}^{2} \le \frac{1}{n}\sum_{i=1}^{n}||\nabla f_{i}(x^{*}) - \nabla f_{i}(x)||_{2}^{2} + 2\sigma^{2}$

Lemma If $f_i : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L_{\max} -smooth then $\mathbb{E}[\|\nabla f_j(w)\|^2] \leq 4L_{\max}(f(w) - f(w^*)) + 2\sigma^2$

Co-coercivity Lemma (recall slide 55) Proof: $f_i(y) - f_i(x) \le \langle \nabla f_i(y), y - x \rangle - \frac{1}{2L_{\max}} ||\nabla f_i(y) - \nabla f_i(x)||_2^2$ $\frac{1}{n} \sum_{i=1}^{n} ||\nabla f_i(y) - \nabla f_i(x)||_2^2 \le 2L_{\max} \frac{1}{n} \sum_{i=1}^{n} (f_i(x) - f_i(y) + \langle \nabla f_i(y), y - x \rangle)$ $= 2L_{\max}\left(f(x) - f(y) + \langle \nabla f(y), y - x \rangle\right)$ Take $y = x^* \in \arg\min f(x)$, thus $\nabla f(x^*) = 0$ and $\sigma^2 := \mathbb{E}_i[||\nabla f_i(w^*)||_2^2]$ $\frac{1}{n} \sum_{i=1}^{n} ||\nabla f_i(x^*) - \nabla f_i(x)||_2^2 \le 2L_{\max} \left(f(x) - f(x^*) \right)$ $||\nabla f_i(x)||_2^2 \le 2||\nabla f_i(x^*) - \nabla f_i(x)||_2^2 + 2||\nabla f_i(x^*)||_2^2$ (*)Using $\mathbb{E}_{j}||\nabla f_{j}(x)||_{2}^{2} = \frac{1}{n}\sum_{i=1}^{n}||\nabla f_{i}(x)||_{2}^{2} \le \frac{1}{n}\sum_{i=1}^{n}||\nabla f_{i}(x^{*}) - \nabla f_{i}(x)||_{2}^{2} + 2\sigma^{2}$ $\leq 4L_{\max}(f(x) - f(x^*)) + 2\sigma^2$

$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \gamma \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f_j(w^t), w^t - w^* \rangle + \gamma^2 ||\nabla f_j(w^t)||_2^2. \end{split}$$

Taking expectation with respect to $j \sim \frac{1}{n}$

156

$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \gamma \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f_j(w^t), w^t - w^* \rangle + \gamma^2 ||\nabla f_j(w^t)||_2^2. \end{split}$$

Taking expectation with respect to $j \sim \frac{1}{n}$

$$\begin{split} \mathbb{E}_{j} \left[||w^{t+1} - w^{*}||_{2}^{2} \right] &= ||w^{t} - w^{*}||_{2}^{2} - 2\gamma \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle + \gamma^{2} \mathbb{E}_{j} \left[||\nabla f_{j}(w^{t})||_{2}^{2} \right] \\ &\leq (1 - \gamma \mu) ||w^{t} - w^{*}||_{2}^{2} - 2\gamma (f(w^{t}) - f(w^{*})) + \gamma^{2} \mathbb{E}_{j} \left[||\nabla f_{j}(w^{t})||_{2}^{2} \right] \\ &\leq (1 - \gamma \mu) ||w^{t} - w^{*}||_{2}^{2} + 2\gamma (2\gamma L_{\max} - 1) (f(w) - f(w^{*})) + 2\gamma^{2} \sigma^{2} \\ &\leq (1 - \gamma \mu) ||w^{t} - w^{*}||_{2}^{2} + 2\gamma^{2} \sigma^{2} \end{split}$$

