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Outline

• Basics of Deep learning in Genomics and Neural 
Architecture Search (NAS)

• Deep residual convolutional neural network for 
CRISPR/Cas9 outcomes and variant effects

• Biophysics-interpretable modeling of CRISPR/Cas9 off-
target effect



Genomics is Data-Driven

BioRender: The Principle of a Genome-wide 
Association Study



Genomics is Data-Driven

• Timeline of Single-cell sequencing milestones

Hu et al., 2018, Frontiers



Evolution of modern deep learning methods

• CNN – popular in the last decade but plateaued
• GNN – starting to rise!

Google Trends, accessed Mar 27, 2022



Type 1: sequence-to-molecule predictions

• General Framework: one-hot encoded sequence -> molecular

The classic Epigenetics multi-tasking model: DeepSEA (Zhou and Troyanskaya, 2015)

Input: 1000 base-pair (bp) DNA sequence
Output: multi-label classes of 919 biochemical markers



Type 1: sequence-to-molecule predictions

• A follow-up hybrid CNN-RNN for the same task; Quang and Xie, 
2016



Type 2: molecule-to-phenotype predictions 

• DrugCell: interpretable deep learning model of human cancer cells 
and drug interactions (Kuenzi and Park et al., 2020)



Type 2: molecule-to-phenotype predictions 

• P-net: primary vs metastatic prostate cancer predictions from 
tumor mutations (Elmarakeby et al., 2021)



Challenges and Opportunities for 
AI in Medicine 

Deep Learning Techniques

CV/NLP-shared:
CNN

ResNet
Attention

GNN
...

Biology-specific:
ontology-informed

biophysics-informed
...

Molecular Data
(scRNA, spatial, 

multi-omics)

Clinical Data
(drug, EHR, medical 

imaging)

?



AMBER Automates Deep Learning Deployment
Automated Modeling for Biological Evidence-based Research

• The process of architecture tuning is automated by Reinforcement 
learning (RL).

• AMBER is efficient and data-driven, searching >1030 models in 72 
GPU hours.

Zhang, Cofer, Troyanskaya, Proceedings of MLCB, 2020



Formulations of NAS Basics
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AMBER-searched Model is Accurate and Parameter-
efficient

• Applied AMBER to 919 epigenetics markers (i.e. DeepSEA task)
• AMBER searched architectures matched or exceed expert model

Zhang et al., Nat. MI, 2021

AMBER-Seq
Total Parameters: 13.5M
Avg. AUPRC = 0.367

AMBER-Base
Total Parameters: 13.8M
Avg. AUPRC = 0.337

DeepSEA
(expert model)
Total Parameters: 52.8M
Avg. AUPRC = 0.338



AMBER: Publicly Available and Reusable
across Biological Domains

• Predicting 919 epigenetics regulatory markers
• 1000 bp sequence à 919 binary epigenetic markers

• Predicting 6 genome editing outcomes induced by CRISPR/Cas9
• 60 bp sequence à probabilities of 6 editing outcomes

+

+

https://github.com/zj-zhang/AMBER

https://github.com/zj-zhang/AMBER


AMBIENT: towards data-specific, training-free NAS

• Datasets from different biology factors use different neural network 
architectures!

Zhang et al., MLCB, 2021



AMBER Benchmarked on 
Electrocardiograms (ECG)

• NAS-bench-360: Tu et al., 2021
• Input: 9 to 60-second ECG recordings sampled at 300 Hz 
• Output: four classes, normal, disease, other, or noisy rhythms



AMBER is Easy to Use

[70 lines for Run Configuration – from Example Script]

https://github.com/rtu715/NAS-Bench-360/blob/main/AMBER/examples/amber_ecg.py

[30 lines for Model Space Setup – from Example Script]

Replaced by 
pickled 
configs  
since v0.1.2

https://github.com/rtu715/NAS-Bench-360/blob/main/AMBER/examples/amber_ecg.py


Outline

• Basics of Deep learning in Genomics and Neural 
Architecture Search (NAS)

