INTRO TO GAUSSIAN PROCESSES + A LITTLE BIT OF JAX

AMARNING

I don't really know anything about $Machine\ Learning\ ^{TM}$.

get in touch!

dfm.io
github.com/dfm
twitter.com/exoplaneteer

a motivating example

theory (on the board)

the problem(s)

- [1] kernel choices
- [2] computational cost

 $log_like = -0.5*(r.T @ K**-1 @ r + log(det(K)))$


```
log_like = -0.5*(r.T @ K**-1 @ r + log(det(K)))
mu_pred = Ks @ K**-1 @ r
cov_pred = Kss - Ks @ K**-1 @ Ks.T
```

some solutions

[1] bigger/better computers
[2] exploit matrix structure
[3] approximate linear algebra
[4] etc.

```
[1] bigger/better computers
[a] multicore CPUs
[b] GPU acceleration
[c] iterative methods
```

```
[2] exploit matrix structure
[a] uniformly sampled data
[b] Kronecker products
[c] sparsity
[d] quasiseparable matrices
```

```
[3] approximate linear algebra
[a] subsample data
[b] randomized methods
[c] approximate structure
```

```
[4] etc.
[a] state-space models
[b] stochastic ODEs
[c] autoregressive models
[d] ...
```


implementation

import numpy as np

```
def log_likelihood(params, x, diag, r):
    K = build_kernel_matrix(params, x, diag)

gof = r.T @ np.linalg.solve(K, r)
    norm = np.linalg.slogdet(K)[1]
    return -0.5 * (gof + norm)
```

```
import numpy as np
from scipy.linalg import cho_factor, cho_solve
def log likelihood(params, x, diag, r):
    K = build_kernel_matrix(params, x, diag)
    factor = cho_factor(K)
    gof = r.T @ cho_solve(factor, r)
    norm = 2 * np.sum(np.log(np.diag(factor[0])))
    return -0.5 * (gof + norm)
```

what about...

```
[1] different kernels?
[2] inference methods?
[3] scalable computations?
[4] ...
```

some examples:

```
scikit-learn, GPy, PyMC, GPyTorch, george, celerite, tinygp,
```

•••

try it out!

get in touch!

dfm.io
github.com/dfm
twitter.com/exoplaneteer