$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \gamma \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f_j(w^t), w^t - w^* \rangle + \gamma^2 ||\nabla f_j(w^t)||_2^2. \\ \text{Taking expectation with respect to} \quad j \sim \frac{1}{n} \qquad \mathbb{E}[\nabla f_j(w)] = \nabla f(w) \\ &\mathbb{E}_j \left[||w^{t+1} - w^*||_2^2 \right] &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f(w^t), w^t - w^* \rangle + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 - 2\gamma (f(w^t) - f(w^*)) + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma (2\gamma L_{\max} - 1)(f(w) - f(w^*)) + 2\gamma^2 \sigma^2 \\ &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma^2 \sigma^2 \end{split}$$

$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \gamma \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f_j(w^t), w^t - w^* \rangle + \gamma^2 ||\nabla f_j(w^t)||_2^2. \\ \text{Taking expectation with respect to} \quad j \sim \frac{1}{n} \qquad \mathbb{E}[\nabla f_j(w)] = \nabla f(w) \\ &\mathbb{E}_j \left[||w^{t+1} - w^*||_2^2 \right] &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f(w^t), w^t - w^* \rangle + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ &\text{quasi strong conv} \qquad \leq \quad (1 - \gamma \mu) ||w^t - w^*||_2^2 - 2\gamma (f(w^t) - f(w^*)) + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ &\leq \quad (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma (2\gamma L_{\max} - 1)(f(w) - f(w^*)) + 2\gamma^2 \sigma^2 \\ &\leq \quad (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma^2 \sigma^2 \end{split}$$

$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \gamma \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f_j(w^t), w^t - w^* \rangle + \gamma^2 ||\nabla f_j(w^t)||_2^2. \\ \text{Taking expectation with respect to} \quad j \sim \frac{1}{n} \qquad \mathbb{E}[\nabla f_j(w)] = \nabla f(w) \\ \mathbb{E}_j \left[||w^{t+1} - w^*||_2^2 \right] &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f(w^t), w^t - w^* \rangle + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ \text{quasi strong conv} &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 - 2\gamma (f(w^t) - f(w^*)) + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma (2\gamma L_{\max} - 1) (f(w) - f(w^*)) + 2\gamma^2 \sigma^2 \\ &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma^2 \sigma^2 \end{split}$$

160

$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \gamma \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f_j(w^t), w^t - w^* \rangle + \gamma^2 ||\nabla f_j(w^t)||_2^2. \\ \text{Taking expectation with respect to } j \sim \frac{1}{n} \qquad \mathbb{E}[\nabla f_j(w)] = \nabla f(w) \\ \mathbb{E}_j \left[||w^{t+1} - w^*||_2^2 \right] &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f(w^t), w^t - w^* \rangle + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ \text{quasi strong conv} &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 - 2\gamma (f(w^t) - f(w^*)) + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma (2\gamma L_{\max} - 1) (f(w) - f(w^*)) + 2\gamma^2 \sigma^2 \\ \gamma \leq \frac{1}{2L_{\max}} &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma^2 \sigma^2 \\ \end{bmatrix}$$

77 / 120

161

$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \gamma \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f_j(w^t), w^t - w^* \rangle + \gamma^2 ||\nabla f_j(w^t)||_2^2. \\ \mathbf{Taking expectation with respect to} \quad j \sim \frac{1}{n} \qquad \mathbb{E}[\nabla f_j(w)] = \nabla f(w) \\ \mathbb{E}_j \left[||w^{t+1} - w^*||_2^2 \right] &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f(w^t), w^t - w^* \rangle + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ \text{quasi strong conv} &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 - 2\gamma (f(w^t) - f(w^*)) + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma (2\gamma L_{\max} - 1)(f(w) - f(w^*)) + 2\gamma^2 \sigma^2 \\ &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma^2 \sigma^2 \\ \mathbb{E} \left[||w^{t+1} - w^*||_2^2 \right] &\leq (1 - \gamma \mu) \mathbb{E} \left[||w^t - w^*||_2^2 + 2\gamma^2 \sigma^2 \\ &= (1 - \gamma \mu)^{t+1} ||w^0 - w^*||_2^2 + 2\sum_{i=0}^t (1 - \gamma \mu)^i \gamma^2 \sigma^2 \\ &\leq (1 - \gamma \mu)^{t+1} ||w^0 - w^*||_2^2 + 2\frac{2\gamma \sigma^2}{\mu} \\ \end{array}$$