• Deep residual convolutional neural network for 
CRISPR/Cas9 outcomes and variant effects

• Biophysics-interpretable modeling of CRISPR/Cas9 off-
target effect

Victoria Li
Hunter College High School



Predictable CRISPR/Cas9 Editing Outcomes

Allen et al., Nat. Biotechnol., 2019

Cas9 Editing Outcomes



Existing CRISPR/Cas9 editing outcome predictors 
are reliant on feature and model engineering

(1) inDelphi
(Shen et al. 2018)

(2) FORECasT
(Allen et al. 2019)

(3) SPROUT
(Leenay et al. 2019)

Number of 
gRNAs 2,000 ~40,000 1,656

Cell Line mESC, HCT116, 
HEK293, K562, U2OS

Cas9-expressing K562 
(Artificial) Primary T cells

Method
Neural Networks 

and k-nearest 
neighbors

Multinomial Logistic 
Regression

Gradient-boosting 
Decision Trees



Objective: generating an automated and variant-aware 
CRISPR/Cas9 outcome predictor

(1) Create CROTON (2) Genomic Variants in Patients

CRISPR/Cas9 Editing 
Outcomes

1. 1 bp Insertion
2. 1 bp Deletion
3. Deletion
4. 1 bp Frameshift
5. 2 bp Frameshift
6. Frameshift



Deep Convolutional Neural 
Network (CNN)

Neural Architecture Search 
(NAS)

The CROTON ML pipeline is highly automated

• CROTON: CRISPR Outcomes Through cONvolutional neural networks

CROTON

Li, Zhang*, Troyanskaya*. Bioinformatics, 2021



• Sample architectures from the model search space • Layer selection probabilities

NAS designs effective multi-task deep CNN architectures



CROTON Outperforms Existing Models
• Trained on synthetic sequences in K562, tested on endogenous 

genomic sequences in primary human T cells.

Li, Zhang*, Troyanskaya*. Bioinformatics, 2021

CROTON inDelphi FORECasT

Deletion* 81.12 51.00 73.17

1 bp Insertion* 82.42 52.40 75.10

1 bp Deletion* 57.51 21.45 30.36

1 bp Frameshift* 73.84 54.69 66.71

2 bp Frameshift* 64.30 42.40 50.04

Frameshift* 55.56 51.54 57.94

CROTON SPROUT

Deletion* 81.12 77
1 bp Insertion** 65.22 62

1 bp Deletion** 43.81 40

(Since testing was conducted on SPROUT (T cell) data, 
CROTON was compared to SPROUT’s published metrics)

*Pearson’s Correlation, **Kendall’s Tau



Nucleotides upstream of the PAM sequence are 
important to CRISPR/Cas9 editing outcomes



CROTON is 
publicly-available

• github.com/vli31/CROTON



Objective: generating an automated and variant-aware 
CRISPR/Cas9 outcome predictor

(1) Create CROTON (2) Genomic Variants in Patients

CRISPR/Cas9 Editing 
Outcomes

1. 1 bp Insertion
2. 1 bp Deletion
3. Deletion
4. 1 bp Frameshift
5. 2 bp Frameshift
6. Frameshift



CRISPR/Cas9 is used to inactivate genes in clinical trails

Antiviral Therapy Cancer Immunotherapy

(2) ACE2 and SARS-
Cov-2

(1) CCR5 and HIV (3) PDCD1, CTLA4 and 
Cancer

• PDCD1: 1st

CRISPR/Cas9-based 
clinical trial to clear 
safety concerns 

o Xue et al. 2020



Single nucleotide variants can substantially impact 
CRISPR/Cas9 editing outcomes

Alternate (SNV)

