ML X Science Summer School

Optimization for ML

Robert M. Gower

SIIMONS

ML x science summer school, Flatiron Institute, June, New York

Outline of my classes

- Intro to empirical risk problem and gradient descent (GD)
- (Stochastic Gradient) SGD for convex optimization. Theory and variants
- SGD with momentum and some tricks
- Lecture slides, exercises, \& jupyter notebook: gowerrobert.github.io/

Part I: An Introduction to Supervised Learning

References for my lectures

Chapter 2
Understanding Machine Learning: From Theory to Algorithms

Pages 67 to 79
Convex Optimization, Stephen Boyd

Is There a Cat in the Photo?

Is There a Cat in the Photo?

Yes

Is There a Cat in the Photo?

Is There a Cat in the Photo?

Is There a Cat in the Photo?

Is There a Cat in the Photo?

x : Input/Feature

No
y : Output/Target

Find mapping h that assigns the "correct" target to each input

$$
h: x \in \mathbf{R}^{d}
$$

$y \in \mathbf{R}$

Labeled Data: The training set

$y=-1$ means no/false

Labeled Data: The training set

Labeled Data: The training set

Training
Algorithm

$$
h: x \in \mathbf{R}^{d} \rightarrow y \in \mathbf{R}
$$

Labeled Data: The training set

$y=-1$ means no/false

Training
Algorithm

$$
h: x \in \mathbf{R}^{d} \rightarrow y \in \mathbf{R}
$$

Example: Linear Regression for

 HeightMale $=0$
Female = 1

Labelled data $\quad x \in \mathbf{R}^{2}, y \in \mathbf{R}_{+}$

$x_{1}^{1}\{$	Sex	0	$x_{1}^{n}\{$	Sex	1
x_{2}^{1} \{	Age	30	$x_{2}^{n}\{$	Age	70
$y^{1}\{$	Height	1,72 cm	y^{n} \{	Height	1,52 cm

Example: Linear Regression for

Height

Male $=0$
Female $=1$
Labelled data $\quad x \in \mathbf{R}^{2}, y \in \mathbf{R}$

$x_{1}^{1}\{$	Sex	0	$x_{1}^{n}\{$	Sex	1
x_{2}^{1} \{	Age	30	$x_{2}^{n}\{$	Age	70
$y^{1}\{$	Height	1,72 cm	y^{n} \{	Height	1,52 cm

Example Hypothesis: Linear Model

$$
h_{w}\left(x_{1}, x_{2}\right)=w_{0}+x_{1} w_{1}+x_{2} w_{2} \stackrel{x_{0}=1}{=}\langle w, x\rangle
$$

Example: Linear Regression for

Height

Male $=0$
Female $=1$

Labelled data $\quad x \in \mathbf{R}^{2}, y \in \mathbf{R}_{+}$

x_{1}^{1} \{	Sex	0	$x_{1}^{n}\{$	Sex	1
x_{2}^{1} \{	Age	30	$x_{2}^{n}\{$	Age	70
y^{1} \{	Height	1,72 cm	y^{n} \{	Height	1,52 cm

Example Hypothesis: Linear Model

$$
h_{w}\left(x_{1}, x_{2}\right)=w_{0}+x_{1} w_{1}+x_{2} w_{2} \stackrel{x_{0}=1}{=}\langle w, x\rangle
$$

Example Training Problem:

$$
\min _{w \in \mathbf{R}^{3}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x_{1}^{i}, x_{2}^{i}\right)-y^{i}\right)^{2}
$$

Linear Regression for Height

Age

Linear Regression for Height

The Training
Age Algorithm

$$
\min _{w \in \mathbf{R}^{3}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x_{1}^{i}, x_{2}^{i}\right)-y^{i}\right)^{2}
$$

Linear Regression for Height

The Training
Age Algorithm

$$
\min _{w \in \mathbf{R}^{3}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x_{1}^{i}, x_{2}^{i}\right)-y^{i}\right)^{2}
$$

Parametrizing the Hypothesis

Linear:

$$
h_{w}(x)=\sum_{i=0}^{d} w_{i} x_{i}
$$

Polinomial:

$$
h_{w}(x)=\sum_{i, j=0}^{d} w_{i j} x_{i} x_{j}
$$

Neural Net:

exe:

$$
\begin{aligned}
& v_{1}=\operatorname{sign}\left(w_{11} x_{1}+w_{12} x_{2}\right) \\
& v_{4}=1 /\left(1+\exp \left(w_{41} x_{1}+w_{42} x_{2}\right)\right)
\end{aligned}
$$

Loss Functions

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x^{i}\right)-y^{i}\right)^{2}
$$

Why a Squared Loss?

Loss Functions

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x^{i}\right)-y^{i}\right)^{2}
$$

Why a Squared Loss?

$$
\text { Let } y_{h}:=h_{w}(x)
$$

Loss Functions

$$
\begin{aligned}
\ell: & \mathbf{R} \times \mathbf{R}
\end{aligned} \rightarrow_{c}^{\mathbf{R}_{+}} \begin{aligned}
& \\
&\left(y_{h}, y\right) \rightarrow \\
& \ell\left(y_{h}, y\right)
\end{aligned}
$$

The Training Problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)
$$

Loss Functions

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x^{i}\right)-y^{i}\right)^{2}
$$

Why a Squared Loss?

$$
\text { Let } y_{h}:=h_{w}(x)
$$

Loss Functions

$$
\begin{aligned}
& \ell: \quad \mathbf{R} \times \mathbf{R} \rightarrow \\
&\left(y_{h}, y\right) \rightarrow \\
& \mathbf{R}_{+} \\
& \\
&\left.y_{h}, y\right)
\end{aligned}
$$

Typically a convex function

The Training Problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)
$$

Different the Loss Functions

Let $y_{h}:=h_{w}(x)$

Square Loss $\quad \ell\left(y_{h}, y\right)=\left(y_{h}-y\right)^{2}$

Binary Loss $\quad \ell\left(y_{h}, y\right)= \begin{cases}0 & \text { if } y_{h}=y \\ 1 & \text { if } y_{h} \neq y\end{cases}$

Different the Loss Functions

$y=1$ in all figures

Let $y_{h}:=h_{w}(x)$
Square Loss $\quad \ell\left(y_{h}, y\right)=\left(y_{h}-y\right)^{2}$

Different the Loss Functions

$y=1$ in all figures

Let $y_{h}:=h_{w}(x)$

Square Loss $\quad \ell\left(y_{h}, y\right)=\left(y_{h}-y\right)^{2}$

Binary Loss $\quad \ell\left(y_{h}, y\right)= \begin{cases}0 & \text { if } y_{h}=y \\ 1 & \text { if } y_{h} \neq y\end{cases}$

Hinge Loss $\quad \ell\left(y_{h}, y\right)=\max \left\{0,1-y_{h} y\right\}$
EXE: Plot the binary and hinge loss function in when $y=-1$

Are we done?

Is a notion of Loss enough?

What happens when we do not have enough data?

Are we done?

The Training Problem
 $$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)
$$

Is a notion of Loss enough?

What happens when we do not have enough data?

Overfitting and Model Complexity

Fitting $1^{\text {st }}$ order polynomial

$$
\begin{gathered}
h_{w}=\langle w, x\rangle \\
w^{*}=\arg \min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x^{i}\right)-y^{i}\right)^{2}
\end{gathered}
$$

Overfitting and Model Complexity

Fitting $2^{\text {nd }}$ order polynomial

$$
\begin{gathered}
h_{w}=w_{0}+w_{1} x+w_{2} x^{2} \\
w^{*}=\arg \min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x^{i}\right)-y^{i}\right)^{2}
\end{gathered}
$$

Overfitting and Model Complexity

Fitting $3^{\text {rd }}$ order polynomial

$$
\begin{gathered}
h_{w}=\sum_{i=0}^{3} w_{i} x^{i} \\
w^{*}=\arg \min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x^{i}\right)-y^{i}\right)^{2}
\end{gathered}
$$

Overfitting and Model Complexity

Fitting $9^{\text {th }}$ order polynomial

$$
\begin{gathered}
h_{w}=\sum_{i=0}^{9} w_{i} x^{i} \\
w^{*}=\arg \min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x^{i}\right)-y^{i}\right)^{2}
\end{gathered}
$$

Regularization/Prior

Regularizor Functions

$$
\begin{array}{rlcc}
R: \quad \mathbf{R}^{d} & \rightarrow & \mathbf{R}_{+} \\
w & \rightarrow & R(w)
\end{array}
$$

General Training Problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)
$$

Regularization/Prior

Regularizor Functions

$$
\begin{aligned}
& R: \quad \mathbf{R}^{d} \rightarrow \\
& w \\
& \mathbf{R}_{+} \\
& \rightarrow \\
& w(w)
\end{aligned}
$$

General Training Problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \underbrace{\sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)}_{\begin{array}{c}
\text { Goodness of fit, } \\
\text { fidelity term ...etc }
\end{array}}+\lambda R(w)
$$

Regularization/Prior

Regularizor Functions

$$
\begin{aligned}
& R: \quad \mathbf{R}^{d} \rightarrow \\
& w \\
& \mathbf{R}_{+} \\
& \rightarrow \\
& R(w)
\end{aligned}
$$

General Training Problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \underbrace{\sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)}_{\begin{array}{l}
\text { Goodness of fit, } \\
\text { fidelity term ...etc }
\end{array}}+\lambda R(w)
$$

Regularization/Prior

Regularizor Functions

$$
\begin{aligned}
& R: \quad \mathbf{R}^{d} \rightarrow \\
& w \\
& \mathbf{R}_{+} \\
& \rightarrow \\
& R(w)
\end{aligned}
$$

Controls tradeoff between fit and complexity

General Training Problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \underbrace{\sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)}_{\begin{array}{c}
\text { Goodness of fit, } \\
\text { fidelity term ...etc }
\end{array}}+\lambda R(w)
$$

Regularization/Prior

Regularizor Functions

$$
\begin{aligned}
& R: \quad \mathbf{R}^{d} \rightarrow \\
& w \\
& \mathbf{R}_{+} \\
& \rightarrow \\
& R(w)
\end{aligned}
$$

Controls tradeoff between fit and complexity

General Training Problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \underbrace{\sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)}_{\begin{array}{l}
\text { Goodness of fit, } \\
\text { fidelity term ...etc }
\end{array}}+\lambda R(w)
$$

Exe:

$$
R(w)=\|w\|_{2}^{2}, \quad\|w\|_{1}, \quad\|w\|_{p}, \quad \text { other norms } \ldots
$$

Overfitting and Model Complexity

Fitting $\mathbf{k}^{\text {th }}$ order polynomial

$$
\begin{gathered}
h_{w}=\sum_{i=0}^{k} w_{i} x^{i} \\
w^{*}=\arg \min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x^{i}\right)-y^{i}\right)^{2}+\lambda\|w\|_{1}
\end{gathered}
$$

Overfitting and Model Complexity

Fitting $\mathbf{k}^{\text {th }}$ order polynomial

$$
\begin{gathered}
h_{w}=\sum_{i=0}^{k} w_{i} x^{i} \\
w^{*}=\arg \min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(h_{w}\left(x^{i}\right)-y^{i}\right)^{2}+\lambda\|w\|_{1}
\end{gathered}
$$

Exe: Ridge Regression

Linear hypothesis

$$
h_{w}(x)=\langle w, x\rangle
$$

L2 regularizor

$$
R(w)=\|w\|_{2}^{2}
$$

L2 loss

$$
\ell\left(y_{h}, y\right)=\left(y_{h}-y\right)^{2}
$$

Ridge Regression

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(y^{i}-\left\langle w, x^{i}\right\rangle\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Exe: Support Vector Machines

Linear hypothesis

$$
h_{w}(x)=\langle w, x\rangle
$$

L2 regularizor

$$
R(w)=\|w\|_{2}^{2}
$$

Hinge loss

$$
\ell\left(y_{h}, y\right)=\max \left\{0,1-y_{h} y\right\}
$$

SVM with soft margin

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y^{i}\left\langle w, x^{i}\right\rangle\right\}+\lambda\|w\|_{2}^{2}
$$

Exe: Logistic Regression

Linear hypothesis

$$
h_{w}(x)=\langle w, x\rangle
$$

L2 regularizor

$$
R(w)=\|w\|_{2}^{2}
$$

Logistic loss

$$
\ell\left(y_{h}, y\right)=\ln \left(1+e^{-y y_{h}}\right)
$$

Logistic Regression

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ln \left(1+e^{-y^{i}\left\langle w, x^{i}\right\rangle}\right)+\lambda\|w\|_{2}^{2}
$$

ML as seen by Optimizer

(1) Get the labeled data: $\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)$

ML as seen by Optimizer

(1) Get the labeled data: $\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)$
(2) Choose a parametrization for hypothesis: $h_{w}(x)$

ML as seen by Optimizer

(1) Get the labeled data: $\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)$
(2) Choose a parametrization for hypothesis: $h_{w}(x)$
(3) Choose a loss function: $\ell\left(h_{w}(x), y\right) \geq 0$

ML as seen by Optimizer

(1) Get the labeled data: $\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)$
(2) Choose a parametrization for hypothesis: $h_{w}(x)$
(3) Choose a loss function: $\ell\left(h_{w}(x), y\right) \geq 0$
(4) Solve the training problem:

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)
$$

ML as seen by Optimizer

(1) Get the labeled data: $\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)$
(2) Choose a parametrization for hypothesis: $h_{w}(x)$
(3) Choose a loss function: $\ell\left(h_{w}(x), y\right) \geq 0$
(4) Solve the training problem:

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)
$$

(5) Test and cross-validate. If fail, go back a few steps

ML as seen by Optimizer

(1) Get the labeled data: $\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)$
(2) Choose a parametrization for hypothesis: $h_{w}(x)$
(3) Choose a loss function: $\ell\left(h_{w}(x), y\right) \geq 0$
(4) Solve the training problem:

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)
$$

(5) Test and cross-validate. If fail, go back a few steps

Part II: Solving the Training Problem

Re-writing as Sum of Terms

A Datum Function

$$
f_{i}(w):=\ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)
$$

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w) & =\frac{1}{n} \sum_{i=1}^{n}\left(\ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)
\end{aligned}
$$

Finite Sum Training Problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)=: f(w)
$$

The Training Problem

Solving the training problem:

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)
$$

Reference method: Gradient descent

$$
\nabla\left(\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)\right)=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(w)
$$

Gradient Descent Algorithm

$$
\begin{aligned}
& \text { Set } w^{0}=0, \text { choose } \alpha>0 \\
& \text { for } t=0,1,2, \ldots, T-1 \\
& \quad w^{t+1}=w^{t}-\frac{\alpha}{n} \sum_{i=1}^{n} \nabla f_{i}\left(w^{t}\right) \\
& \text { Output } w^{T}
\end{aligned}
$$

Optimization is hard (in general)

$$
\begin{aligned}
& f(x, y)=-\cos (x) \cos (y) \exp \left(-(x-\pi)^{2}-(y-\pi)^{2}\right)
\end{aligned}
$$

Optimization is hard (in general)

Gradient Descent Example

A Logistic Regression problem using the fourclass labelled data from LIBSVM

$$
(n, d)=(862,2)
$$

Logistic Regression

$\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1} \ln \left(1+e^{-y^{i}\left\langle w, x^{i}\right\rangle}\right)+\lambda\|w\|_{2}^{2}$

Can we prove that this always works?

Gradient Descent Example

A Logistic Regression problem using the fourclass labelled data from LIBSVM

$$
(n, d)=(862,2)
$$

Logistic Regression

$\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ln \left(1+e^{-y^{i}\left\langle w, x^{i}\right\rangle}\right)+\lambda\|w\|_{2}^{2}$

Can we prove that this always works?

Gradient Descent Example

A Logistic Regression problem using the fourclass labelled data from LIBSVM

$$
(n, d)=(862,2)
$$

Logistic Regression

$\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ln \left(1+e^{-y^{i}\left\langle w, x^{i}\right\rangle}\right)+\lambda\|w\|_{2}^{2}$

Can we prove that this always works?

No! There is no universal optimization method. The "no free lunch" of Optimization

Gradient Descent Example

Can we prove that this always works?