$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \gamma \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f_j(w^t), w^t - w^* \rangle + \gamma^2 ||\nabla f_j(w^t)||_2^2. \\ \text{Taking expectation with respect to } j \sim \frac{1}{n} \mathbb{E}[\nabla f_j(w)] = \nabla f(w) \\ \mathbb{E}_j \left[||w^{t+1} - w^*||_2^2 \right] &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f(w^t), w^t - w^* \rangle + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ \text{quasi strong conv} &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 - 2\gamma (f(w^t) - f(w^*)) + \gamma^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma (2\gamma L_{\max} - 1)(f(w) - f(w^*)) + 2\gamma^2 \sigma^2 \\ \text{Taking total expectation} \\ \mathbb{E} \left[||w^{t+1} - w^*||_2^2 \right] &\leq (1 - \gamma \mu) \mathbb{E} \left[||w^t - w^*||_2^2 + 2\gamma^2 \sigma^2 \right] \\ &= (1 - \gamma \mu)^{t+1} ||w^0 - w^*||_2^2 + 2\sum_{i=0}^t (1 - \gamma \mu)^i \gamma^2 \sigma^2 \\ &\leq (1 - \gamma \mu)^{t+1} ||w^0 - w^*||_2^2 + 2\frac{\gamma \sigma^2}{\mu} \qquad \sum_{i=0}^t (1 - \gamma \mu)^i = \frac{1 - (1 - 2\mu)^{t+1}}{\gamma \mu} \frac{1}{t^4 2\mathfrak{Q}} \frac{1}{\gamma \mu} \end{split}$$

Theorem

If f is μ -str. convex, f_i is convex, L_i -smooth, $\alpha \in [0, \frac{1}{2L_{\max}}]$ then the iterates of the SGD satisfy $\sigma^2 := \mathbb{E}_j[||\nabla f_j(w^*)||_2^2]$

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \leq (1 - \alpha \mu)^{t} ||w^{0} - w^{*}||_{2}^{2} + \frac{2\alpha}{\mu} \sigma^{2}$$

Shows that $\alpha \approx \frac{1}{\mu}$ Shows that $\alpha \approx 0$

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. Richtarik, ICML 2019, arXiv:1901.09401 SGD: General Analysis and Improved Rates.

1) Start with big steps and end with smaller steps

2) Try averaging the points

1) Start with big steps and end with smaller steps

2) Try averaging the points

SGD shrinking stepsize

SGD shrinking stepsize

Theorem for switching to shrinking stepsizes

If f is μ -str. convex, f_i is convex and L_i -smooth.

Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

If $t \ge 4\lceil \mathcal{K} \rceil$, then the SGD iterates converge $\mathbb{E}\|w^t - w^*\|^2 \le \frac{\sigma^2}{\mu^2} \frac{8}{t} + \frac{16}{e^2} \frac{\lceil \mathcal{K} \rceil^2}{t^2} \|w^0 - w^*\|^2$

Theorem for switching to shrinking stepsizes

If f is μ -str. convex, f_i is convex and L_i -smooth.

Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$
$$\alpha^{t} = O(1/(t+1))$$

If $t \ge 4 \lceil \mathcal{K} \rceil$, then the SGD iterates converge

$$\mathbb{E}\|w^t - w^*\|^2 \le \frac{\sigma^2}{\mu^2} \frac{8}{t} + \frac{16}{e^2} \frac{\lceil \mathcal{K} \rceil^2}{t^2} \|w^0 - w^*\|^2$$

Theorem for switching to shrinking stepsizes

If f is μ -str. convex, f_i is convex and L_i -smooth.