90% 1 bp insertion

10% no 1 bp insertion

||| ||| ||| ||| |||
ACC GTT AAA CGT ||| 
||| ||| ||| ||| ||| 
||| ||| ||| ||| |||

||| ||| ||| ||| |||
ACC GTT AAA AGT ||| 
||| ||| ||| ||| ||| 
||| ||| ||| ||| |||

Reference

40% 1 bp insertion
60% no 1 bp insertion

Differing 
gene 

inactivation 
efficacy 

Differing 
CRISPR/Cas9-

based cell 
therapy 
efficacy

• There are ~10-15 million common human SNVs, which can impact CRISPR/Cas9 editing 
outcomes (Eichleret al., 2007)



Single nucleotide variants substantially impact 
CRISPR/Cas9 editing outcomes

• SNVs with a high impact on 1 bp insertion prediction

Gene Variant Reference Pred. Alternate Pred. Absolute Difference
PDCD1 rs1284638279 0.576 0.110 0.466
ACE2 rs1482922566 0.656 0.222 0.434
ACE2 rs370610075 0.056 0.489 0.432
PDCD1 rs535799968 0.029 0.429 0.399
PDCD1 rs141119263 0.202 0.601 0.398
PDCD1 rs769685838 0.130 0.524 0.394
PDCD1 rs371902970 0.132 0.515 0.382
PDCD1 rs370660750 0.116 0.497 0.381
PDCD1 rs1021665035 0.110 0.475 0.365
PDCD1 rs1185044781 0.399 0.036 0.363
CCR5 rs1032906612 0.060 0.422 0.362
CCR5 rs139737901 0.190 0.552 0.362
CCR5 rs767205045 0.546 0.186 0.360



CROTON Identifies Cas9-altering Genetic Variants

• Inheritable, population-stratified genetic variants can substantially 
influence Cas9 editing outcomes.

FGFR3
rs2305181, PAM id 147

CROTON-db, In preparation



Variant Effect Analysis for gRNAs in Clinical Trials

• PDCD1 is knocked-out in non-small cell lung carcinoma 
(ClinicalTrials.gov NCT02793856).

• Each column is a PAM; each dot is a variant.

Li, Zhang*, Troyanskaya*. Bioinformatics, 2021



CROTONdb: variant effect prediction database for 
CRISPR/Cas9 editing outcomes

https://croton.princeton.edu

gRNA published previously:

CROTON-db:
5.38 million gRNA targets
90.82 million estimated variant 
effects 

CROTON-db, In preparation

https://croton.princeton.edu/


Summary of CROTON

• CROTON is a fully automated, publicly-available deep learning 
predictor for CRISPR/Cas9 editing outcomes.

• CROTON achieves SOTA performance and outperforms existing 
models manually tuned by experts.

• We use CROTON to identify that SNVs can substantially affect 
genome editing outcomes.

• These effects are systematically documented and analyzed in 
CROTONdb, facilitating safer and more effective CRISPR/Cas0-
based cell therapies.
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target effect

Adam Lamson
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CRISPR/Cas9 Off Target effects

• Off Target: unintended cleavage
at genomic sites w/ a similar but 
not an identical sequence

• Therapeutic uses need minimize 
the risk of deleterious outcomes

• Even low frequency off-target 
can be dangerous! (clonal 
expansion)

Chromosome ideogram of CRISPR-Cas9 on/off-target sites for VEGFA. 
Tsai et al., 2015, Nat. Biotech



Deciphering Cas9 Kinetics

• Existing off-target data and predictors can’t profile kinetics rate 
directly.

• uses hi-seq read counts as surrogates
• can’t differentiate enzyme-intrinsic kinetic parameters from-

• exposure time
• genetic context
• cell cycle phase
• DNA break repair pathway

• How many states are valid during the binding and cleavage 
process?

• Which of the transition is the slowest/fastest?

Eslami-Mossallam et al., biorxiv, 2020



Reaction rate modeled by
Kinetics Informed Neural Network (KINN)

Closed
R-loop

Open
R-loop

Free
Cas9

Cut
DNA

Unut
DNA

Intermediate
R-loop

1 Kinetic theory and King-Altman method

{sec:kink_altman_method_notes}
A linear multi-step enzymatic reaction can be defined using a system of equation
in the form of
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This equation can be represented graphically so that a specific reaction has the
graph G = (V,E) where vertices V ✓ {S↵} and edges E ✓ {k↵�|S↵, S� 2 V }.
All reactions of this kind then exist in the space G = {G}. The goal of this project
is to search G efficiently to best determine the correct G for a reaction given that
the system is in a pseudo-steady state and that there are measurable products from
specific reactions k̃↵� .