No! There is no universal optimization method. The "no free lunch" of Optimization

Specialize

Convex and smooth training problems

Main assumption

Nice property

$$
\text { If } \nabla f\left(w^{*}\right)=0 \quad \text { then } \quad f\left(w^{*}\right) \leq f(w), \quad \forall w \in \mathbb{R}^{d}
$$

All stationary points are

 global minimaLemma: Convexity => Nice property
If $f(w) \geq f(y)+\langle\nabla f(y), w-y\rangle, \quad \forall w, y \in \mathbb{R}^{d}$
then nice property holds
PROOF: Choose $y=w^{*}$

Data science methods most used

(Kaggle 2017 survey)

 problems

Part II: Convexity, Smoothness, Gradient Descent

Convexity

We say $f: \operatorname{dom}(f) \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom}(f)$ is convex and

$$
f(\lambda w+(1-\lambda) y) \leq \lambda f(w)+(1-\lambda) f(y), \quad \forall w, y \in \mathbb{R}^{d}, \lambda \in[0,1]
$$

Convexity: First derivative

A differentiable function $f: \operatorname{dom}(f) \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex iff

$$
f(w) \geq f(y)+\langle\nabla f(y), w-y\rangle
$$

Convexity: Second derivative

A twice differentiable function $f: \operatorname{dom}(f) \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex iff

$$
\nabla^{2} f(w) \succeq 0 \quad \Leftrightarrow \quad v^{\top} \nabla^{2} f(w) v \geq 0, \quad \forall w, v \in \mathbb{R}^{n}
$$

$$
w_{1} \leq w_{2} \quad \Rightarrow f^{\prime}\left(w_{1}\right) \leq f^{\prime}\left(w_{2}\right)
$$

Convexity: Examples

Extended-value extension:

$$
\begin{gathered}
f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\} \\
f(x)=\infty, \quad \forall x \notin \operatorname{dom}(f)
\end{gathered}
$$

Norms and squared norms:

Negative log and logistic:

$$
\begin{aligned}
x & \mapsto\|x\| \\
x & \mapsto\|x\|^{2}
\end{aligned}
$$

Proof is in the "Convexity \& smoothness" exercise list

$$
\begin{aligned}
& x \mapsto-\log (x) \\
& x \mapsto \log \left(1+e^{-y\langle a, x\rangle}\right)
\end{aligned}
$$

Hinge loss $x \mapsto \max \{0,1-y x\}$

Negatives log determinant, exponentiation ... etc

Assumption: Strong convexity

We say $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is μ-strongly convex if

$$
f(w) \geq f(y)+\langle\nabla f(y), w-y\rangle+\frac{\mu}{2}\|w-y\|^{2}, \quad \forall w, y \in \mathbb{R}^{n}
$$

EXE:

Hinge loss + L2 $\max \{0,1-w\}+\frac{1}{2}\|w\|_{2}^{2}$

Quadratic lower bound

Assumption: Strong convexity

We say $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is μ-strongly convex if

$$
f(w) \geq f(y)+\langle\nabla f(y), w-y\rangle+\frac{\mu}{2}\|w-y\|^{2}, \quad \forall w, y \in \mathbb{R}^{n}
$$

EXE:

Hinge loss + L2 $\max \{0,1-w\}+\frac{1}{2}\|w\|_{2}^{2}$

Quadratic lower bound

Assumption: Strong convexity

We say $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is μ-strongly convex if

$$
f(w) \geq f(y)+\langle\nabla f(y), w-y\rangle+\frac{\mu}{2}\|w-y\|^{2}, \quad \forall w, y \in \mathbb{R}^{n}
$$

EXE:

Hinge loss + L2

$$
\max \{0,1-w\}+\frac{1}{2}\|w\|_{2}^{2}
$$

Quadratic lower bound

Assumption: Strong convexity

$$
f(w):=\frac{1}{n} \sum_{i=1}^{n} \ell \underbrace{\ell\left(h_{w}\left(x^{i}\right), y^{i}\right)}+\underbrace{\lambda R(w)}
$$

$$
\|
$$

strongly convex $=$ convex $+\frac{1}{2}\|w\|^{2}$
Example: SVM with soft margin

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y^{i}\left\langle w, x^{i}\right\rangle\right\}+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

Not an Example: Neural networks, dictionary learning, Matrix completion, and more

Assumption: Smoothness

We say $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is smooth if

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \quad \forall x, y \in \mathbb{R}^{d}
$$

Assumption: Smoothness

We say $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is smooth if

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \quad \forall x, y \in \mathbb{R}^{d}
$$

If a twice differentiable $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is L-smooth then

$$
d^{\top} \nabla^{2} f(x) d \leq L \cdot\|d\|_{2}^{2}, \quad \forall x, d \in \mathbb{R}^{d}
$$

2)

$$
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+\frac{L}{2}\|x-y\|^{2}, \quad \forall x, y \in \mathbb{R}^{d}
$$

Assumption: Smoothness

We say $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is smooth if

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \quad \forall x, y \in \mathbb{R}^{d}
$$

If a twice differentiable $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is L-smooth then

$$
d^{\top} \nabla^{2} f(x) d \leq L \cdot\|d\|_{2}^{2}, \quad \forall x, d \in \mathbb{R}^{d}
$$

$$
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+\frac{L}{2}\|x-y\|^{2}, \quad \forall x, y \in \mathbb{R}^{d}
$$

EXE: Using that

$$
\sigma_{\max }(X)^{2}\|d\|_{2}^{2} \geq\left\|X^{\top} d\right\|_{2}^{2}
$$

Show that

$$
\frac{1}{2}\left\|X^{\top} w-b\right\|_{2}^{2} \text { is } \sigma_{\max }(X)^{2} \text {-smooth }
$$

Important consequences of Smoothness

If $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is L-smooth then

$$
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+\frac{L}{2}\|x-y\|^{2}, \quad \forall x, y \in \mathbb{R}^{n}
$$

Smoothness: Examples

Convex quadratics:

Logistic:

$$
x \mapsto x^{\top} A x+b^{\top} x+c
$$

Trigonometric:

$$
x \mapsto \cos (x), \sin (x)
$$

Proof is an exercise!

Smoothness: Convex

counter-example

$$
f(w)=\|w\|_{1}=\sum_{i=1}^{n}\left|w_{i}\right|
$$

Gradient Descent via Smoothness

$$
f(w) \leq f(y)+\langle\nabla f(y), w-y\rangle+\frac{L}{2}\|w-y\|^{2}, \quad \forall w, y \in \mathbb{R}^{d}
$$

Minimizing the upper bound in w we get:
$\nabla_{w}\left(f(y)+\langle\nabla f(y), w-y\rangle+\frac{L}{2}\|w-y\|^{2}\right)=\nabla f(y)+L(w-y)=0$

Gradient Descent via Smoothness

$$
f(w) \leq f(y)+\langle\nabla f(y), w-y\rangle+\frac{L}{2}\|w-y\|^{2}, \quad \forall w, y \in \mathbb{R}^{d}
$$

Minimizing the upper bound in w we get:

$$
\nabla_{w}\left(f(y)+\langle\nabla f(y), w-y\rangle+\frac{L}{2}\|w-y\|^{2}\right)=\nabla f(y)+L(w-y)=0
$$

$$
w=y-\frac{1}{L} \nabla f(y)
$$

Gradient Descent via Smoothness

$$
f(w) \leq f(y)+\langle\nabla f(y), w-y\rangle+\frac{L}{2}\|w-y\|^{2}, \quad \forall w, y \in \mathbb{R}^{d}
$$

Minimizing the upper bound in w we get:

$$
\nabla_{w}\left(f(y)+\langle\nabla f(y), w-y\rangle+\frac{L}{2}\|w-y\|^{2}\right)=\nabla f(y)+L(w-y)=0
$$

A gradient descent step!

$$
w=y-\frac{1}{L} \nabla f(y)
$$

Gradient Descent via Smoothness

$$
f(w) \leq f(y)+\langle\nabla f(y), w-y\rangle+\frac{L}{2}\|w-y\|^{2}, \quad \forall w, y \in \mathbb{R}^{d}
$$

Minimizing the upper bound in w we get:

$$
\nabla_{w}\left(f(y)+\langle\nabla f(y), w-y\rangle+\frac{L}{2}\|w-y\|^{2}\right)=\nabla f(y)+L(w-y)=0
$$

Smoothness Lemma (EXE):

If f is L-smooth, show that
$f\left(y-\frac{1}{L} \nabla f(y)\right)-f(y) \leq-\frac{1}{2 L}\|\nabla f(y)\|_{2}^{2}, \forall y$
A gradient
descent step!

$$
f\left(w^{*}\right)-f(w) \leq-\frac{1}{2 L}\|\nabla f(w)\|_{2}^{2}, \quad \forall w \in \mathbb{R}^{n} \quad w=y-\frac{1}{L} \nabla f(y)
$$

$$
\text { where } f\left(w^{*}\right) \leq f(w), \quad \forall w \in \mathbb{R}^{n}
$$

Convergence GD strongly convex

Theorem
Let f be μ-strongly convex and L-smooth.

$$
\left\|w^{t}-w^{*}\right\|_{2}^{2} \leq\left(1-\frac{\mu}{L}\right)^{t}\left\|w^{1}-w^{*}\right\|_{2}^{2}
$$

Where

$$
w^{t+1}=w^{t}-\frac{1}{L} \nabla f\left(w^{t}\right), \quad \text { for } t=1, \ldots, T
$$

Convergence GD strongly convex

Theorem
Let f be μ-strongly convex and L-smooth.

$$
\left\|w^{t}-w^{*}\right\|_{2}^{2} \leq\left(1-\frac{\mu}{L}\right)^{t}\left\|w^{1}-w^{*}\right\|_{2}^{2}
$$

Where

$$
w^{t+1}=w^{t}-\frac{1}{L} \nabla f\left(w^{t}\right), \quad \text { for } t=1, \ldots, T
$$

$$
\Rightarrow \text { for } \frac{\left\|w^{T}-w^{*}\right\|_{2}^{2}}{\left\|w^{1}-w^{*}\right\|_{2}^{2}} \leq \epsilon \text { we need } T \geq \frac{L}{\mu} \log \left(\frac{1}{\epsilon}\right)=O\left(\log \left(\frac{1}{\epsilon}\right)\right)
$$

Convergence GD strongly convex

Theorem

Let f be μ-strongly convex and L-smooth.

$$
\left\|w^{t}-w^{*}\right\|_{2}^{2} \leq\left(1-\frac{\mu}{L}\right)^{t}\left\|w^{1}-w^{*}\right\|_{2}^{2}
$$

Where

$$
w^{t+1}=w^{t}-\frac{1}{L} \nabla f\left(w^{t}\right), \quad \text { for } t=1, \ldots, T
$$

$$
\Rightarrow \text { for } \frac{\left\|w^{T}-w^{*}\right\|_{2}^{2}}{\left\|w^{1}-w^{*}\right\|_{2}^{2}} \leq \epsilon \text { we need } T \geq \frac{L}{\mu} \log \left(\frac{1}{\epsilon}\right)=O\left(\log \left(\frac{1}{\epsilon}\right)\right)
$$

EXE: Solve the questions in "Complexity rates.pdf"

Gradient Descent Example: Iogistic

y-axis $=\frac{\left\|w^{t}-w^{*}\right\|_{2}^{2}}{\left\|w^{1}-w^{*}\right\|_{2}^{2}} \quad \square \log \left(\frac{\left\|w^{t}-w^{*}\right\|_{2}^{2}}{\left\|w^{1}-w^{*}\right\|_{2}^{2}}\right) \leq t \log \left(1-\frac{\mu}{L}\right)$

Gradient Descent Example: Iogistic

Convergence plot

y-axis $=\frac{\left\|w^{t}-w^{*}\right\|_{2}^{2}}{\left\|w^{1}-w^{*}\right\|_{2}^{2}} \quad \square \log \left(\frac{\left\|w^{t}-w^{*}\right\|_{2}^{2}}{\left\|w^{1}-w^{*}\right\|_{2}^{2}}\right) \leq t \log \left(1-\frac{\mu}{L}\right)$

Proof Convergence GD strongly

 convex + smooth
Proof:

$\left\|w^{t+1}-w^{*}\right\|_{2}^{2}=\left\|w^{t}-w^{*}-\frac{1}{L} \nabla f\left(w^{t}\right)\right\|_{2}^{2}$

$$
=\left\|w^{t}-w^{*}\right\|_{2}^{2}+\frac{2}{L}\left\langle\nabla f\left(w^{t}\right), w^{*}-w^{t}\right\rangle+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
$$

Proof Convergence GD strongly

 convex + smooth
Proof:

$\left\|w^{t+1}-w^{*}\right\|_{2}^{2}=\left\|w^{t}-w^{*}-\frac{1}{L} \nabla f\left(w^{t}\right)\right\|_{2}^{2}$

$$
=\left\|w^{t}-w^{*}\right\|_{2}^{2}+\frac{2}{L}\left\langle\nabla f\left(w^{t}\right), w^{*}-w^{t}\right\rangle+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
$$

Proof Convergence GD strongly

 convex + smooth$$
\begin{aligned}
& \text { Proof: } \\
& \left\|w^{t+1}-w^{*}\right\|_{2}^{2}=\left\|w^{t}-w^{*}-\frac{1}{L} \nabla f\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Proof:

$$
=\left\|w^{t}-w^{*}\right\|_{2}^{2}+\frac{2}{L}\left\langle\nabla f\left(w^{t}\right), w^{*}-w^{t}\right\rangle+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
$$

Strong convexity:

$$
f\left(w^{*}\right) \geq f(w)+\left\langle\nabla f(w), w^{*}-w\right\rangle+\frac{\mu}{2}\left\|w-w^{*}\right\|^{2}
$$

$$
\left.\left\langle\nabla f(w), w^{*}-w\right\rangle \leq \frac{\mu}{2} \right\rvert\,\left\|w-w^{*}\right\|^{2}-\left(f(w)-f\left(w^{*}\right)\right)
$$

Proof Convergence GD strongly

 convex + smooth
Proof:

$$
=\left\|w^{t}-w^{*}\right\|_{2}^{2}+\frac{2}{L}\left\langle\nabla f\left(w^{t}\right), w^{*}-w^{t}\right\rangle+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
$$

Strong convexity:

$$
f\left(w^{*}\right) \geq f(w)+\left\langle\nabla f(w), w^{*}-w\right\rangle+\frac{\mu}{2}\left\|w-w^{*}\right\|^{2}
$$

$$
\begin{gathered}
\left\langle\nabla f(w), w^{*}-w\right\rangle \leq-\frac{\mu}{2}\left\|w-w^{*}\right\|^{2}-\left(f(w)-f\left(w^{*}\right)\right) \\
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} \leq\left(1-\frac{\mu}{L}\right)\left\|w^{t}-w^{*}\right\|^{2}-\frac{2}{L}\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|^{2}
\end{gathered}
$$

Proof Convergence GD strongly

 convex + smooth$$
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} \leq\left(1-\frac{\mu}{L}\right)\left\|w^{t}-w^{*}\right\|^{2}-\frac{2}{L}\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|^{2}
$$

Proof Convergence GD strongly

 convex + smooth$$
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} \leq\left(1-\frac{\mu}{L}\right)\left\|w^{t}-w^{*}\right\|^{2}-\frac{2}{L}\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|^{2}
$$

Smoothness Lemma (EXE):

$f\left(w^{*}\right)-f(w) \leq-\frac{1}{2 L}\|\nabla f(w)\|_{2}^{2}$

$$
\|\nabla f(w)\|_{2}^{2} \leq 2 L\left(f(w)-f\left(w^{*}\right)\right)
$$

Proof Convergence GD strongly

 convex + smooth$$
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} \leq\left(1-\frac{\mu}{L}\right)\left\|w^{t}-w^{*}\right\|^{2}-\frac{2}{L}\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|^{2}
$$

Smoothness Lemma (EXE):

$$
f\left(w^{*}\right)-f(w) \leq-\frac{1}{2 L}\|\nabla f(w)\|_{2}^{2} \quad \square \quad\|\nabla f(w)\|_{2}^{2} \leq 2 L\left(f(w)-f\left(w^{*}\right)\right)
$$

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & \leq\left(1-\frac{\mu}{L}\right)\left\|w^{t}-w^{*}\right\|^{2}-\frac{2}{L}\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\frac{2}{L}\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right) \\
& =\left(1-\frac{\mu}{L}\right)\left\|w^{t}-w^{*}\right\|^{2}
\end{aligned}
$$

Proof Convergence GD strongly

 convex + smooth$$
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} \leq\left(1-\frac{\mu}{L}\right)\left\|w^{t}-w^{*}\right\|^{2}-\frac{2}{L}\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|^{2}
$$

Smoothness Lemma (EXE):

$$
f\left(w^{*}\right)-f(w) \leq-\frac{1}{2 L}\|\nabla f(w)\|_{2}^{2} \quad \square \quad\|\nabla f(w)\|_{2}^{2} \leq 2 L\left(f(w)-f\left(w^{*}\right)\right)
$$

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & \leq\left(1-\frac{\mu}{L}\right)\left\|w^{t}-w^{*}\right\|^{2}-\frac{2}{L}\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\frac{2}{L}\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right) \\
& =\left(1-\frac{\mu}{L}\right)\left\|w^{t}-w^{*}\right\|^{2}
\end{aligned}
$$

(EXE): Repeat proof for $w^{t+1}=w^{t}-\alpha \nabla f\left(w^{t}\right)$ where $\alpha>0$. For what values of α does $w^{t} \rightarrow w^{*}$ converge?