Let $\mathcal{K} := L_{\max} / \mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$
$$\alpha^{t} = O(1/(t+1))$$

If $t \ge 4 \lceil \mathcal{K} \rceil$, then the SGD iterates converge

$$\mathbb{E}\|w^t - w^*\|^2 \le \frac{\sigma^2}{\mu^2} \frac{8}{t} + \frac{16}{e^2} \frac{\lceil \mathcal{K} \rceil^2}{t^2} \|w^0 - w^*\|^2$$

In practice often $\alpha^t = C/\sqrt{t+1}$ where C is tuned

Stochastic Gradient Descent with switch to decreasing stepsizes

Stochastic Gradient Descent with switch to decreasing stepsizes

SGD with (late start) averaging

SGD with late averaging
Set
$$w^0 = 0$$

Choose $\alpha_t > 0, \ \alpha_t \to 0, \ \sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$
Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)Acceleration of stochastic approximation by averaging

SGD with (late start) averaging

SGD with late averaging
Set
$$w^0 = 0$$

Choose $\alpha_t > 0$, $\alpha_t \to 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$
Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)Acceleration of stochastic approximation by averaging

182

Stochastic Gradient Descent Averaging the last few iterates

Stochastic Gradient Descent Averaging the last few iterates

Part III.2: Stochastic Gradient Descent for Sparse Data

Let x^i have at most $s \in \mathbb{N}$ nonzero elements for all i. How many operations does each SGD step cost?

Sparse Examples:

encoding of categorical variables (hot one encoding), word2vec, recommendation systems ...etc

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Let x^i have at most $s \in \mathbb{N}$ nonzero elements for all i. How many operations does each SGD step cost?

$$w^{t+1} = w^t - \alpha_t \left(\ell'(\langle w^t, x^i \rangle, y^i) x^i + \lambda w^t \right) \\= (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

Sparse Examples:

encoding of categorical variables (hot one encoding), word2vec, recommendation systems ...etc IS

2 regularizor

systems ...etc

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

188

2 regularizar

Let x^i have at most $s \in \mathbb{N}$ nonzero elements for all i. How many operations does each SGD step cost?

$$w^{t+1} = w^{t} - \alpha_{t} \left(\ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i} + \lambda w^{t} \right)$$

= $(1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$
encoding of categorical
variables (hot one encoding),
word2vec, recommendation
$$W^{t+1} = w^{t} - \alpha_{t} \left(\ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i$$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)? $\beta_{t+1} z^{t+1} = (1 - \lambda \alpha_t) \beta_t z^t - \alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i) x^i$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)? $\beta_{t+1} z^{t+1} = (1 - \lambda \alpha_t) \beta_t z^t - \alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i) x^i$ $= (1 - \lambda \alpha_t) \beta_t \left(z^t - \frac{\alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda \alpha_t) \beta_t} x^i \right)$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$
$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$
$$\beta_{t+1}$$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$

$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$

$$\beta_{t+1} = (1 - \lambda\alpha_t)\beta_t, \qquad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i$$

SGD step

00000

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$

$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$
(1) scaling +
(5) sparse add =
(5) update
$$\beta_{t+1} = (1 - \lambda\alpha_t)\beta_t, \qquad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i$$

Part IV: Momentum and gradient descent

Back to Gradient Descent

Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

Baseline method: Gradient Descent (GD)

GD motivated through local rate of change

GD motivated through local rate of change

Local motivation not good for global

Local motivation not good for global

Adding Momentum to GD

GD with momentum:

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

GD with momentum:

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

$$w^{t+1} = w^t - \gamma m^t$$

= $w^t - \gamma (\beta m^{t-1} + \nabla f(w^t))$
= $w^t - \gamma \nabla f(w^t) - \gamma \beta m^{t-1}$
= $w^t - \gamma \nabla f(w^t) + \frac{\gamma \beta}{\gamma} (w^t - w^{t-1})$