Equation (1) can be written more succinctly by defining the matrix

(K)↵� = k�↵ � �↵�

X
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and
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= K · s, (4) {eq:dbs}{eq:dbs}

which has the solution

s(t) = s1 + (s(0)� s1) e�Kt (5) {eq:Ssol}{eq:Ssol}

where s1 is the steady-state solution, i.e., K · s1 = 0. We can solve for com-
ponents of s1 using the King-Altman (KA) method. This only requires that our
system is in a quasi-steady state.

The King-Altman method uses Cramer’s rule to show that
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Y
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kij

for the `th KA diagram. KA diagrams are acyclic subgraphs of G that contain
edges one less than the number of vertices. Also, all directed edges(rate constants)
must be a part of a path that leads to the same vertex(state) in that diagram. The
notation ` ! ↵ means that KA diagram ` ends on state ↵.
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Master equation for first-order kinetics

Kinetic model diagram 
for Cas9 cleavage

Closed
R-loop

Open
R-loop

Free
Cas9

Intermediate
R-loop
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King-Altman (KA) diagrammatic 
method for steady state  

KA terms:

Closed
R-loop

Intermediate
R-loop

Open
R-loop

Sequence

Kinetic PWM

Log kinestic
rate layer
(7 nodes)

Softmax layer
(10 layers)

k_cat

Output

k_on

k_off

k_oi

k_io

k_ic

k_cat

CAT

A

B

C

D

E

F

G

k_ci

1.1 Activity from steady state
{sub:activity_from_steady_state}

As mentioned there are a subset of reactions with rate constants k̃↵� ⇢ k↵� that
map to measurable phenotypes y. The sum of all the production rates will be
called the ‘activity’

⌫ /
X

↵�2act

k̃↵�s↵, (7) {eq:act}{eq:act}

where only certain state changes, i.e., ↵ ! � 2 act, contribute to activity
and maps to a phenotype with the equation y = �(⌫), where �(x) is a one-
dimensional monotonically increasing function with domain and range 2 [0,1).
This means our model search space now includes all possible k̃↵� and � so that
G 2

n
G, {k̃↵�}, {�}

o
.

2 Kinetics of Cas9 cleavage experiments

{sec:cas9_experiment_training}
We are trying to model DNA enzymes, the rates k↵� may depend on the DNA sub-
strate sequence x and concentration of uncut DNA Du. This adds more dimen-
sions to scan because sequence dependence can take different functional forms.
For simplicity we assume a strictly additive functional relation. Also, both the
substrate and the Cas9 protein deplete over time. This might seem problematic
for KA diagram but as we will show, our methods can provide accurate predic-
tions with data because of the form of the proposed kinetic model.

2.1 Kinetic matrix for Cas9 cleavage experiments
{sub:kinetic_matrix_for_cas9_cleavage}

The kinetic rate matrix for cas9 kintics looks like

KA =

0

BBBB@

�k01S0 k10 0 0 0
k01S0 �(k10 + k12) k21 0 0
0 k12 �(k21 + k23) k32 0
0 0 k23 �(k34 + k32) 0
0 0 0 k34 0

1

CCCCA
(8) {eq:Kcas9_A}{eq:Kcas9_A}

with state vector
S = (Du, S1, S2, S3, Dc)

T

where Du and Dc are uncut and cut DNA respectively. In most experimental cases
we assume the amount of unbound Cas9 S0 is constant and larger than the original

3



Build ODEs by Searching KINN

• Kinetic rates = f(seq)
f is parameterized by convolution 
neural nets.