Convergence GD for smooth + convex

Theorem
Let f be convex and L-smooth.

$$
f\left(w^{t}\right)-f\left(w^{*}\right) \leq \frac{2 L\left\|w^{1}-w^{*}\right\|_{2}^{2}}{t-1}=O\left(\frac{1}{t}\right) .
$$

Where

$$
w^{t+1}=w^{t}-\frac{1}{L} \nabla f\left(w^{t}\right)
$$

$$
\Rightarrow \text { for } \frac{f\left(w^{T}\right)-f\left(w^{*}\right)}{\left\|w^{1}-w^{*}\right\|_{2}^{2}} \leq \epsilon \text { we need } T \geq \frac{2 L}{\epsilon}=O\left(\frac{1}{\epsilon}\right)
$$

Convex and Smooth Properties

Co-coercivity Lemma

$$
\text { If } f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\} \text { convex and } L \text {-smooth then }
$$

$$
\begin{aligned}
& f(y)-f(x) \leq\langle\nabla f(y), y-x\rangle-\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{2}^{2} \\
& \text { and } \quad\langle\nabla f(y)-\nabla f(x), y-x\rangle \geq \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_{2}
\end{aligned}
$$

Proof:

Adding together the last two inequalities gives the result.

Convex and Smooth Properties

Co-coercivity Lemma

$$
\text { If } f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\} \text { convex and } L \text {-smooth then }
$$

$$
\begin{aligned}
& f(y)-f(x) \leq\langle\nabla f(y), y-x\rangle-\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{2}^{2} \\
& \text { and } \quad\langle\nabla f(y)-\nabla f(x), y-x\rangle \geq \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_{2}
\end{aligned}
$$

Use convexity Use smoothness
Proof: $f(y)-f(x)=\overbrace{f(y)-f(z)}+\overbrace{f(z)-f(x)}$

Adding together the last two inequalities gives the result.

Convex and Smooth Properties

Co-coercivity Lemma

If $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and L-smooth then

$$
\begin{aligned}
& f(y)-f(x) \leq\langle\nabla f(y), y-x\rangle-\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{2}^{2} \\
& \text { and } \quad\langle\nabla f(y)-\nabla f(x), y-x\rangle \geq \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_{2}
\end{aligned}
$$

Use convexity Use smoothness
Proof: $f(y)-f(x)=\overbrace{f(y)-f(z)}+\overbrace{f(z)-f(x)}$

$$
\leq\langle\nabla f(y), y-z\rangle+\langle\nabla f(x), z-x\rangle+\frac{L}{2}\|z-x\|^{2}, \quad \forall z
$$

Adding together the last two inequalities gives the result.

Convex and Smooth Properties

Co-coercivity Lemma

If $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and L-smooth then

$$
\begin{aligned}
& f(y)-f(x) \leq\langle\nabla f(y), y-x\rangle-\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{2}^{2} \\
& \text { and } \quad\langle\nabla f(y)-\nabla f(x), y-x\rangle \geq \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_{2}
\end{aligned}
$$

Use convexity Use smoothness
Proof: $f(y)-f(x)=f(y)-f(z)+f(z)-f(x)$

$$
\leq\langle\nabla f(y), y-z\rangle+\langle\nabla f(x), z-x\rangle+\frac{L}{2}\|z-x\|^{2}, \quad \forall z
$$

Minimizing in z gives: $\quad z=x-\frac{1}{L}(\nabla f(x)-\nabla f(y))$.

Adding together the last two inequalities gives the result.

Convex and Smooth Properties

Co-coercivity Lemma

If $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and L-smooth then

$$
\begin{aligned}
& f(y)-f(x) \leq\langle\nabla f(y), y-x\rangle-\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{2}^{2} \\
& \text { and } \quad\langle\nabla f(y)-\nabla f(x), y-x\rangle \geq \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_{2}
\end{aligned}
$$

Use convexity Use smoothness
Proof: $f(y)-f(x)=\overparen{f(y)-f(z)}+\overparen{f(z)-f(x)}$

$$
\leq\langle\nabla f(y), y-z\rangle+\langle\nabla f(x), z-x\rangle+\frac{L}{2}\|z-x\|^{2}, \quad \forall z
$$

Minimizing in z gives: $\quad z=x-\frac{1}{L}(\nabla f(x)-\nabla f(y))$.
Inserting this z in bound (and after some computations) gives:

$$
f(y)-f(x) \leq\langle\nabla f(y), y-x\rangle-\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{2}^{2}
$$

Adding together the last two inequalities gives the result.

Convex and Smooth Properties

Co-coercivity Lemma

If $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and L-smooth then

$$
\begin{aligned}
& f(y)-f(x) \leq\langle\nabla f(y), y-x\rangle-\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{2}^{2} \\
& \text { and } \quad\langle\nabla f(y)-\nabla f(x), y-x\rangle \geq \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_{2}
\end{aligned}
$$

Use convexity Use smoothness
Proof: $f(y)-f(x)=\overbrace{f(y)-f(z)}+\overbrace{f(z)-f(x)}$

$$
\leq\langle\nabla f(y), y-z\rangle+\langle\nabla f(x), z-x\rangle+\frac{L}{2}\|z-x\|^{2}, \quad \forall z
$$

Minimizing in z gives: $\quad z=x-\frac{1}{L}(\nabla f(x)-\nabla f(y))$.
Inserting this z in bound (and after some computations) gives:

$$
f(y)-f(x) \leq\langle\nabla f(y), y-x\rangle-\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{2}^{2}
$$

Switching x for y gives:

$$
f(x)-f(y) \leq\langle\nabla f(x), x-y\rangle-\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{2}^{2}
$$

Adding together the last two inequalities gives the result.

Proof Sketch of GD smooth + convex

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\frac{1}{L} \nabla f\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}+\frac{2}{L}\left\langle\nabla f\left(w^{t}\right), w^{*}-w^{t}\right\rangle+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Proof Sketch of GD smooth + convex

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\frac{1}{L} \nabla f\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}+\frac{2}{L}\left\langle\nabla f\left(w^{t}\right), w^{*}-w^{t}\right\rangle+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Proof Sketch of GD smooth + convex

$$
\begin{array}{rlr}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\frac{1}{L} \nabla f\left(w^{t}\right)\right\|_{2}^{2} & \text { Use co-coercivity } \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}+\frac{2}{L}\left\langle\left\langle\nabla f\left(w^{t}\right), w^{*}-w^{t}\right\rangle+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}\right.
\end{array}
$$

Proof Sketch of GD smooth + convex

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\frac{1}{L} \nabla f\left(w^{t}\right)\right\|_{2}^{2} \quad \text { Use co-coercivity } \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}+\frac{2}{L}\left\langle\left\langle\nabla f\left(w^{t}\right), w^{*}-w^{t}\right\rangle+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}\right.
\end{aligned}
$$

Co-coercivity: $\langle\nabla f(y)-\nabla f(w), y-w\rangle \geq \frac{1}{L}\|\nabla f(w)-\nabla f(y)\|_{2}$

$$
\text { With } y=w^{*} \text { gives }\left\langle\nabla f(w), w^{*}-w\right\rangle \leq-\frac{1}{L}\|\nabla f(w)\|_{2}
$$

Proof Sketch of GD smooth + convex

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\frac{1}{L} \nabla f\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}+\frac{2}{L}\left\langle\nabla f\left(w^{t}\right), w^{*}-w^{t}\right\rangle+\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Co-coercivity: $\langle\nabla f(y)-\nabla f(w), y-w\rangle \geq \frac{1}{L}\|\nabla f(w)-\nabla f(y)\|_{2}$

$$
\text { With } y=w^{*} \text { gives }\left\langle\nabla f(w), w^{*}-w\right\rangle \leq-\frac{1}{L}\|\nabla f(w)\|_{2}
$$

Inserting above shows decreasing

$$
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} \leq\left\|w^{t}-w^{*}\right\|_{2}^{2}-\frac{1}{L^{2}}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
$$

Thus $\left\|w^{t}-w^{*}\right\|$ is a decreasing sequence:

$$
\left\|w^{t+1}-w^{*}\right\| \leq\left\|w^{t}-w^{*}\right\| \leq \cdots \leq\left\|w^{1}-w^{*}\right\|
$$

Proof Sketch of GD smooth + convex

Decreasing: $\left\|w^{t+1}-w^{*}\right\| \leq\left\|w^{t}-w^{*}\right\| \leq \cdots \leq\left\|w^{1}-w^{*}\right\|$

Proof Sketch of GD smooth + convex

Decreasing: $\left\|w^{t+1}-w^{*}\right\| \leq\left\|w^{t}-w^{*}\right\| \leq \cdots \leq\left\|w^{1}-w^{*}\right\|$

Subtracting $f\left(w^{*}\right)=f^{*}$ from the Smoothness Lemma bound gives

$$
f\left(w^{t+1}\right)-f^{*} \leq f\left(w^{t}\right)-f^{*}-\frac{1}{2 L}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
$$

Proof Sketch of GD smooth + convex

Decreasing: $\left\|w^{t+1}-w^{*}\right\| \leq\left\|w^{t}-w^{*}\right\| \leq \cdots \leq\left\|w^{1}-w^{*}\right\|$

Subtracting $f\left(w^{*}\right)=f^{f}$ from the Smoothness Lemma bound gives

$$
f\left(w^{t+1}\right)-f^{*} \leq f\left(w^{t}\right)-f^{*}-\frac{1}{2 L}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
$$

Proof Sketch of GD smooth + convex

Decreasing: $\left\|w^{t+1}-w^{*}\right\| \leq\left\|w^{t}-w^{*}\right\| \leq \cdots \leq\left\|w^{1}-w^{*}\right\|$

Subtracting $f\left(w^{*}\right)=f^{f}$ from the Smoothness Lemma bound gives

$$
f\left(w^{t+1}\right)-f^{*} \leq f\left(w^{t}\right)-f^{*}-\frac{1}{2 L}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
$$

Using convexity:

$$
\begin{aligned}
f\left(w^{t}\right)-f^{*} & \leq\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle \\
& \leq\left\|\nabla f\left(w^{t}\right)\right\|_{2}\left\|w^{t}-w^{*}\right\|_{2} \square-\left\|\nabla f\left(w^{t}\right)\right\|_{2} \leq-\frac{f\left(w^{t}\right)-f^{*}}{\left\|w^{t}-w^{*}\right\|_{2}} \\
& \leq\left\|\nabla f\left(w^{t}\right)\right\|_{2}\left\|w^{1}-w^{*}\right\|_{2}
\end{aligned}
$$

Proof Sketch of GD smooth + convex

Decreasing: $\left\|w^{t+1}-w^{*}\right\| \leq\left\|w^{t}-w^{*}\right\| \leq \cdots \leq\left\|w^{1}-w^{*}\right\|$

Subtracting $f\left(w^{*}\right)=f^{\prime}$ from the Smoothness Lemma bound gives

$$
f\left(w^{t+1}\right)-f^{*} \leq f\left(w^{t}\right)-f^{*}-\frac{1}{2 L}\left\|\nabla f\left(w^{t}\right)\right\|_{2}^{2}
$$

Using convexity:

$$
\begin{aligned}
f\left(w^{t}\right)-f^{*} & \leq\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle \\
& \leq\left\|\nabla f\left(w^{t}\right)\right\|_{2}\left\|w^{t}-w^{*}\right\|_{2} \square-\left\|\nabla f\left(w^{t}\right)\right\|_{2} \leq-\frac{f\left(w^{t}\right)-f^{*}}{\left\|w^{t}-w^{*}\right\|_{2}} \\
& \leq\left\|\nabla f\left(w^{t}\right)\right\|_{2}\left\|w^{1}-w^{*}\right\|_{2}
\end{aligned}
$$

Returning to smoothness bound

$$
f\left(w^{t+1}\right)-f^{*} \leq f\left(w^{t}\right)-f^{*}-\frac{1}{2 L} \frac{\left(f\left(w^{t}\right)-f^{*}\right)^{2}}{\left\|w^{t}-w^{1}\right\|^{2}}
$$

See "Gradient convergence notes.pdf" for a solution to this nonlinear recurrence relation of the form $\delta_{t+1} \leq \delta_{t}-C \delta_{t}^{2}$

Acceleration and lower bounds

The Accelerated gradient method

$$
\min _{w \in \mathbb{R}^{d}} f(w)
$$

Let f be μ-strongly convex and L-smooth.
Accelerated gradient for strong convex Set $w^{1}=0=y^{1}$
for $t=1,2,3, \ldots, T$
$y^{t+1}=w^{t}-\frac{1}{L} \nabla f\left(w^{t}\right)$
$w^{t+1}=y^{t+1}+\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)\left(y^{t+1}-w^{t}\right)$
Output w^{T+1}

The Accelerated gradient method

$$
\min _{w \in \mathbb{R}^{d}} f(w)
$$

Let f be μ-strongly convex and L-smooth.
Accelerated gradient for strong convex Set $w^{1}=0=y^{1}$
for $t=1,2,3, \ldots, T$

$$
y^{t+1}=w^{t}-\frac{1}{L} \nabla f\left(w^{t}\right)
$$

Weird extrapolation, but it works

$$
w^{t+1}=y^{t+1}+\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)\left(y^{t+1}-w^{t}\right)
$$

Output w^{T+1}

Convergence lower bounds

strongly convex

Theorem (Nesterov)

PDF
Yuri Nesterov (1998), Springer Publishing, Introductory Lectures on Convex Optimization: A Basic Course
For any optimization algorithm where

$$
w^{t+1} \in w^{t}+\operatorname{span}\left(\nabla f\left(w^{1}\right), \nabla f\left(w^{2}\right), \ldots, \nabla f\left(w^{t}\right)\right)
$$

There exists a function $f(w)$ that is L-smooth and μ-strongly convex such that

$$
\begin{aligned}
& f\left(w^{T}\right)-f\left(w^{*}\right) \geq \frac{\mu}{2}\left(1-\frac{2}{\sqrt{\kappa+1}}\right)^{2(T-1)}\left\|w^{1}-w^{*}\right\|_{2}^{2} \\
& \kappa:=\frac{L}{\mu}=O\left(\left(1-\frac{1}{\sqrt{\kappa}}\right)^{2 T}\right) \quad \begin{array}{c}
\text { Accelerated } \\
\text { gradient has } \\
\text { this rate! }
\end{array}
\end{aligned}
$$

Convergence lower bounds

strongly convex

Theorem (Nesterov)

PDF
Yuri Nesterov (1998), Springer Publishing, Introductory Lectures on Convex Optimization: A Basic Course
For any optimization algorithm where

$$
w^{t+1} \in w^{t}+\operatorname{span}\left(\nabla f\left(w^{1}\right), \nabla f\left(w^{2}\right), \ldots, \nabla f\left(w^{t}\right)\right)
$$

There exists a function $f(w)$ that is L-smooth and μ-strongly convex such that

$$
\begin{aligned}
f\left(w^{T}\right)-f\left(w^{*}\right) & \geq \frac{\mu}{2}\left(1-\frac{2}{\sqrt{\kappa+1}}\right)^{2(T-1)}\left\|w^{1}-w^{*}\right\|_{2}^{2} \\
\kappa:=\frac{L}{\mu}=O\left(\left(1-\frac{1}{\sqrt{\kappa}}\right)^{2 T}\right) & \begin{array}{c}
\text { Accelerated } \\
\text { gradient has } \\
\text { this rate! }
\end{array}
\end{aligned}
$$

Convergence lower bounds

strongly convex

Theorem (Nesterov)

PDF
Yuri Nesterov (1998), Springer Publishing, Introductory Lectures on Convex Optimization: A Basic Course

For any optimization algorithm where

$$
w^{t+1} \in w^{t}+\operatorname{span}\left(\nabla f\left(w^{1}\right), \nabla f\left(w^{2}\right), \ldots, \nabla f\left(w^{t}\right)\right)
$$

There exists a function $f(w)$ that is L-smooth and μ-strongly convex such that

$$
\begin{aligned}
& f\left(w^{T}\right)-f\left(w^{*}\right) \geq \frac{\mu}{2}\left(1-\frac{2}{\sqrt{\kappa+1}}\right)^{2(T-1)}\left\|w^{1}-w^{*}\right\|_{2}^{2} \\
& \kappa:=\frac{L}{\mu}=O\left(\left(1-\frac{1}{\sqrt{\kappa}}\right)^{2 T}\right) \\
& \text { Accelerated } \\
& \text { gradient has } \\
& \text { this rate! }
\end{aligned}
$$

The Accelerated gradient method

$$
\min _{w \in \mathbb{R}^{d}} f(w)
$$

Let f be convex and L-smooth.