GD with momentum:

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

$$w^{t+1} = w^{t} - \gamma m^{t}$$

$$= w^{t} - \gamma (\beta m^{t-1} + \nabla f(w^{t}))$$

$$= w^{t} - \gamma \nabla f(w^{t}) - \gamma \beta m^{t-1}$$

$$= w^{t} - \gamma \nabla f(w^{t}) + \frac{\gamma \beta}{\gamma} (w^{t} - w^{t-1})$$

$$\begin{aligned} & \overset{\text{GD with momentum:}}{\overset{m^{t} = \beta \, m^{t-1} + \nabla f(w^{t})}{w^{t+1} = w^{t} - \gamma \, m^{t}} \\ & w^{t+1} = w^{t} - \gamma \, m^{t} \\ & = w^{t} - \gamma \, (\beta m^{t-1} + \nabla f(w^{t})) & \overset{m^{t-1} = -\frac{1}{\gamma} (w^{t} - w^{t-1})}{w^{t} - \gamma \, \nabla f(w^{t}) - \gamma \beta \, m^{t-1}} \\ & = w^{t} - \gamma \, \nabla f(w^{t}) - \gamma \beta \, m^{t-1} \\ & = w^{t} - \gamma \, \nabla f(w^{t}) + \frac{\gamma \beta}{\gamma} \, (w^{t} - w^{t-1}) \end{aligned}$$

$$\begin{split} & \overset{\text{(f) with momentum:}}{\overset{m^{t} = \beta \ m^{t-1} + \nabla f(w^{t})}{w^{t+1} = w^{t} - \gamma \ m^{t}}} \\ & w^{t+1} = w^{t} - \gamma \ m^{t} \\ & = w^{t} - \gamma \ (\beta m^{t-1} + \nabla f(w^{t})) \\ & = w^{t} - \gamma \ \nabla f(w^{t}) - \gamma \beta \ m^{t-1} \\ & = w^{t} - \gamma \ \nabla f(w^{t}) + \frac{\gamma \beta}{\gamma} \ (w^{t} - w^{t-1}) \\ & w^{t+1} = w^{t} - \gamma \ \nabla f(w^{t}) + \beta (w^{t} - w^{t-1}) \end{split}$$

$$\begin{aligned} & \overset{\text{GD with momentum:}}{\overset{m^{t} = \beta \, m^{t-1} + \nabla f(w^{t})}{w^{t+1} = w^{t} - \gamma \, m^{t}} \\ & w^{t+1} = w^{t} - \gamma \, m^{t} \\ & = w^{t} - \gamma \, (\beta m^{t-1} + \nabla f(w^{t})) & \overset{m^{t-1} = -\frac{1}{\gamma} (w^{t} - w^{t-1})}{w^{t} - \gamma \, \nabla f(w^{t}) - \gamma \beta \, m^{t-1}} \\ & = w^{t} - \gamma \, \nabla f(w^{t}) - \gamma \beta \, m^{t-1} \\ & = w^{t} - \gamma \, \nabla f(w^{t}) + \frac{\gamma \beta}{\gamma} \, (w^{t} - w^{t-1}) \end{aligned}$$
Heavey Ball Method:

$$w^{t+1} = w^{t} - \gamma \, \nabla f(w^{t}) + \beta (w^{t} - w^{t-1}) \end{aligned}$$

Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^{t} = z^{t-1} - \eta \nabla f(x^{t})$ $w^{t+1} = \frac{\alpha}{\alpha+1} w^{t} + \frac{1}{\alpha+1} z^{t}$

Define:
$$\gamma = \frac{\eta}{\alpha + 1}$$
 and $\beta = \frac{\alpha}{\alpha + 1}$

Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^{t} = z^{t-1} - \eta \nabla f(x^{t})$ $w^{t+1} = \frac{\alpha}{\alpha+1} w^{t} + \frac{1}{\alpha+1} z^{t}$ Define: η

Define:
$$\gamma = \frac{\eta}{\alpha + 1}$$
 and $\beta = \frac{\alpha}{\alpha + 1}$
 $w^{t+1} = \beta w^t + \frac{1}{\alpha + 1} z^t$

Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^{t} = z^{t-1} - \eta \nabla f(x^{t})$ $w^{t+1} = \frac{\alpha}{\alpha+1}w^t + \frac{1}{\alpha+1}z^t$ **Define:** $\gamma = \frac{\eta}{\alpha + 1}$ and $\beta = \frac{\alpha}{\alpha + 1}$ $w^{t+1} = \beta w^t + \frac{1}{\alpha + 1} z^t$ $=\beta w^{t} + \frac{1}{\alpha+1} \left(z^{t-1} - \eta \nabla f(w^{t}) \right)$

Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^t = z^{t-1} - \eta \nabla f(x^t)$ $w^{t+1} = \frac{\alpha}{\alpha+1}w^t + \frac{1}{\alpha+1}z^t$ **Define:** $\gamma = \frac{\eta}{\alpha + 1}$ and $\beta = \frac{\alpha}{\alpha + 1}$ $t \leftarrow t - 1$ $w^{t+1} = \beta w^t + \frac{1}{\alpha + 1} z^t$ $=\beta w^{t} + \frac{1}{\alpha+1} \left(z^{t-1} - \eta \nabla f(w^{t}) \right)$ $z^{t-1} = (\alpha + 1)w^t - \alpha w^{t-1}$

Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^t = z^{t-1} - \eta \nabla f(x^t)$ $w^{t+1} = \frac{\alpha}{\alpha+1}w^t + \frac{1}{\alpha+1}z^t$ **Define:** $\gamma = \frac{\eta}{\alpha + 1}$ and $\beta = \frac{\alpha}{\alpha + 1}$ $t \leftarrow t - 1$ $w^{t+1} = \beta w^t + \frac{1}{\alpha \perp 1} z^t$ $= \beta w^{t} + \frac{1}{\alpha + 1} \left(z^{t-1} - \eta \nabla f(w^{t}) \right) \qquad z^{t-1} = (\alpha + 1)w^{t} - \alpha w^{t-1}$ $= \beta w^{t} + \frac{1}{\alpha + 1} \left((\alpha + 1)w^{t} - \alpha w^{t-1} - \eta \nabla f(w^{t}) \right)$ $= w^t - \gamma \nabla f(w^t) + \beta (w^t - w^{t-1})$
Equivalent Iterate Averaging formulation

Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^t = z^{t-1} - \eta \nabla f(x^t)$ $w^{t+1} = \frac{\alpha}{\alpha+1}w^t + \frac{1}{\alpha+1}z^t$ **Define:** $\gamma = \frac{\eta}{\alpha + 1}$ and $\beta = \frac{\alpha}{\alpha + 1}$ $t \leftarrow t - 1$ $w^{t+1} = \beta w^t + \frac{1}{\alpha + 1} z^t$ $= \beta w^{t} + \frac{1}{\alpha + 1} \left(z^{t-1} - \eta \nabla f(w^{t}) \right) \qquad z^{t-1} = (\alpha + 1)w^{t} - \alpha w^{t-1} \\ = \beta w^{t} + \frac{1}{\alpha + 1} \left((\alpha + 1)w^{t} - \alpha w^{t-1} - \eta \nabla f(w^{t}) \right)$ **Heavey Ball Method:** $= w^{t} - \gamma \nabla f(w^{t}) + \beta (w^{t} - w^{t-1})$

Part IV.2: Convergence of Momentum with gradient descent

Convergence of Gradient Descent

Theorem Let f be μ -strongly convex and L-smooth, that is If $\gamma = \frac{2}{L+\mu}$ then Gradient Descent converges $||w^{t} - w^{*}|| \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^{t} ||w^{0} - w^{*}||$ $\kappa := L/\mu \ge 1$