log(𝑘!") = 𝑓 𝑥#:%
𝑓 ∈ {CNNs}

- range of sequence 
determinants for each rate

• e.g., k3=f(seq[10bp, 20bp]) 
on the right: k3 is determined 
by the 10th -20th nt input seq

Closed
R-loop

Intermediate
R-loop

Open
R-loop

Sequence

Kinetic PWM

Log kinestic
rate layer
(7 nodes)

Softmax layer
(10 layers)

k_cat

Output

k_on

k_off

k_oi

k_io

k_ic

k_cat

CAT

A

B

C

D

E

F

G

k_ci



Build ODEs by Searching KINN

• Combining multi-step reactions: 
King-Altman Diagram

Original KA theory,
King and Altman, 1956

Implement KA w/ NN,
Tareen and Kinney, 2019 

Closed
R-loop

Intermediate
R-loop

Open
R-loop

Sequence

Kinetic PWM

Log kinestic
rate layer
(7 nodes)

Softmax layer
(10 layers)

k_cat

Output

k_on
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AMBER searches for KINN architectures by a 
probabilistic genetic algorithm

Probabilistic 
Model 

Distribution

New PopulationCurrent Population

k_on = fon(x) 

k_off = foff(x) 

Selected Population

R=0.9

R=0.7

R=0.6

Posterior
Prior



Benchmark with synthetic data
Probabilistic 

Model 
Distribution

New PopulationCurrent Population

k_on = fon(x) 

k_off = foff(x) 

Selected Population

R=0.9

R=0.7

R=0.6

Posterior
Prior

Sampling from Prior
(disable posterior update)

Sampling from Posterior
(update with selected models)



Benchmark with synthetic data
• Searched posterior for model architecture mode is aligned with 

ground-truth.
Posterior
Prior



Massively Parallel Kinetic Profiling for CRISPR/Cas9

• Profiled 2 sgRNAs in vitro

NucleaSeq
(cleavage)

CHAMP
(binding)

Data Fit

Jones et al., 2020, Nat Biotech



AMBER deep CNN search for Cas9 cleavage

avg. 
Reward

Cleavage Rate as 
Exponential Fit

Sequence Alignment
CNN



AMBER KINN search for Cas9 cleavage

Cleavage Rate as 
Exponential Fit

Sequence Alignment
KINN



KINN is interpretable and physical

Learned kinetic rates with physical meaning (s-1) 

Sequence determinants of each kinetic rate
k_IO k_IC k_CI

Posterior
Prior



Physics simulation of experiments from 
KINN learned kinetic rates 

Closed
R-loop

Open
R-loop

Free
Cas9

Cut
DNA

Unut
DNA

Intermediate
R-loop

Extract variance of expect cleavage rate



Comparison to existing Cas9 Off-targets predictors
• Test data is Guide-seq datasets in vivo (train data is in vitro)
• Task: edited off-targets vs non-edited sequences with the same 

Hamming distance

method GUIDE
(Kleinstiver)

GUIDE
(Listgarten) 

AMBER-KINN 0.202 0.079

AMBER-CNN 0.128 0.060

AttnToMismatch 0.071 0.025

Elevation-score 0.131 0.078

CFD 0.066 0.030

Ensemble SVM 0.113 0.048

CNN_std 0.115 0.034

CRISPRoff 0.104 0.046

Chromosome ideogram of CRISPR-Cas9 on/off-target sites for VEGFA. 
Tsai et al., 2015, Nat. Biotech

Performance Comparison by AUPR



Predicted cleavage rate consistent with independent 
experiment measurements

• Among off-target sites, some are *more* edited than others.



Summary of AMBER/KINN

• AMBER search algorithm provides a general optimization method 
for building biophysics-interpretable neural networks.

• When applied on CRISPR/Cas9 kinetic data, we built a KINN that 
performs on par with the conventional AMBER-optimized CNN. 

• KINN shed mechanistic insights on Cas9 kinetics.

• KINN outperforms existing SOTA methods for off-target 
predictions on external datasets, including AMBER-optimized 
CNN.



Outline
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