Accelerated gradient for convex
Set $w^{1}=0=y^{1}, \alpha^{1}=1$
for $t=1,2,3, \ldots, T$

$$
\begin{aligned}
& y^{t+1}=w^{t}-\frac{1}{L} \nabla f\left(w^{t}\right) \\
& \alpha^{t+1}=\frac{1+\sqrt{1+\alpha^{t}}}{2}
\end{aligned}
$$

$$
w^{t+1}=y^{t+1}+\left(\frac{\alpha^{t}-1}{\alpha^{t+1}}\right)\left(y^{t+1}-w^{t}\right)
$$

Output w^{T+1}

The Accelerated gradient method

$$
\min _{w \in \mathbb{R}^{d}} f(w)
$$

Let f be convex and L-smooth.

Accelerated gradient for convex
Set $w^{1}=0=y^{1}, \alpha^{1}=1$
for $t=1,2,3, \ldots, T$
$y^{t+1}=w^{t}-\frac{1}{L} \nabla f\left(w^{t}\right)$
$\alpha^{t+1}=\frac{1+\sqrt{1+\alpha^{t}}}{2}$
$w^{t+1}=y^{t+1}+\left(\frac{\alpha^{t}-1}{\alpha^{t+1}}\right)\left(y^{t+1}-w^{t}\right)$
Output w^{T+1}

Convergence lower bounds convex

Theorem (Nesterov)

For any optimization algorithm where

$$
w^{t+1} \in w^{t}+\operatorname{span}\left(\nabla f\left(w^{1}\right), \nabla f\left(w^{2}\right), \ldots, \nabla f\left(w^{t}\right)\right)
$$

There exists a function $f(w)$ that is L-smooth and convex such that

Accelerated gradient has this rate!

$$
\min _{i=1, \ldots, T} f\left(w^{i}\right)-f\left(w^{*}\right) \geq \frac{3 L\left\|w^{1}-w^{*}\right\|_{2}^{2}}{32(T+1)^{2}}=O\left(\frac{1}{T^{2}}\right)
$$

Convergence lower bounds convex

Theorem (Nesterov)

For any optimization algorithm where

$$
w^{t+1} \in w^{t}+\operatorname{span}\left(\nabla f\left(w^{1}\right), \nabla f\left(w^{2}\right), \ldots, \nabla f\left(w^{t}\right)\right)
$$

There exists a function $f(w)$ that is L-smooth and convex such that

Accelerated gradient has this rate!

$$
\min _{i=1, \ldots, T} f\left(w^{i}\right)-f\left(w^{*}\right) \geq \frac{3 L\left\|w^{1}-w^{*}\right\|_{2}^{2}}{32(T+1)^{2}}=O\left(\frac{1}{T^{2}}\right)
$$

Exercises!

Solve Exercises lists:

, Complexity and convergence rates

- Convexity and smoothness, complexity
- Ridge regression and gradient descent
> gowerrobert.github.io <

Exercises!

Solve Exercises lists:

, Complexity and convergence rates

- Convexity and smoothness, complexity
- Ridge regression and gradient descent
> gowerrobert.github.io <

Part III: Stochastic Gradient Descent

The Training Problem

Solving the training problem:

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)
$$

Problem with Gradient Descent:
Each iteration requires computing a gradient $\nabla f_{i}(w)$ for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm

$$
\begin{aligned}
& \text { Set } w^{0}=0, \text { choose } \alpha>0 \\
& \text { for } t=0,1,2, \ldots, T \\
& \quad w^{t+1}=w^{t}-\frac{\alpha}{n} \sum_{i=1}^{n} \nabla f_{i}\left(w^{t}\right) \\
& \text { Output } w^{T}
\end{aligned}
$$

Stochastic Gradient Descent

Is it possible to design a method that uses only the gradient of a single data function $f_{i}(w)$ at each iteration?

Stochastic Gradient Descent

Is it possible to design a method that uses only the gradient of a single data function $f_{i}(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, \ldots, n\}$ selected uniformly at random. Then

$$
\mathbb{E}_{j}\left[\nabla f_{j}(w)\right]=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(w)=\nabla f(w)
$$

Stochastic Gradient Descent

Is it possible to design a method that uses only the gradient of a single data function $f_{i}(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, \ldots, n\}$ selected uniformly at random. Then

$$
\mathbb{E}_{j}\left[\nabla f_{j}(w)\right]=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(w)=\nabla f(w)
$$

$$
\text { Use } \nabla f_{j}(w) \approx \nabla f(w)
$$

Stochastic Gradient Descent

Is it possible to design a method that uses only the gradient of a single data function $f_{i}(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, \ldots, n\}$ selected uniformly at random. Then

$$
\mathbb{E}_{j}\left[\nabla f_{j}(w)\right]=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(w)=\nabla f(w)
$$

$$
\text { Use } \nabla f_{j}(w) \approx \nabla f(w)
$$

EXE: Let $\sum_{i=1}^{n} p_{i}=1$ and $j \sim p_{j}$. Show $\mathbb{E}\left[\nabla f_{j}(w) /\left(n p_{j}\right)\right]=\nabla f(w)$

Stochastic Gradient Descent

SGD 0.0 Constant stepsize

Set $w^{0}=0$, choose $\alpha>0$
for $t=0,1,2, \ldots, T-1$
sample $j \in\{1, \ldots, n\}$
$w^{t+1}=w^{t}-\alpha \nabla f_{j}\left(w^{t}\right)$
Output w^{T}

More reason why ML likes SGD

The training problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)
$$

More reason why ML likes SGD

The training problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)
$$

But we already know these labels

More reason why ML likes SGD

The training problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)
$$

Test problem
But we already know these labels

The statistical learning problem:

Minimize the expected loss over an unknown expectation

$$
\min _{w \in \mathbf{R}^{d}} \mathbb{E}_{(x, y) \sim \mathcal{D}}\left[\ell\left(h_{w}(x), y\right)\right]
$$

SGD can be applied to the statistical learning problem!

Why Machine Learners like SGD

The statistical learning problem:
Minimize the expected loss over an unknown expectation

$$
\min _{w \in \mathbf{R}^{d}} \mathbb{E}_{(x, y) \sim \mathcal{D}}\left[\ell\left(h_{w}(x), y\right)\right]
$$

SGD for learning

$$
\begin{aligned}
& \text { Set } w^{0}=0, \alpha_{t}>0 \\
& \text { for } t=0,1,2, \ldots, T-1 \\
& \quad \text { sample }(x, y) \sim \mathcal{D} \\
& \quad w^{t+1}=w^{t}-\alpha_{t} \nabla \ell\left(h_{w^{t}}(x), y\right) \\
& \text { Output } \bar{w}^{T}=\frac{1}{T} \sum_{t=1}^{T} w^{t}
\end{aligned}
$$

Stochastic Gradient Descent

GD vs Stochastic Gradient Descent

Gradient Descent

GD vs Stochastic Gradient Descent

Why does this happen?

GD vs Stochastic Gradient Descent

Gradient Descent

Why does this happen?
Need Assumptions

Assumptions for Convergence

Strongly quasi-convexity

$$
f\left(w^{*}\right) \geq f(w)+\left\langle\nabla f(w), w^{*}-w\right\rangle+\frac{\mu}{2}\left\|w^{*}-w\right\|_{2}^{2}, \quad \forall w
$$

Each $\boldsymbol{f}_{\boldsymbol{i}}$ is convex and $L_{\boldsymbol{i}}$ smooth

$$
f_{i}(y) \leq f_{i}(w)+\left\langle\nabla f_{i}(w), y-w\right\rangle+\frac{L_{i}}{2}\|y-w\|_{2}^{2}, \quad \forall w
$$

$$
L_{\max }:=\max _{i=1, \ldots, n} L_{i}
$$

Definition: Gradient Noise

$$
\sigma^{2}:=\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

Assumptions for Convergence

EXE: Calculate the L_{i} 's and $L_{\text {max }}$ for

$$
\text { 1. } \quad f(w)=\frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

HINT: A twice differentiable f_{i} is L_{i}-smooth if and only if

$$
\nabla^{2} f_{i}(w) \preceq L_{i} I \quad \Leftrightarrow \quad v^{\top} \nabla^{2} f_{i}(w) v \leq L_{i}\|v\|^{2}, \forall v
$$

Assumptions for Convergence

EXE: Calculate the L_{i} 's and $L_{\text {max }}$ for

$$
\text { 1. } f(w)=\frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

HINT: A twice differentiable f_{i} is L_{i}-smooth if and only if

$$
\nabla^{2} f_{i}(w) \preceq L_{i} I \Leftrightarrow v^{\top} \nabla^{2} f_{i}(w) v \leq L_{i}\|v\|^{2}, \forall v
$$

1. $\begin{aligned} f(w)=\frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{2}\left(x_{i}^{\top} w-y_{i}\right)^{2}+\frac{\lambda}{2}\|w\|_{2}^{2}\right) \\ & =\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)\end{aligned}$

Assumptions for Convergence

EXE: Calculate the L_{i} 's and $L_{\text {max }}$ for

$$
\text { 1. } f(w)=\frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

HINT: A twice differentiable f_{i} is L_{i}-smooth if and only if

$$
\nabla^{2} f_{i}(w) \preceq L_{i} I \quad \Leftrightarrow \quad v^{\top} \nabla^{2} f_{i}(w) v \leq L_{i}\|v\|^{2}, \forall v
$$

1. $\begin{aligned} f(w)=\frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{2}\left(x_{i}^{\top} w-y_{i}\right)^{2}+\frac{\lambda}{2}\|w\|_{2}^{2}\right) \\ & =\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)\end{aligned}$

$$
\nabla^{2} f_{i}(w)=x_{i} x_{i}^{\top}+\lambda \quad \preceq \quad\left(\left\|x_{i}\right\|_{2}^{2}+\lambda\right) I \quad=\quad L_{i} I
$$

Assumptions for Convergence

EXE: Calculate the L_{i} 's and $L_{\text {max }}$ for

$$
\text { 1. } f(w)=\frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

HINT: A twice differentiable f_{i} is L_{i}-smooth if and only if

$$
\nabla^{2} f_{i}(w) \preceq L_{i} I \quad \Leftrightarrow \quad v^{\top} \nabla^{2} f_{i}(w) v \leq L_{i}\|v\|^{2}, \forall v
$$

1. $\begin{aligned} f(w)=\frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{2}\left(x_{i}^{\top} w-y_{i}\right)^{2}+\frac{\lambda}{2}\|w\|_{2}^{2}\right) \\ & =\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)\end{aligned}$

$$
\begin{aligned}
\nabla^{2} f_{i}(w) & =x_{i} x_{i}^{\top}+\lambda \preceq \quad\left(\left\|x_{i}\right\|_{2}^{2}+\lambda\right) I=L_{i} I \\
L_{\max } & =\max _{i=1, \ldots, n}\left(\left\|x_{i}\right\|_{2}^{2}+\lambda\right)=\max _{i=1, \ldots, n}\left\|x_{i}\right\|_{2}^{2}+\lambda
\end{aligned}
$$

Assumptions for Convergence

EXE: Calculate the L_{i} 's and $L_{\text {max }}$ for

$$
\text { 2. } \quad f(w)=\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+e^{-y_{i}\left\langle w, a_{i}\right\rangle}\right)+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

Assumptions for Convergence

EXE: Calculate the L_{i} 's and $L_{\text {max }}$ for

$$
\text { 2. } \quad f(w)=\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+e^{-y_{i}\left\langle w, a_{i}\right\rangle}\right)+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

2. $\quad f_{i}(w)=\ln \left(1+e^{-y_{i}\left\langle w, a_{i}\right\rangle}\right)+\frac{\lambda}{2}\|w\|_{2}^{2}$,

Assumptions for Convergence

EXE: Calculate the L_{i} 's and $L_{\text {max }}$ for

$$
\text { 2. } f(w)=\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+e^{-y_{i}\left\langle w, a_{i}\right\rangle}\right)+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

2. $f_{i}(w)=\ln \left(1+e^{-y_{i}\left\langle w, a_{i}\right\rangle}\right)+\frac{\lambda}{2}\|w\|_{2}^{2}$,

$$
\nabla f_{i}(w)=\frac{-y_{i} a_{i} e^{-y_{i}\left\langle w, a_{i}\right\rangle}}{1+e^{-y_{i}\left\langle w, a_{i}\right\rangle}}+\lambda w
$$

$$
\nabla^{2} f_{i}(w)=a_{i} a_{i}^{\top}\left(\frac{\left(1+e^{-y_{i}\left\langle w, a_{i}\right\rangle}\right) e^{-y_{i}\left\langle w, a_{i}\right\rangle}}{\left(1+e^{-y_{i}\left\langle w, a_{i}\right\rangle}\right)^{2}}-\frac{e^{-2 y_{i}\left\langle w, a_{i}\right\rangle}}{\left(1+e^{-y_{i}\left\langle w, a_{i}\right\rangle}\right)^{2}}\right)+\lambda I
$$

$$
=a_{i} a_{i}^{\top} \frac{e^{-y_{i}\left\langle w, a_{i}\right\rangle}}{\left(1+e^{-y_{i}\left\langle w, a_{i}\right\rangle}\right)^{2}}+\lambda I \quad \preceq \quad\left(\frac{\left\|a_{i}\right\|_{2}^{2}}{4}+\lambda\right) I=L_{i} I
$$

Complexity / Convergence

Theorem

If f is μ-str. convex, f_{i} is convex, L_{i}-smooth, $\alpha \in\left[0, \frac{1}{2 L_{\text {max }}}\right]$ then the iterates of the SGD satisfy

$$
\sigma^{2}:=\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

$$
\mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right] \leq(1-\alpha \mu)^{t}\left\|w^{0}-w^{*}\right\|_{2}^{2}+\frac{2 \alpha}{\mu} \sigma^{2}
$$

Shows that $\alpha \approx \frac{1}{\mu}$
Shows that $\alpha \approx 0$

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. Richtarik, ICML 2019, arXiv:1901.09401 SGD: General Analysis and Improved Rates.