Convergence of Gradient Descent

Theorem Let f be μ -strongly convex and L-smooth, that is If $\gamma = \frac{2}{L+\mu}$ then Gradient Descent converges $\|w^t - w^*\| \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^t \|w^0 - w^*\|$ $\kappa := L/\mu \ge 1$ Corollary $t \geq \frac{1}{\kappa+1} \log\left(\frac{1}{\epsilon}\right)$ $\frac{\|w^{\iota} - w^*\|}{\|w^0 - w^*\|} \le \epsilon$

Convergence of Gradient Descent with

Momentum

Polyak 1964

Theorem Let $f \in C^2$ be μ -strongly convex and L-smooth, that is

stepsize
$$\mu I \preceq \nabla^2 f(w) \preceq LI, \quad \forall w \in \mathbb{R}^d$$

If
$$\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then SGDm converges

$$||w^{t} - w^{*}|| \le \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{t} ||w^{0} - w^{*}||$$

$$\kappa := L/\mu \ge 1$$

Convergence of Gradient Descent with

Momentum

Polyak 1964

Theorem Let $f \in C^2$ be μ -strongly convex and L-smooth, that is

stepsize
$$\mu I \preceq \nabla^2 f(w) \preceq LI, \quad \forall w \in \mathbb{R}^d$$

If
$$\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then SGDm converges

$$||w^{t} - w^{*}|| \leq \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{t} ||w^{0} - w^{*}||$$

 $\kappa := L/\mu \ge 1$

Convergence of Gradient Descent with

Momentum

Polyak 1964

Theorem Let $f \in C^2$ be μ -strongly convex and L-smooth, that is

stepsize
$$\mu I \preceq \nabla^2 f(w) \preceq LI, \quad \forall w \in \mathbb{R}^d$$

If
$$\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then SGDm converges

$$||w^{t} - w^{*}|| \le \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{t} ||w^{0} - w^{*}||$$

Optimal iteration complexity for this function class

$$\kappa := L/\mu \ge 1$$

Corollary
$$t \ge \frac{1}{\sqrt{\kappa}+1} \log\left(\frac{1}{\epsilon}\right)$$
 $\frac{\|w^t - w^*\|}{\|w^0 - w^*\|} \le \epsilon$

$$\int_{s=0}^{1} \nabla^2 f(w^s) ds(w^t - w^*) = \nabla f(w^t) - \nabla f(w^*) = \nabla f(w^t)$$

$$w^s := w^* + s(w^t - w^*)$$

$$\int_{s=0}^{1} \nabla^{2} f(w^{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w^{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1})$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$\int_{s=0}^{1} \nabla^{2} f(w^{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w^{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$\int_{s=0}^{1} \nabla^{2} f(w^{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w^{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$= A_{\gamma}$$

$$\int_{s=0}^{1} \nabla^{2} f(w^{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w^{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$= A_{\gamma}(w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$\int_{s=0}^{1} \nabla^{2} f(w^{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w^{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$= A_{\gamma}(w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$
Depends on two times steps

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_{\gamma}(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_{\gamma}(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_{\gamma}(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} z^{t}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_{\gamma}(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} z^{t} - \text{Simple recurrence!}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_{\gamma}(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

 $= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} z^{t}$ Simple recurrence!

$$\|z^{t+1}\| \leq \| \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \| \|z^t\|$$

$$\|z^{t+1}\| \leq \| \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \| \|z^t\|$$

$$\|z^{t+1}\| \leq \| \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \| \|z^t\|$$

EXE on Eigenvalues:

If
$$\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then
$$\left\| \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \right\| = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$$

$$\|z^{t+1}\| \leq \| \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \| \|z^t\|$$