Lemma If $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and $L_{\text {max }}$-smooth then

$$
\mathbb{E}\left[\left\|\nabla f_{j}(w)\right\|^{2}\right] \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}
$$

Proof:

Lemma If $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and $L_{\text {max }}$-smooth then

$$
\mathbb{E}\left[\left\|\nabla f_{j}(w)\right\|^{2}\right] \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}
$$

Co-coercivity Lemma (recall slide 55)

Proof:

$$
f_{i}(y)-f_{i}(x) \leq\left\langle\nabla f_{i}(y), y-x\right\rangle-\frac{1}{2 L_{\max }}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2}
$$

Lemma If $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and $L_{\text {max }}$-smooth then $\mathbb{E}\left[\left\|\nabla f_{j}(w)\right\|^{2}\right] \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}$

Co-coercivity Lemma (recall slide 55)

Proof:

$$
f_{i}(y)-f_{i}(x) \leq\left\langle\nabla f_{i}(y), y-x\right\rangle-\frac{1}{2 L_{\max }}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2}
$$

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2} \leq 2 L_{\max } \frac{1}{n} \sum_{i=1}^{n}\left(f_{i}(x)-f_{i}(y)+\left\langle\nabla f_{i}(y), y-x\right\rangle\right)
$$

Lemma If $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and $L_{\text {max }}$-smooth then $\mathbb{E}\left[\left\|\nabla f_{j}(w)\right\|^{2}\right] \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}$

Co-coercivity Lemma (recall slide 55)

Proof:

$$
f_{i}(y)-f_{i}(x) \leq\left\langle\nabla f_{i}(y), y-x\right\rangle-\frac{1}{2 L_{\max }}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2}
$$

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2} \leq 2 L_{\max } \frac{1}{n} \sum_{i=1}^{n}\left(f_{i}(x)-f_{i}(y)+\left\langle\nabla f_{i}(y), y-x\right\rangle\right)
$$

$$
=2 L_{\max }(f(x)-f(y)+\langle\nabla f(y), y-x\rangle)
$$

Lemma If $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and $L_{\text {max }}$-smooth then $\mathbb{E}\left[\left\|\nabla f_{j}(w)\right\|^{2}\right] \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}$

Co-coercivity Lemma (recall slide 55)

Proof:

$$
f_{i}(y)-f_{i}(x) \leq\left\langle\nabla f_{i}(y), y-x\right\rangle-\frac{1}{2 L_{\max }}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2}
$$

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2} & \leq 2 L_{\max } \frac{1}{n} \sum_{i=1}^{n}\left(f_{i}(x)-f_{i}(y)+\left\langle\nabla f_{i}(y), y-x\right\rangle\right) \\
& =2 L_{\max }(f(x)-f(y)+\langle\nabla f(y), y-x\rangle)
\end{aligned}
$$

Take $y=x^{*} \in \arg \min f(x)$, thus $\nabla f\left(x^{*}\right)=0$ and

$$
\text { (*) } \quad \frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}\left(x^{*}\right)-\nabla f_{i}(x)\right\|_{2}^{2} \leq 2 L_{\max }\left(f(x)-f\left(x^{*}\right)\right)
$$

Lemma If $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and $L_{\text {max }}$-smooth then $\mathbb{E}\left[\left\|\nabla f_{j}(w)\right\|^{2}\right] \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}$

Co-coercivity Lemma (recall slide 55)

Proof:

$$
f_{i}(y)-f_{i}(x) \leq\left\langle\nabla f_{i}(y), y-x\right\rangle-\frac{1}{2 L_{\max }}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2}
$$

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2} & \leq 2 L_{\max } \frac{1}{n} \sum_{i=1}^{n}\left(f_{i}(x)-f_{i}(y)+\left\langle\nabla f_{i}(y), y-x\right\rangle\right) \\
& =2 L_{\max }(f(x)-f(y)+\langle\nabla f(y), y-x\rangle)
\end{aligned}
$$

Take $y=x^{*} \in \arg \min f(x)$, thus $\nabla f\left(x^{*}\right)=0$ and

$$
\text { (*) } \quad \frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}\left(x^{*}\right)-\nabla f_{i}(x)\right\|_{2}^{2} \leq 2 L_{\max }\left(f(x)-f\left(x^{*}\right)\right)
$$

Using

$$
\left\|\nabla f_{i}(x)\right\|_{2}^{2} \leq 2\left\|\nabla f_{i}\left(x^{*}\right)-\nabla f_{i}(x)\right\|_{2}^{2}+2\left\|\nabla f_{i}\left(x^{*}\right)\right\|_{2}^{2}
$$

$\mathbb{E}_{j}\left\|\nabla f_{j}(x)\right\|_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}(x)\right\|_{2}^{2} \leq \frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}\left(x^{*}\right)-\nabla f_{i}(x)\right\|_{2}^{2}+2 \sigma^{2}$

Lemma If $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and $L_{\max }$-smooth then $\mathbb{E}\left[\left\|\nabla f_{j}(w)\right\|^{2}\right] \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}$

Co-coercivity Lemma (recall slide 55)

Proof:

$$
f_{i}(y)-f_{i}(x) \leq\left\langle\nabla f_{i}(y), y-x\right\rangle-\frac{1}{2 L_{\max }}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2}
$$

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2} & \leq 2 L_{\max } \frac{1}{n} \sum_{i=1}^{n}\left(f_{i}(x)-f_{i}(y)+\left\langle\nabla f_{i}(y), y-x\right\rangle\right) \\
& =2 L_{\max }(f(x)-f(y)+\langle\nabla f(y), y-x\rangle)
\end{aligned}
$$

Take $y=x^{*} \in \arg \min f(x)$, thus $\nabla f\left(x^{*}\right)=0$ and

$$
\sigma^{2}:=\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

$$
(*) \quad \frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}\left(x^{*}\right)-\nabla f_{i}(x)\right\|_{2}^{2} \leq 2 L_{\max }\left(f(x)-f\left(x^{*}\right)\right)
$$

Using

$$
\left\|\nabla f_{i}(x)\right\|_{2}^{2} \leq 2\left\|\nabla f_{i}\left(x^{*}\right)-\nabla f_{i}(x)\right\|_{2}^{2}+2\left\|\nabla f_{i}\left(x^{*}\right)\right\|_{2}^{2}
$$

$\mathbb{E}_{j}\left\|\nabla f_{j}(x)\right\|_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}(x)\right\|_{2}^{2} \leq \frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}\left(x^{*}\right)-\nabla f_{i}(x)\right\|_{2}^{2}+2 \sigma^{2}$

Lemma If $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ convex and $L_{\max }$-smooth then $\mathbb{E}\left[\left\|\nabla f_{j}(w)\right\|^{2}\right] \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}$

Co-coercivity Lemma (recall slide 55)

Proof:

$$
f_{i}(y)-f_{i}(x) \leq\left\langle\nabla f_{i}(y), y-x\right\rangle-\frac{1}{2 L_{\max }}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2}
$$

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}(y)-\nabla f_{i}(x)\right\|_{2}^{2} & \leq 2 L_{\max } \frac{1}{n} \sum_{i=1}^{n}\left(f_{i}(x)-f_{i}(y)+\left\langle\nabla f_{i}(y), y-x\right\rangle\right) \\
& =2 L_{\max }(f(x)-f(y)+\langle\nabla f(y), y-x\rangle)
\end{aligned}
$$

Take $y=x^{*} \in \arg \min f(x)$, thus $\nabla f\left(x^{*}\right)=0$ and

$$
\sigma^{2}:=\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

$(*) \quad \frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}\left(x^{*}\right)-\nabla f_{i}(x)\right\|_{2}^{2} \leq 2 L_{\max }\left(f(x)-f\left(x^{*}\right)\right)$
Using

$$
\left\|\nabla f_{i}(x)\right\|_{2}^{2} \leq 2\left\|\nabla f_{i}\left(x^{*}\right)-\nabla f_{i}(x)\right\|_{2}^{2}+2\left\|\nabla f_{i}\left(x^{*}\right)\right\|_{2}^{2}
$$

$\mathbb{E}_{j}\left\|\nabla f_{j}(x)\right\|_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}(x)\right\|_{2}^{2} \leq \frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}\left(x^{*}\right)-\nabla f_{i}(x)\right\|_{2}^{2}+2 \sigma^{2}$

$$
\stackrel{(*)}{\leq} 4 L_{\max }\left(f(x)-f\left(x^{*}\right)\right)+2 \sigma^{2}
$$

Proof is SUPER EASY:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\gamma \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to $j \sim \frac{1}{n}$

Proof is SUPER EASY:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\gamma \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to $j \sim \frac{1}{n}$

$$
\begin{aligned}
\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right] & =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma\left(2 \gamma L_{\max }-1\right)\left(f(w)-f\left(w^{*}\right)\right)+2 \gamma^{2} \sigma^{2} \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma^{2} \sigma^{2}
\end{aligned}
$$

Proof is SUPER EASY:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\gamma \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to $j \sim \frac{1}{n} \quad \mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)$

$$
\begin{aligned}
\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right] & =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma\left(2 \gamma L_{\max }-1\right)\left(f(w)-f\left(w^{*}\right)\right)+2 \gamma^{2} \sigma^{2} \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma^{2} \sigma^{2}
\end{aligned}
$$

Proof is SUPER EASY:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\gamma \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to $j \sim \frac{1}{n} \quad \mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)$
$\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]$

$$
\begin{aligned}
\text { quasi strong conv } \longrightarrow & \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma\left(2 \gamma L_{\max }-1\right)\left(f(w)-f\left(w^{*}\right)\right)+2 \gamma^{2} \sigma^{2} \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma^{2} \sigma^{2}
\end{aligned}
$$

Proof is SUPER EASY:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\gamma \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to $j \sim \frac{1}{n} \quad \mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)$
$\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]$
quasi strong conv

$$
\begin{aligned}
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma\left(2 \gamma L_{\max }-1\right)\left(f(w)-f\left(w^{*}\right)\right)+2 \gamma^{2} \sigma^{2}
\end{aligned}
$$

$$
\leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma^{2} \sigma^{2}
$$

```
Lemma
\mathbb { E } [ \| \nabla f _ { j } ( w ) \| ^ { 2 } ] \leq 4 L _ { \operatorname { m a x } } ( f ( w ) - f ( w ^ { * } ) ) + 2 \sigma ^ { 2 }
```

Proof is SUPER EASY:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\gamma \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to $j \sim \frac{1}{n} \quad \mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)$

$$
\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]
$$

$$
\begin{aligned}
\text { quasi strong conv } \longrightarrow & \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma\left(2 \gamma L_{\max }-1\right)\left(f(w)-f\left(w^{*}\right)\right)+2 \gamma^{2} \sigma^{2}
\end{aligned}
$$

$$
\gamma \leq \frac{1}{2 L_{\max }} \longrightarrow \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma^{2} \sigma^{2} \quad \begin{gathered}
\text { Lemma } \\
\mathbb{E}\left[\left\|\nabla f_{j}(w)\right\|^{2}\right] \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}
\end{gathered}
$$

Proof is SUPER EASY:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\gamma \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to $j \sim \frac{1}{n} \quad \mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)$
$\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]$

$$
\begin{aligned}
\text { quasi strong conv } & \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma\left(2 \gamma L_{\max }-1\right)\left(f(w)-f\left(w^{*}\right)\right)+2 \gamma^{2} \sigma^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\gamma \leq \frac{1}{2 L_{\max }} & \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma^{2} \sigma^{2} \\
\text { Taking total expectation } & \mathbb{E}\left[\left\|\nabla f_{j}(w)\right\|^{2}\right] \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}
\end{array}
$$

$\mathbb{E}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right] \leq(1-\gamma \mu) \mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right]+2 \gamma^{2} \sigma^{2}$

$$
\begin{aligned}
& =(1-\gamma \mu)^{t+1}\left\|w^{0}-w^{*}\right\|_{2}^{2}+2 \sum_{i=0}^{t}(1-\gamma \mu)^{i} \gamma^{2} \sigma^{2} \\
& \leq(1-\gamma \mu)^{t+1}\left\|w^{0}-w^{*}\right\|_{2}^{2}+\frac{2 \gamma \sigma^{2}}{\mu}
\end{aligned}
$$

Proof is SUPER EASY:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\gamma \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to $j \sim \frac{1}{n} \quad \mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)$
$\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]$

$$
\begin{aligned}
\text { quasi strong conv } \longrightarrow & \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \\
& \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma\left(2 \gamma L_{\max }-1\right)\left(f(w)-f\left(w^{*}\right)\right)+2 \gamma^{2} \sigma^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\gamma \leq \frac{1}{2 L_{\text {max }}} & \leq(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma^{2} \sigma^{2} \\
\text { Taking total expectation } & \begin{array}{l}
\mathbb{E}\left[\left\|\nabla f_{j}(w)\right\|^{2}\right] \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}
\end{array}
\end{array}
$$

$\mathbb{E}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right] \leq(1-\gamma \mu) \mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right]+2 \gamma^{2} \sigma^{2}$

$$
\begin{aligned}
& =(1-\gamma \mu)^{t+1}\left\|w^{0}-w^{*}\right\|_{2}^{2}+2 \sum_{i=0}^{t}(1-\gamma \mu)^{i} \gamma^{2} \sigma^{2} \\
& \leq(1-\gamma \mu)^{t+1}\left\|w^{0}-w^{*}\right\|_{2}^{2}+\frac{2 \gamma \sigma^{2}}{\mu}<\sum_{i=0}^{t}(1-\gamma \mu)^{i}=\frac{1-(1-\gamma \mu)^{t+1}}{\gamma \mu} 12 \Theta \frac{1}{\gamma \mu}
\end{aligned}
$$

Complexity / Convergence

Theorem

If f is μ-str. convex, f_{i} is convex, L_{i}-smooth, $\alpha \in\left[0, \frac{1}{2 L_{\text {max }}}\right]$ then the iterates of the SGD satisfy

$$
\sigma^{2}:=\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

$$
\mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right] \leq(1-\alpha \mu)^{t}\left\|w^{0}-w^{*}\right\|_{2}^{2}+\frac{2 \alpha}{\mu} \sigma^{2}
$$

Shows that $\alpha \approx \frac{1}{\mu}$
Shows that $\alpha \approx 0$

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. Richtarik, ICML 2019, arXiv:1901.09401 SGD: General Analysis and Improved Rates.

Stochastic Gradient Descent
 $a=0.01$

Stochastic Gradient Descent

$a=0.1$

Stochastic Gradient Descent
 a $=0.2$

Stochastic Gradient Descent $a=0.5$

Stochastic Gradient Descent
 $a=0.5$

Stochastic Gradient Descent
 a $=0.5$

1) Start with
big steps and
end with
smaller steps
2) Try averaging the points

Stochastic Gradient Descent
 $a=0.5$

1) Start with big steps and end with smaller steps
2) Try averaging the points

SGD shrinking stepsize

SGD Shrinking stepsize

Set $w^{0}=0$
Choose $\alpha_{t}>0, \alpha_{t} \rightarrow 0, \sum_{t=0}^{\infty} \alpha_{t}=\infty$ for $t=0,1,2, \ldots, T-1$
sample $j \in\{1, \ldots, n\}$
$w^{t+1}=w^{t}-\alpha_{t} \nabla f_{j}\left(w^{t}\right)$
Output w^{T}
Shrinking
Stepsize

SGD shrinking stepsize

SGD Shrinking stepsize

Set $w^{0}=0$
Choose $\alpha_{t}>0, \alpha_{t} \rightarrow 0, \sum_{t=0}^{\infty} \alpha_{t}=\infty$ for $t=0,1,2, \ldots, T-1$

$$
\begin{aligned}
& \text { sample } j \in\{1, \ldots, n\} \\
& w^{t+1}=w^{t}-\alpha_{t} \nabla f_{j}\left(w^{t}\right)
\end{aligned}
$$

Output w^{T}

How should we sample j ?

Shrinking
Stepsize

How fast $\alpha_{t} \rightarrow 0$?

Does this converge?

Complexity / Convergence

Theorem for switching to shrinking stepsizes

 If f is μ-str. convex, f_{i} is convex and L_{i}-smooth.Let $\mathcal{K}:=L_{\max } / \mu$ and let

$$
\alpha^{t}=\left\{\begin{array}{lll}
\frac{1}{2 L_{\max }} & \text { for } & t \leq 4\lceil\mathcal{K}\rceil \\
\frac{2 t+1}{(t+1)^{2} \mu} & \text { for } & t>4\lceil\mathcal{K}\rceil .
\end{array}\right.
$$

If $t \geq 4\lceil\mathcal{K}\rceil$, then the SGD iterates converge

$$
\mathbb{E}\left\|w^{t}-w^{*}\right\|^{2} \leq \frac{\sigma^{2}}{\mu^{2}} \frac{8}{t}+\frac{16}{e^{2}} \frac{\lceil\mathcal{K}\rceil^{2}}{t^{2}}\left\|w^{0}-w^{*}\right\|^{2}
$$

Complexity / Convergence

Theorem for switching to shrinking stepsizes

If f is μ-str. convex, f_{i} is convex and L_{i}-smooth.
Let $\mathcal{K}:=L_{\max } / \mu$ and let

$$
\alpha^{t}=\left\{\begin{array}{lll}
\frac{1}{2 L_{\max }} & \text { for } & t \leq 4\lceil\mathcal{K}\rceil \\
\frac{2 t+1}{(t+1)^{2} \mu} & \text { for } & t>4\lceil\mathcal{K}\rceil .
\end{array}\right.
$$

$$
\alpha^{t}=O(1 /(t+1))
$$

If $t \geq 4\lceil\mathcal{K}\rceil$, then the SGD iterates converge

$$
\mathbb{E}\left\|w^{t}-w^{*}\right\|^{2} \leq \frac{\sigma^{2}}{\mu^{2}} \frac{8}{t}+\frac{16}{e^{2}} \frac{\lceil\mathcal{K}\rceil^{2}}{t^{2}}\left\|w^{0}-w^{*}\right\|^{2}
$$

Complexity / Convergence

Theorem for switching to shrinking stepsizes

 If f is μ-str. convex, f_{i} is convex and L_{i}-smooth.Let $\mathcal{K}:=L_{\max } / \mu$ and let

$$
\alpha^{t}=\left\{\begin{array}{lll}
\frac{1}{2 L_{\max }} & \text { for } & t \leq 4\lceil\mathcal{K}\rceil \\
\frac{2 t+1}{(t+1)^{2} \mu} & \text { for } & t>4\lceil\mathcal{K}\rceil .
\end{array}\right.
$$

$$
\alpha^{t}=O(1 /(t+1))
$$

If $t \geq 4\lceil\mathcal{K}\rceil$, then the SGD iterates converge

$$
\mathbb{E}\left\|w^{t}-w^{*}\right\|^{2} \leq \frac{\sigma^{2}}{\mu^{2}} \frac{8}{t}+\frac{16}{e^{2}} \frac{\lceil\mathcal{K}\rceil^{2}}{t^{2}}\left\|w^{0}-w^{*}\right\|^{2}
$$

In practice often $\alpha^{t}=C / \sqrt{t+1}$ where C is tuned

Stochastic Gradient Descent with

 switch to decreasing stepsizes

Stochastic Gradient Descent with

switch to decreasing stepsizes

SGD with (late start) averaging

SGD with late averaging

Set $w^{0}=0$
Choose $\alpha_{t}>0, \alpha_{t} \rightarrow 0, \sum_{t=0}^{\infty} \alpha_{t}=\infty$ Choose averaging start $s_{0} \in \mathbb{N}$
for $t=0,1,2, \ldots, T-1$
sample $j \in\{1, \ldots, n\}$
$w^{t+1}=w^{t}-\alpha_{t} \nabla f_{j}\left(w^{t}\right)$
if $t>s_{0}$

$$
\bar{w}=\frac{1}{t-s_{0}} \sum_{i=s_{0}}^{t} w^{t}
$$

else: $\bar{w}=w$
Output \bar{w}
B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)
Acceleration of stochastic approximation by averaging

with (late start) averaging

SGD with late averaging

Set $w^{0}=0$
Choose $\alpha_{t}>0, \alpha_{t} \rightarrow 0, \sum_{t=0}^{\infty} \alpha_{t}=\infty$
Choose averaging start $s_{0} \in \mathbb{N}$
for $t=0,1,2, \ldots, T-1$
sample $j \in\{1, \ldots, n\}$
$w^{t+1}=w^{t}-\alpha_{t} \nabla f_{j}\left(w^{t}\right)$
if $t>s_{0}$
$\bar{w}=\frac{1}{t-s_{0}} \sum_{i=s_{0}}^{t} w^{t}$
else: $\bar{w}=w$
Output \bar{w}

This is not efficient. How to make this efficient?
B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)
Acceleration of stochastic approximation by averaging

Stochastic Gradient Descent Averaging the last few iterates

Stochastic Gradient Descent Averaging the last few iterates

Averaging starts here

Part III.2: Stochastic Gradient Descent for Sparse Data

Lazy SGD updates for Sparse Data

Finite Sum Training Problem

L2 regularizor + linear hypothesis

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle w, x^{i}\right\rangle, y^{i}\right)+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

Let x^{i} have at most $s \in \mathbb{N}$ nonzero elements for all i. How many operations does each SGD step cost?

Sparse Examples:

encoding of categorical variables (hot one encoding), word2vec, recommendation systems ...etc

Lazy SGD updates for Sparse Data

Finite Sum Training Problem

L2 regularizor + linear hypothesis

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle w, x^{i}\right\rangle, y^{i}\right)+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

Let x^{i} have at most $s \in \mathbb{N}$ nonzero elements for all i. How many operations does each SGD step cost?

$$
\begin{aligned}
w^{t+1} & =w^{t}-\alpha_{t}\left(\ell^{\prime}\left(\left\langle w^{t}, x^{i}\right\rangle, y^{i}\right) x^{i}+\lambda w^{t}\right) \\
& =\left(1-\lambda \alpha_{t}\right) w^{t}-\alpha_{t} \ell^{\prime}\left(\left\langle w^{t}, x^{i}\right\rangle, y^{i}\right) x^{i}
\end{aligned}
$$

Sparse Examples:

encoding of categorical
variables (hot one encoding),
word2vec, recommendation
systems ...etc

Lazy SGD updates for Sparse Data

Finite Sum Training Problem

L2 regularizor + linear hypothesis

$$
n
$$

Let x^{i} have at most $s \in \mathbb{N}$ nonzero elements for all i. How many operations does each SGD step cost?

$$
\begin{aligned}
w^{t+1} & =w^{t}-\alpha_{t}\left(\ell^{\prime}\left(\left\langle w^{t}, x^{i}\right\rangle, y^{i}\right) x^{i}+\lambda w^{t}\right) \\
& =\left(1-\lambda \alpha_{t}\right) w^{t}-\alpha_{t} \ell^{\prime}\left(\left\langle w^{t}, x^{i}\right\rangle, y^{i}\right) x^{i}
\end{aligned}
$$

Sparse Examples:

encoding of categorical variables (hot one encoding), word2vec, recommendation systems ...etc

Lazy SGD updates for Sparse Data

SGD step

$$
w^{t+1}=\left(1-\lambda \alpha_{t}\right) w^{t}-\alpha_{t} \ell^{\prime}\left(\left\langle w^{t}, x^{i}\right\rangle, y^{i}\right) x^{i}
$$

EXE: re-write the iterates using $w^{t}=\beta_{t} z^{t}$ where $\beta_{t} \in \mathbb{R}, z^{t} \in \mathbb{R}^{d}$ Can you update β_{t} and z^{t} so that each iteration is $O(s)$?

Lazy SGD updates for Sparse Data

SGD step

$$
w^{t+1}=\left(1-\lambda \alpha_{t}\right) w^{t}-\alpha_{t} \ell^{\prime}\left(\left\langle w^{t}, x^{i}\right\rangle, y^{i}\right) x^{i}
$$

EXE: re-write the iterates using $w^{t}=\beta_{t} z^{t}$ where $\beta_{t} \in \mathbb{R}, z^{t} \in \mathbb{R}^{d}$ Can you update β_{t} and z^{t} so that each iteration is $O(s)$?

$$
\beta_{t+1} z^{t+1}=\left(1-\lambda \alpha_{t}\right) \beta_{t} z^{t}-\alpha_{t} \ell^{\prime}\left(\beta_{t}\left\langle z^{t}, x^{i}\right\rangle, y^{i}\right) x^{i}
$$

Lazy SGD updates for Sparse Data

SGD step

$$
w^{t+1}=\left(1-\lambda \alpha_{t}\right) w^{t}-\alpha_{t} \ell^{\prime}\left(\left\langle w^{t}, x^{i}\right\rangle, y^{i}\right) x^{i}
$$

EXE: re-write the iterates using $w^{t}=\beta_{t} z^{t}$ where $\beta_{t} \in \mathbb{R}, z^{t} \in \mathbb{R}^{d}$ Can you update β_{t} and z^{t} so that each iteration is $O(s)$?

$$
\begin{aligned}
\beta_{t+1} z^{t+1} & =\left(1-\lambda \alpha_{t}\right) \beta_{t} z^{t}-\alpha_{t} \ell^{\prime}\left(\beta_{t}\left\langle z^{t}, x^{i}\right\rangle, y^{i}\right) x^{i} \\
& =\left(1-\lambda \alpha_{t}\right) \beta_{t}\left(z^{t}-\frac{\alpha_{t} \ell^{\prime}\left(\beta_{t}\left\langle z^{t}, x^{i}\right\rangle, y^{i}\right)}{\left(1-\lambda \alpha_{t}\right) \beta_{t}} x^{i}\right)
\end{aligned}
$$

Lazy SGD updates for Sparse Data

SGD step

$$
w^{t+1}=\left(1-\lambda \alpha_{t}\right) w^{t}-\alpha_{t} \ell^{\prime}\left(\left\langle w^{t}, x^{i}\right\rangle, y^{i}\right) x^{i}
$$

EXE: re-write the iterates using $w^{t}=\beta_{t} z^{t}$ where $\beta_{t} \in \mathbb{R}, z^{t} \in \mathbb{R}^{d}$ Can you update β_{t} and z^{t} so that each iteration is $O(s)$?

$$
\begin{aligned}
\beta_{t+1} z^{t+1} & =\left(1-\lambda \alpha_{t}\right) \beta_{t} z^{t}-\alpha_{t} \ell^{\prime}\left(\beta_{t}\left\langle z^{t}, x^{i}\right\rangle, y^{i}\right) x^{i} \\
& =\underbrace{\left(1-\lambda \alpha_{t}\right) \beta_{t}}_{\beta_{t+1}}(\underbrace{\left.z^{t}-\frac{\alpha_{t} \ell^{\prime}\left(\beta_{t}\left\langle z^{t}, x^{i}\right\rangle, y^{i}\right)}{\left(1-\lambda \alpha_{t}\right) \beta_{t}} x^{i}\right)}
\end{aligned}
$$

Lazy SGD updates for Sparse Data

SGD step

$$
w^{t+1}=\left(1-\lambda \alpha_{t}\right) w^{t}-\alpha_{t} \ell^{\prime}\left(\left\langle w^{t}, x^{i}\right\rangle, y^{i}\right) x^{i}
$$

EXE: re-write the iterates using $w^{t}=\beta_{t} z^{t}$ where $\beta_{t} \in \mathbb{R}, z^{t} \in \mathbb{R}^{d}$ Can you update β_{t} and z^{t} so that each iteration is $O(s)$?

$$
\begin{aligned}
\beta_{t+1} z^{t+1} & =\left(1-\lambda \alpha_{t}\right) \beta_{t} z^{t}-\alpha_{t} \ell^{\prime}\left(\beta_{t}\left\langle z^{t}, x^{i}\right\rangle, y^{i}\right) x^{i} \\
& =\underbrace{\left(1-\lambda \alpha_{t}\right) \beta_{t}}_{\beta_{t+1}}(\underbrace{\left.z^{t}-\frac{\alpha_{t} \ell^{\prime}\left(\beta_{t}\left\langle z^{t}, x^{i}\right\rangle, y^{i}\right)}{\left(1-\lambda \alpha_{t}\right) \beta_{t}} x^{i}\right)}_{z^{t+1}} \\
\beta_{t+1} & =\left(1-\lambda \alpha_{t}\right) \beta_{t}, \quad z^{t+1}=z^{t}-\frac{\alpha_{t} \ell^{\prime}\left(\beta_{t}\left\langle z^{t}, x^{i}\right\rangle, y^{i}\right)}{\left(1-\lambda \alpha_{t}\right) \beta_{t}} x^{i}
\end{aligned}
$$

Lazy SGD updates for Sparse Data

SGD step

$$
w^{t+1}=\left(1-\lambda \alpha_{t}\right) w^{t}-\alpha_{t} \ell^{\prime}\left(\left\langle w^{t}, x^{i}\right\rangle, y^{i}\right) x^{i}
$$

EXE: re-write the iterates using $w^{t}=\beta_{t} z^{t}$ where $\beta_{t} \in \mathbb{R}, z^{t} \in \mathbb{R}^{d}$ Can you update β_{t} and z^{t} so that each iteration is $O(s)$?

O(1) scaling +
O(s) sparse add = O(s) update

$$
\beta_{t+1}=\left(1-\lambda \alpha_{t}\right) \beta_{t}, \quad z^{t+1}=z^{t}-\frac{\alpha_{t} \ell^{\prime}\left(\beta_{t}\left\langle z^{t}, x^{i}\right\rangle, y^{i}\right)}{\left(1-\lambda \alpha_{t}\right) \beta_{t}} x^{i}
$$

Part IV: Momentum and gradient descent

Back to Gradient Descent

Solving the training problem: $\min _{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)=: f(w)$
Baseline method: Gradient Descent (GD)

$$
w^{t+1}=w^{t}-\gamma \nabla f\left(w^{t}\right)
$$

Step size/

Learning rate

GD motivated through local rate of change

Local rate of change

$$
\Delta(d):=\lim _{s \rightarrow 0^{+}} \frac{f(x+d s)-f(x)}{s}
$$

GD motivated through local rate of change

Local rate of change

$$
\Delta(d):=\lim _{s \rightarrow 0^{+}} \frac{f(x+d s)-f(x)}{s}
$$

Max local rate

$$
\frac{\nabla f\left(w^{t}\right)}{\left\|\nabla f\left(w^{t}\right)\right\|}:=\max _{\substack{w \in \mathbb{R}^{d} \\ \\ \text { subject to }}} \Delta(d)
$$

GD is the "steepest descent"

Local motivation not good for global

Local motivation not good for global

Adding Momentum to GD

Additional momentum parameter ≈ 0.99

Heavey Ball Method:

$$
w^{t+1}=w^{t}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
$$

Adds "Inertia" to update, like friction for a heavy ball

Equivalent Momentum formulation

Heavey Ball Method:

$$
w^{t+1}=w^{t}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
$$

Adds "Inertia" to update

Equivalent Momentum formulation

Heavey Ball Method:

$$
w^{t+1}=w^{t}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
$$

Adds "Inertia" to update

GD with momentum (GDm):

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f\left(w^{t}\right) \\
w^{t+1} & =w^{t}-\gamma m^{t}
\end{aligned}
$$

Equivalent Momentum formulation

Heavey Ball Method:

$$
w^{t+1}=w^{t}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
$$

Adds "Momentum" to update

Adds "Inertia" to update

GD with momentum (GDm):

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f\left(w^{t}\right) \\
w^{t+1} & =w^{t}-\gamma m^{t}
\end{aligned}
$$

Equivalent Momentum formulation

GD with momentum:

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f\left(w^{t}\right) \\
w^{t+1} & =w^{t}-\gamma m^{t}
\end{aligned}
$$

Equivalent Momentum formulation

GD with momentum:

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f\left(w^{t}\right) \\
w^{t+1} & =w^{t}-\gamma m^{t}
\end{aligned}
$$

$$
\begin{aligned}
w^{t+1} & =w^{t}-\gamma m^{t} \\
& =w^{t}-\gamma\left(\beta m^{t-1}+\nabla f\left(w^{t}\right)\right) \\
& =w^{t}-\gamma \nabla f\left(w^{t}\right)-\gamma \beta m^{t-1} \\
& =w^{t}-\gamma \nabla f\left(w^{t}\right)+\frac{\gamma \beta}{\gamma}\left(w^{t}-w^{t-1}\right)
\end{aligned}
$$