Part V: Momentum with SGD

Adding Momentum to SGD

Rumelhart, Hinton, Geoffrey, Ronald, 1986, Nature

Stochastic Heavey Ball Method:

$$w^{t+1} = w^t - \gamma \nabla f_{j_t}(w^t) + \beta (w^t - w^{t-1})$$

 $m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$ $= \beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$ $= \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$

 $m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$ = $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$ = $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$

$$m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$$

= $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$
= $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$

Momentum as exponentiated average: $w^{t+1} = w^t - \gamma \sum_{i=1}^t \beta^i \nabla f_{j_{t-i}}(w^{t-i})$

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html

$$m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$$

= $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$
= $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$

Momentum as exponentiated average:

$$w^{t+1} = w^t - \gamma \sum_{i=1}^t \beta^i \nabla f_{j_{t-i}}(w^{t-i})$$

Acts like an approximate variance reduction since

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html

$$m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$$

= $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$
= $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$

Momentum as exponentiated average:

$$w^{t+1} = w^t - \gamma \sum_{i=1}^t \beta^i \nabla f_{j_{t-i}}(w^{t-i})$$

Acts like an approximate variance reduction since

$$\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \approx \sum_{i=1}^{n} \frac{1}{n} \nabla f_{i}(w^{t})$$

http://fa.bianp.net/teaching/2018/COMP-652/stochastic gradient.html

$$m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$$

= $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$
= $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$

Momentum as exponentiated average:

$$w^{t+1} = w^t - \gamma \sum_{i=1}^{l} \beta^i \nabla f_{j_{t-i}}(w^{t-i})$$

Acts like an approximate variance reduction since This is why momentum works well with SGD $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \approx \sum_{i=1}^{n} \frac{1}{n} \nabla f_{i}(w^{t})$

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html

Stochastic Gradient Descent with momentum

Stochastic Gradient Descent with momentum vs GD

Does momentum make SGD converge faster? Not clear, recently same rate as SGD + averaging

Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging

Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging

f is μ -strongly convex, f_i is convex and L_i -smooth

Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging

 $t \geq O$

f is μ -strongly convex, f_i is convex and L_i -smooth

 f_i is convex and L_i -smooth

 $\left(\frac{1}{\epsilon^2}\right)$

Convergence of Gradient Descent with Momentum

Does momentum make SGD converge faster?

 $t \geq O$

Not clear, recently same rate as SGD + averaging

f is μ -strongly convex, f_i is convex and L_i -smooth

 f_i is convex and L_i -smooth

Sebbouth, Defazio, RMG, online soon, 2020

Convergence of Gradient Descent with Momentum

Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging

f is μ -strongly convex, f_i is convex and L_i -smooth

 f_i is convex and L_i -smooth

Part V: Test error and Validation

$$X := \begin{bmatrix} x_1 & x_2 & \cdots & x_T & x_{T+1} & \cdots & x_n \end{bmatrix} \in \mathbb{R}^{d \times n}$$
$$y := \begin{bmatrix} y_1 & y_2 & \cdots & y_T & y_{T+1} & \cdots & y_n \end{bmatrix} \in \mathbb{R}^n$$

$$X := \begin{bmatrix} x_1 & x_2 & \cdots & x_T & x_{T+1} & \cdots & x_n \end{bmatrix} \in \mathbb{R}^{d \times n}$$
$$y := \begin{bmatrix} y_1 & y_2 & \cdots & y_T & y_{T+1} & \cdots & y_n \end{bmatrix} \in \mathbb{R}^n$$

I

Train setValidation set
$$X := \begin{bmatrix} x_1 & x_2 & \cdots & x_T \\ y_1 & y_2 & \cdots & y_T \end{bmatrix}$$
 $\begin{bmatrix} Validation set \\ x_{T+1} & \cdots & x_n \end{bmatrix} \in \mathbb{R}^{d \times n}$

Stochastic Gradient Descent with momentum vs GD on validation set