Equivalent Momentum formulation

$$
\begin{gathered}
\begin{array}{c}
\text { GD with momentum: } \\
m^{t}=\beta m^{t-1}+\nabla f\left(w^{t}\right) \\
w^{t+1}=w^{t}-\gamma m^{t}
\end{array} \\
w^{t+1}=w^{t}-\gamma m^{t} \\
=w^{t}-\gamma\left(\beta m^{t-1}+\nabla f\left(w^{t}\right)\right) \\
=w^{t}-\gamma \nabla f\left(w^{t}\right)-\gamma \beta m^{t-1} \\
=w^{t}-\gamma \nabla f\left(w^{t}\right)+\frac{\gamma \beta}{\gamma}\left(w^{t}-w^{t-1}\right)
\end{gathered}
$$

Equivalent Momentum formulation

GD with momentum:

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f\left(w^{t}\right) \\
w^{t+1} & =w^{t}-\gamma m^{t}
\end{aligned}
$$

$w^{t+1}=w^{t}-\gamma m^{t}$
$=w^{t}-\gamma\left(\beta m^{t-1}+\nabla f\left(w^{t}\right)\right) \quad m^{t-1}=-\frac{1}{\gamma}\left(w^{t}-w^{t-1}\right)$
$=w^{t}-\gamma \nabla f\left(w^{t}\right)-\gamma \beta m^{t-1}$
$=w^{t}-\gamma \nabla f\left(w^{t}\right)+\frac{\gamma \beta}{\gamma}\left(w^{t}-w^{t-1}\right)$

Equivalent Momentum formulation

GD with momentum:

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f\left(w^{t}\right) \\
w^{t+1} & =w^{t}-\gamma m^{t}
\end{aligned}
$$

$$
w^{t+1}=w^{t}-\gamma m^{t}
$$

$$
=w^{t}-\gamma\left(\beta m^{t-1}+\nabla f\left(w^{t}\right)\right) \quad m^{t-1}=-\frac{1}{\gamma}\left(w^{t}-w^{t-1}\right)
$$

$$
=w^{t}-\gamma \nabla f\left(w^{t}\right)-\gamma \beta m^{t-1}
$$

$$
=w^{t}-\gamma \nabla f\left(w^{t}\right)+\frac{\gamma \beta}{\gamma}\left(w^{t}-w^{t-1}\right)
$$

$$
w^{t+1}=w^{t}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
$$

Equivalent Momentum formulation

GD with momentum:

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f\left(w^{t}\right) \\
w^{t+1} & =w^{t}-\gamma m^{t}
\end{aligned}
$$

$$
w^{t+1}=w^{t}-\gamma m^{t}
$$

$$
=w^{t}-\gamma\left(\beta m^{t-1}+\nabla f\left(w^{t}\right)\right) \quad m^{t-1}=-\frac{1}{\gamma}\left(w^{t}-w^{t-1}\right)
$$

$$
=w^{t}-\gamma \nabla f\left(w^{t}\right)-\gamma \beta m^{t-1}
$$

Heavey Ball Method:

$$
=w^{t}-\gamma \nabla f\left(w^{t}\right)+\frac{\gamma \beta}{\gamma}\left(w^{t}-w^{t-1}\right)
$$

$$
w^{t+1}=w^{t}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
$$

Equivalent Iterate Averaging formulation

Heavey Ball Method:

$$
w^{t+1}=w^{t}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
$$

Adds "Inertia" to update

Equivalent Iterate Averaging formulation

Heavey Ball Method:

$$
w^{t+1}=w^{t}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
$$

Adds "Inertia" to update

Iterate Averaging: Let $\eta>0, \alpha \in[0,1]$

$$
\begin{aligned}
z^{t} & =z^{t-1}-\eta \nabla f\left(w^{t}\right) \\
w^{t+1} & =\frac{\alpha}{\alpha+1} w^{t}+\frac{1}{\alpha+1} z^{t}
\end{aligned}
$$

Equivalent Iterate Averaging formulation

Heavey Ball Method:

$$
w^{t+1}=w^{t}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
$$

Additional sequence of variables

Adds "Inertia" to update

Iterate Averaging: Let $\eta>0, \alpha \in[0,1]$

$$
\begin{aligned}
z^{t} & =z^{t-1}-\eta \nabla f\left(w^{t}\right) \\
w^{t+1} & =\frac{\alpha}{\alpha+1} w^{t}+\frac{1}{\alpha+1} z^{t}
\end{aligned}
$$

New parameters

Averaging of variables

Equivalent Iterate Averaging formulation

Iterate Averaging: Let $\eta>0, \alpha \in[0,1]$

$$
\begin{aligned}
z^{t} & =z^{t-1}-\eta \nabla f\left(x^{t}\right) \\
w^{t+1} & =\frac{\alpha}{\alpha+1} w^{t}+\frac{1}{\alpha+1} z^{t}
\end{aligned}
$$

Define: $\gamma=\frac{\eta}{\alpha+1}$ and $\beta=\frac{\alpha}{\alpha+1}$

Equivalent Iterate Averaging

formulation

Iterate Averaging: Let $\eta>0, \alpha \in[0,1]$

$$
\begin{aligned}
z^{t} & =z^{t-1}-\eta \nabla f\left(x^{t}\right) \\
w^{t+1} & =\frac{\alpha}{\alpha+1} w^{t}+\frac{1}{\alpha+1} z^{t}
\end{aligned}
$$

Define: $\quad \gamma=\frac{\eta}{\alpha+1}$ and $\beta=\frac{\alpha}{\alpha+1}$

$$
w^{t+1}=\beta w^{t}+\frac{1}{\alpha+1} z^{t}
$$

Equivalent Iterate Averaging

formulation

Iterate Averaging: Let $\eta>0, \alpha \in[0,1]$

$$
\begin{aligned}
z^{t} & =z^{t-1}-\eta \nabla f\left(x^{t}\right) \\
w^{t+1} & =\frac{\alpha}{\alpha+1} w^{t}+\frac{1}{\alpha+1} z^{t}
\end{aligned}
$$

Define: $\gamma=\frac{\eta}{\alpha+1}$ and $\beta=\frac{\alpha}{\alpha+1}$

$$
\begin{aligned}
w^{t+1} & =\beta w^{t}+\frac{1}{\alpha+1} z^{t} \\
& =\beta w^{t}+\frac{1}{\alpha+1}\left(z^{t-1}-\eta \nabla f\left(w^{t}\right)\right)
\end{aligned}
$$

Equivalent Iterate Averaging

formulation

Iterate Averaging: Let $\eta>0, \alpha \in[0,1]$

$$
\begin{aligned}
z^{t} & =z^{t-1}-\eta \nabla f\left(x^{t}\right) \\
w^{t+1} & =\frac{\alpha}{\alpha+1} w^{t}+\frac{1}{\alpha+1} z^{t}
\end{aligned}
$$

Define: $\gamma=\frac{\eta}{\alpha+1}$ and $\beta=\frac{\alpha}{\alpha+1}$

$$
\begin{array}{rlrl}
w^{t+1} & =\beta w^{t}+\frac{1}{\alpha+1} z^{t} & t \leftarrow t-1 \\
& =\beta w^{t}+\frac{1}{\alpha+1}\left(z^{t-1}-\eta \nabla f\left(w^{t}\right)\right) & \quad z^{t-1}=(\alpha+1) w^{t}-\alpha w^{t-1}
\end{array}
$$

Equivalent Iterate Averaging

formulation

Iterate Averaging: Let $\eta>0, \alpha \in[0,1]$

$$
\begin{aligned}
z^{t} & =z^{t-1}-\eta \nabla f\left(x^{t}\right) \\
w^{t+1} & =\frac{\alpha}{\alpha+1} w^{t}+\frac{1}{\alpha+1} z^{t}
\end{aligned}
$$

Define: $\gamma=\frac{\eta}{\alpha+1}$ and $\beta=\frac{\alpha}{\alpha+1}$

$$
\begin{aligned}
w^{t+1} & =\beta w^{t}+\frac{1}{\alpha+1} z^{t} \\
& =\beta w^{t}+\frac{1}{\alpha+1}\left(z^{t-1}-\eta \nabla f\left(w^{t}\right)\right)
\end{aligned}
$$

Equivalent Iterate Averaging formulation

Iterate Averaging: Let $\eta>0, \alpha \in[0,1]$

$$
\begin{aligned}
z^{t} & =z^{t-1}-\eta \nabla f\left(x^{t}\right) \\
w^{t+1} & =\frac{\alpha}{\alpha+1} w^{t}+\frac{1}{\alpha+1} z^{t}
\end{aligned}
$$

Define: $\gamma=\frac{\eta}{\alpha+1}$ and $\beta=\frac{\alpha}{\alpha+1}$

$$
\begin{aligned}
w^{t+1} & =\beta w^{t}+\frac{1}{\alpha+1} z^{t} \\
& =\beta w^{t}+\frac{1}{\alpha+1}\left(z^{t-1}-\eta \nabla f\left(w^{t}\right)\right) \\
& =\beta w^{t}+\frac{1}{\alpha+1}\left((\alpha+1) w^{t}-\alpha w^{t-1}-\eta \nabla f\left(w^{t}\right)\right)
\end{aligned}
$$

Equivalent Iterate Averaging formulation

Iterate Averaging: Let $\eta>0, \alpha \in[0,1]$

$$
\begin{aligned}
z^{t} & =z^{t-1}-\eta \nabla f\left(x^{t}\right) \\
w^{t+1} & =\frac{\alpha}{\alpha+1} w^{t}+\frac{1}{\alpha+1} z^{t}
\end{aligned}
$$

Define: $\gamma=\frac{\eta}{\alpha+1}$ and $\beta=\frac{\alpha}{\alpha+1}$

$$
\begin{aligned}
w^{t+1} & =\beta w^{t}+\frac{1}{\alpha+1} z^{t} \\
& =\beta w^{t}+\frac{1}{\alpha+1}\left(z^{t-1}-\eta \nabla f\left(w^{t}\right)\right) \\
& =\beta w^{t}+\frac{1}{\alpha+1}\left((\alpha+1) w^{t}-\alpha w^{t-1}-\eta \nabla f\left(w^{t}\right)\right) \\
& =w^{t}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
\end{aligned}
$$

Equivalent Iterate Averaging formulation

Iterate Averaging: Let $\eta>0, \alpha \in[0,1]$

$$
\begin{aligned}
z^{t} & =z^{t-1}-\eta \nabla f\left(x^{t}\right) \\
w^{t+1} & =\frac{\alpha}{\alpha+1} w^{t}+\frac{1}{\alpha+1} z^{t}
\end{aligned}
$$

Define: $\gamma=\frac{\eta}{\alpha+1}$ and $\beta=\frac{\alpha}{\alpha+1}$

$$
\begin{aligned}
w^{t+1} & =\beta w^{t}+\frac{1}{\alpha+1} z^{t} \\
& =\beta w^{t}+\frac{1}{\alpha+1}\left(z^{t-1}-\eta \nabla f\left(w^{t}\right)\right)<t \leftarrow t-1 \\
& =\beta w^{t}+\frac{1}{\alpha+1}\left((\alpha+1) w^{t}-\alpha w^{t-1}-\eta \nabla f\left(w^{t}\right)\right)
\end{aligned}
$$

Heavey Ball Method:

$$
=w^{t}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
$$

Part IV.2: Convergence of Momentum with gradient descent

Convergence of Gradient Descent

Theorem Let f be μ-strongly convex and L-smooth, that is

$$
\begin{aligned}
& \text { stepsize } \quad \mu I \preceq \nabla^{2} f(w) \preceq L I, \quad \forall w \in \mathbb{R}^{d} \\
& \text { If } \gamma=\frac{2}{L+\mu} \text { then Gradient Descent converges } \\
& \left\|w^{t}-w^{*}\right\| \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{t}\left\|w^{0}-w^{*}\right\| \\
& \kappa:=L / \mu \geq 1
\end{aligned}
$$

Convergence of Gradient Descent

Theorem Let f be μ-strongly convex and L-smooth, that is

$$
\begin{aligned}
& \text { stepsize } \quad \mu I \preceq \nabla^{2} f(w) \preceq L I, \quad \forall w \in \mathbb{R}^{d} \\
& \text { If } \gamma=\frac{2}{L+\mu} \text { then Gradient Descent converges } \\
& \left\|w^{t}-w^{*}\right\| \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{t}\left\|w^{0}-w^{*}\right\| \\
& \kappa:=L / \mu \geq 1
\end{aligned}
$$

Corollary $t \geq \frac{1}{\kappa+1} \log \left(\frac{1}{\epsilon}\right) \quad \frac{\left\|w^{t}-w^{*}\right\|}{\left\|w^{0}-w^{*}\right\|} \leq \epsilon$

Convergence of Gradient Descent with Momentum Polyak 1964

Theorem Let $f \in C^{2}$ be μ-strongly convex and L-smooth, that is

$$
\begin{gathered}
\text { stepsize } \quad \mu I \preceq \nabla^{2} f(w) \preceq L I, \quad \forall w \in \mathbb{R}^{d} \\
\text { If } \gamma=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}} \text { and } \beta=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}} \text { then SGDm converges } \\
\left\|w^{t}-w^{*}\right\| \leq\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{t}\left\|w^{0}-w^{*}\right\|
\end{gathered}
$$

$$
\kappa:=L / \mu \geq 1
$$

Convergence of Gradient Descent with Momentum Polyak 1964

Theorem Let $f \in C^{2}$ be μ-strongly convex and L-smooth, that is

$$
\begin{gathered}
\text { stepsize } \quad \mu I \preceq \nabla^{2} f(w) \preceq L I, \quad \forall w \in \mathbb{R}^{d} \\
\text { If } \gamma=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}} \text { and } \beta=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}} \text { then SGDm converges } \\
\left\|w^{t}-w^{*}\right\| \leq\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{t}\left\|w^{0}-w^{*}\right\|
\end{gathered}
$$

$$
\kappa:=L / \mu \geq 1
$$

Corollary $t \geq \frac{1}{\sqrt{\kappa}+1} \log \left(\frac{1}{\epsilon}\right) \quad \frac{\left\|w^{t}-w^{*}\right\|}{\left\|w^{0}-w^{*}\right\|} \leq \epsilon$

Convergence of Gradient Descent with Momentum Polyak 1964

Theorem Let $f \in C^{2}$ be μ-strongly convex and L-smooth, that is

$$
\begin{gathered}
\text { stepsize } \quad \mu I \preceq \nabla^{2} f(w) \preceq L I, \quad \forall w \in \mathbb{R}^{d} \\
\text { If } \gamma=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}} \text { and } \beta=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}} \text { then SGDm converges } \\
\left\|w^{t}-w^{*}\right\| \leq\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{t}\left\|w^{0}-w^{*}\right\|
\end{gathered}
$$

Optimal iteration complexity for this function class

$$
\kappa:=L / \mu \geq 1
$$

Corollary $t \geq \frac{1}{\sqrt{\kappa}+1} \log \left(\frac{1}{\epsilon}\right) \quad \frac{\left\|w^{t}-w^{*}\right\|}{\left\|w^{0}-w^{*}\right\|} \leq \epsilon$

Proof: Convergence of Heavy Ball. Two

 time stepsFundamental Theorem of Calculus

$$
\int_{s=0}^{1} \nabla^{2} f(\underbrace{w^{s}}) d s\left(w^{t}-w^{*}\right)=\nabla f\left(w^{t}\right)-\nabla f\left(w^{*}\right)=\nabla f\left(w^{t}\right)
$$

$$
w^{s}:=w^{*}+s\left(w^{t}-w^{*}\right)
$$

Proof: Convergence of Heavy Ball. Two time steps

Fundamental Theorem of Calculus

$$
\int_{s=0}^{1} \nabla^{2} f(\underbrace{w^{s}}) d s\left(w^{t}-w^{*}\right)=\nabla f\left(w^{t}\right)-\nabla f\left(w^{*}\right)=\nabla f\left(w^{t}\right)
$$

$$
w^{s}:=w^{*}+s\left(w^{t}-w^{*}\right)
$$

$$
\begin{aligned}
w^{t+1}-w^{*} & =w^{t}-w^{*}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right) \\
& =\left(I-\gamma \int_{s=0}^{1} \nabla^{2} f\left(w^{s}\right)\right)\left(w^{t}-w^{*}\right)+\beta\left(w^{t}-w^{t-1}\right) \\
& =\left((1+\beta) I-\gamma \int_{s=0}^{1} \nabla^{2} f\left(w^{s}\right)\right)\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right)
\end{aligned}
$$

Proof: Convergence of Heavy Ball. Two time steps

Fundamental Theorem of Calculus

$$
\int_{s=0}^{1} \nabla^{2} f(\underbrace{w^{s}}) d s\left(w^{t}-w^{*}\right)=\nabla f\left(w^{t}\right)-\nabla f\left(w^{*}\right)=\nabla f\left(w^{t}\right)
$$

$$
w^{s}:=w^{*}+s\left(w^{t}-w^{*}\right)
$$

$$
\begin{aligned}
w^{t+1}-w^{*} & =w^{t}-w^{*}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)+w^{*}-w^{*} \\
& =\left(I-\gamma \int_{s=0}^{1} \nabla^{2} f\left(w^{s}\right)\right)\left(w^{t}-w^{*}\right)+\beta\left(w^{t}-w^{t-1}\right) \\
& =\left((1+\beta) I-\gamma \int_{s=0}^{1} \nabla^{2} f\left(w^{s}\right)\right)\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right)
\end{aligned}
$$

Proof: Convergence of Heavy Ball. Two time steps

Fundamental Theorem of Calculus

$$
\int_{s=0}^{1} \nabla^{2} f(\underbrace{w^{s}}) d s\left(w^{t}-w^{*}\right)=\nabla f\left(w^{t}\right)-\nabla f\left(w^{*}\right)=\nabla f\left(w^{t}\right)
$$

$$
w^{s}:=w^{*}+s\left(w^{t}-w^{*}\right)
$$

$$
\begin{aligned}
w^{t+1}-w^{*} & =w^{t}-w^{*}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)+w^{*}-w^{*} \\
& =\left(I-\gamma \int_{s=0}^{1} \nabla^{2} f\left(w^{s}\right)\right)\left(w^{t}-w^{*}\right)+\beta\left(w^{t}-w^{t-1}\right) \\
& =\left((1+\beta) I-\gamma \int_{s=0}^{1} \nabla^{2} f\left(w^{s}\right)\right)\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right)
\end{aligned}
$$

$$
=: A_{\gamma}
$$

Proof: Convergence of Heavy Ball. Two time steps

Fundamental Theorem of Calculus

$$
\int_{s=0}^{1} \nabla^{2} f(\underbrace{w^{s}}) d s\left(w^{t}-w^{*}\right)=\nabla f\left(w^{t}\right)-\nabla f\left(w^{*}\right)=\nabla f\left(w^{t}\right)
$$

$$
w^{s}:=w^{*}+s\left(w^{t}-w^{*}\right)
$$

$$
\begin{aligned}
w^{t+1}-w^{*} & =w^{t}-w^{*}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)+w^{*}-w^{*} \\
& =\left(I-\gamma \int_{s=0}^{1} \nabla^{2} f\left(w^{s}\right)\right)\left(w^{t}-w^{*}\right)+\beta\left(w^{t}-w^{t-1}\right) \\
& =(\underbrace{(1+\beta) I-\gamma \int_{s=0}^{1} \nabla^{2} f\left(w^{s}\right)}_{=: A_{\gamma}})\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right) \\
& =A_{\gamma}\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right)
\end{aligned}
$$

Proof: Convergence of Heavy Ball. Two

 time stepsFundamental Theorem of Calculus

$$
\int_{s=0}^{1} \nabla^{2} f(\underbrace{w^{s}}) d s\left(w^{t}-w^{*}\right)=\nabla f\left(w^{t}\right)-\nabla f\left(w^{*}\right)=\nabla f\left(w^{t}\right)
$$

$$
w^{s}:=w^{*}+s\left(w^{t}-w^{*}\right)
$$

$$
\begin{aligned}
w^{t+1}-w^{*} & =w^{t}-w^{*}-\gamma \nabla f\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)+w^{*}-w^{*} \\
& =\left(I-\gamma \int_{s=0}^{1} \nabla^{2} f\left(w^{s}\right)\right)\left(w^{t}-w^{*}\right)+\beta\left(w^{t}-w^{t-1}\right) \\
& =(\underbrace{(1+\beta) I-\gamma \int_{s=0}^{1} \nabla^{2} f\left(w^{s}\right)}_{=: A_{\gamma}})\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right) \\
& =A_{\gamma}\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right)
\end{aligned}
$$

Depends on two times steps

Proof: Convergence of Heavy Ball

$$
z^{t+1}=\left[\begin{array}{c}
w^{t+1}-w^{*} \\
w^{t}-w^{*}
\end{array}\right] \in \mathbb{R}^{2 d}
$$

Proof: Convergence of Heavy Ball

$$
\begin{gathered}
z^{t+1}=\left[\begin{array}{c}
w^{t+1}-w^{*} \\
w^{t}-w^{*}
\end{array}\right] \in \mathbb{R}^{2 d} \\
z^{t+1}=\left[\begin{array}{c}
w^{t+1}-w^{*} \\
w^{t}-w^{*}
\end{array}\right]=\left[\begin{array}{c}
A_{\gamma}\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right) \\
w^{t}-w^{*}
\end{array}\right]
\end{gathered}
$$

Proof: Convergence of Heavy Ball

$$
\begin{gathered}
z^{t+1}=\left[\begin{array}{c}
w^{t+1}-w^{*} \\
w^{t}-w^{*}
\end{array}\right] \in \mathbb{R}^{2 d} \\
z^{t+1}=\left[\begin{array}{c}
w^{t+1}-w^{*} \\
w^{t}-w^{*}
\end{array}\right]=\left[\begin{array}{c}
A_{\gamma}\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right) \\
w^{t}-w^{*}
\end{array}\right] \\
=\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right]\left[\begin{array}{c}
w^{t}-w^{*} \\
w^{t-1}-w^{*}
\end{array}\right]
\end{gathered}
$$

Proof: Convergence of Heavy Ball

$$
\begin{gathered}
z^{t+1}=\left[\begin{array}{c}
w^{t+1}-w^{*} \\
w^{t}-w^{*}
\end{array}\right] \in \mathbb{R}^{2 d} \\
z^{t+1}=\left[\begin{array}{c}
w^{t+1}-w^{*} \\
w^{t}-w^{*}
\end{array}\right]=\left[\begin{array}{c}
A_{\gamma}\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right) \\
w^{t}-w^{*}
\end{array}\right] \\
=\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right]\left[\begin{array}{c}
w^{t}-w^{*} \\
w^{t-1}-w^{*}
\end{array}\right] \\
=\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right] z^{t}
\end{gathered}
$$

Proof: Convergence of Heavy Ball

$$
\begin{gathered}
z^{t+1}=\left[\begin{array}{c}
w^{t+1}-w^{*} \\
w^{t}-w^{*}
\end{array}\right] \in \mathbb{R}^{2 d} \\
z^{t+1}=\left[\begin{array}{c}
w^{t+1}-w^{*} \\
w^{t}-w^{*}
\end{array}\right]=\left[\begin{array}{c}
A_{\gamma}\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right) \\
w^{t}-w^{*}
\end{array}\right] \\
=\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right]\left[\begin{array}{c}
w^{t}-w^{*} \\
w^{t-1}-w^{*}
\end{array}\right] \\
=\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right] z^{t} \text { Simple recurrence! }
\end{gathered}
$$

Proof: Convergence of Heavy Ball

$$
\begin{gathered}
z^{t+1}=\left[\begin{array}{c}
w^{t+1}-w^{*} \\
w^{t}-w^{*}
\end{array}\right] \in \mathbb{R}^{2 d} \\
z^{t+1}=\left[\begin{array}{c}
w^{t+1}-w^{*} \\
w^{t}-w^{*}
\end{array}\right]=\left[\begin{array}{c}
A_{\gamma}\left(w^{t}-w^{*}\right)-\beta\left(w^{t-1}-w^{*}\right) \\
w^{t}-w^{*}
\end{array}\right] \\
=\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right]\left[\begin{array}{c}
w^{t}-w^{*} \\
w^{t-1}-w^{*}
\end{array}\right] \\
=\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right] z^{t} \text { Simple recurrence! } \\
\left\|z^{t+1}\right\| \leq\left\|\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right]\right\|\left\|z^{t}\right\|
\end{gathered}
$$

Proof: Convergence of Heavy Ball

$$
\left\|z^{t+1}\right\| \leq\left\|\left[\begin{array}{cc}
A_{\gamma} \\
I & -I \beta \\
\hline
\end{array}\right]\right\|\left\|z^{t}\right\|
$$

Proof: Convergence of Heavy Ball

$$
\left\|z^{t+1}\right\| \leq\left\|\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right]\right\|\left\|z^{t}\right\|
$$

EXE on Eigenvalues:

$$
\text { If } \begin{aligned}
& \gamma=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}} \text { and } \beta=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}} \text { then } \\
&\left\|\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right]\right\|=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}
\end{aligned}
$$

Proof: Convergence of Heavy Ball

$$
\left\|z^{t+1}\right\| \leq\left\|\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right]\right\|\left\|z^{t}\right\|
$$

EXE on Eigenvalues:

$$
(1+\beta) I-\gamma \int_{s=0}^{1} \nabla^{2} f\left(w^{s}\right)
$$

$$
\begin{aligned}
\text { If } \gamma=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}} \text { and } \beta=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}} \text { then } \\
\left\|\left[\begin{array}{cc}
A_{\gamma} & -I \beta \\
I & 0
\end{array}\right]\right\|=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}
\end{aligned}
$$

Part V: Momentum with SGD

Adding Momentum to SGD

Stochastic Heavey Ball Method:

$$
w^{t+1}=w^{t}-\gamma \nabla f_{j_{t}}\left(w^{t}\right)+\beta\left(w^{t}-w^{t-1}\right)
$$

SGD with momentum:

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f_{j_{t}}\left(w^{t}\right) \\
w^{t+1} & =w^{t}-\gamma m^{t}
\end{aligned}
$$

Sampled i.i.d

Iterate Averaging:

$$
\begin{aligned}
z^{t} & =z^{t-1}-\eta \nabla f_{j_{t}}\left(x^{t}\right) \\
w^{t+1} & =\frac{\alpha}{\alpha+1} w^{t}+\frac{1}{\alpha+1} z^{t}
\end{aligned}
$$

$$
\begin{array}{r}
j_{t} \in\{1, \ldots, n\} \\
\mathbb{P}\left[j=j_{t}\right]=1 / n
\end{array}
$$

SGDm and Averaging

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f_{j_{t}}\left(w^{t}\right) \\
& =\beta m^{t-2}+\nabla f_{j_{t}}\left(w^{t}\right)+\beta \nabla f_{j_{t-1}}\left(w^{t-1}\right) \\
& =\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right)
\end{aligned}
$$

SGDm and Averaging

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f_{j_{t}}\left(w^{t}\right) \\
& =\beta m^{t-2}+\nabla f_{j_{t}}\left(w^{t}\right)+\beta \nabla f_{j_{t-1}}\left(w^{t-1}\right) \\
& =\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right) \quad m^{0}=0
\end{aligned}
$$

SGDm and Averaging

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f_{j_{t}}\left(w^{t}\right) \\
& =\beta m^{t-2}+\nabla f_{j_{t}}\left(w^{t}\right)+\beta \nabla f_{j_{t-1}}\left(w^{t-1}\right) \\
& =\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right) \quad m^{0}=0
\end{aligned}
$$

Momentum as exponentiated average:

$$
w^{t+1}=w^{t}-\gamma \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right)
$$

SGDm and Averaging

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f_{j_{t}}\left(w^{t}\right) \\
& =\beta m^{t-2}+\nabla f_{j_{t}}\left(w^{t}\right)+\beta \nabla f_{j_{t-1}}\left(w^{t-1}\right) \\
& =\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right) \quad m^{0}=0
\end{aligned}
$$

Momentum as exponentiated average:

$$
w^{t+1}=w^{t}-\gamma \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right)
$$

Acts like an approximate variance reduction since

SGDm and Averaging

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f_{j_{t}}\left(w^{t}\right) \\
& =\beta m^{t-2}+\nabla f_{j_{t}}\left(w^{t}\right)+\beta \nabla f_{j_{t-1}}\left(w^{t-1}\right) \\
& =\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right) \quad m^{0}=0
\end{aligned}
$$

Momentum as exponentiated average:

$$
w^{t+1}=w^{t}-\gamma \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right)
$$

Acts like an approximate
variance reduction since

$$
\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right) \approx \sum_{i=1}^{n} \frac{1}{n} \nabla f_{i}\left(w^{t}\right)
$$

SGDm and Averaging

$$
\begin{aligned}
m^{t} & =\beta m^{t-1}+\nabla f_{j_{t}}\left(w^{t}\right) \\
& =\beta m^{t-2}+\nabla f_{j_{t}}\left(w^{t}\right)+\beta \nabla f_{j_{t-1}}\left(w^{t-1}\right) \\
& =\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right) \quad m^{0}=0
\end{aligned}
$$

Momentum as exponentiated average:

$$
w^{t+1}=w^{t}-\gamma \sum \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right)
$$

Acts like an approximate variance reduction since

$$
\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}\left(w^{t-i}\right) \approx \sum_{i=1}^{n} \frac{1}{n} \nabla f_{i}\left(w^{t}\right)
$$

Stochastic Gradient Descent with momentum

Convergence plot

Stochastic Gradient Descent with momentum vs GD

Can we prove momentum always works?

Difficult: Recent 2019 results only

Convergence of Gradient Descent with Momentum

Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging

Convergence of Gradient Descent with Momentum

Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging

Convergence of Gradient Descent with Momentum

Does momentum make SGD converge faster?

Not clear, recently same
rate as SGD + averaging
f is μ-strongly convex,
f_{i} is convex and L_{i}-smooth

$$
t \geq O\left(\frac{1}{\epsilon}\right)
$$

Convergence of Gradient Descent with Momentum

Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging
f is μ-strongly convex,
f_{i} is convex and L_{i}-smooth

$$
t \geq O\left(\frac{1}{\epsilon}\right)
$$

f_{i} is convex and L_{i}-smooth

$$
t \geq O\left(\frac{1}{\epsilon^{2}}\right)
$$

Convergence of Gradient Descent with Momentum

Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging
f is μ-strongly convex,
f_{i} is convex and L_{i}-smooth

Convergence of Gradient Descent with Momentum

Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging
f is μ-strongly convex,
f_{i} is convex and L_{i}-smooth
f_{i} is convex and L_{i}-smooth

Part V: Test error and Validation

Validation Error

$$
\begin{aligned}
X & :=\left[\begin{array}{lllllll}
x_{1} & x_{2} & \cdots & x_{T} & x_{T+1} & \cdots & x_{n}
\end{array}\right] \in \mathbb{R}^{d \times n} \\
y & :=\left[\begin{array}{lllllll}
y_{1} & y_{2} & \cdots & y_{T} & y_{T+1} & \cdots & y_{n}
\end{array}\right] \in \mathbb{R}^{n}
\end{aligned}
$$

Validation Error

$$
\left.\begin{array}{rl}
X & :=\left[\begin{array}{llll|lll}
x_{1} & x_{2} & \cdots & x_{T} & x_{T+1} & \cdots & x_{n}
\end{array}\right] \in \mathbb{R}^{d \times n} \\
y & :=\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{T}
\end{array} y_{T+1}\right. \\
\cdots & y_{n}
\end{array}\right] \in \mathbb{R}^{n}
$$

Validation Error

$$
\begin{aligned}
& \left.X:=\right] \in \mathbb{R}^{n}
\end{aligned}
$$

Validation Error

$$
\begin{aligned}
X & \left.:=\right] \in \mathbb{R}^{n}
\end{aligned}
$$

Use to train

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{T} \sum_{i=1}^{T} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)
$$

Validation Error

Stochastic Gradient Descent with

momentum vs GD on validation set

Convergence plot

This is why SGD is popular in ML

