

Neural Network Architecture Search in Genomics by AMBER

Frank Zijun Zhang

Center for Computational Biology, Genomics Flatiron Institute, Simons Foundation

Lewis-Sigler Institute for Integrative Genomics Princeton University

June 16, 2022

Outline

Basics of Deep learning in Genomics and Neural Architecture Search (NAS)

Biophysics-interpretable modeling of CRISPR/Cas9 offtarget effect

Genomics is Data-Driven

* Liberties were taken with the size of the allelic effect shown in this example Published Genome-Wide Associations as of July 2019 $p \le 5X10-8$ for 17 trait categories

National Human Genome Research Institute

NHGRI-EBI GWAS Catalog www.ebi.ac.uk/gwas

BioRender: The Principle of a Genome-wide Association Study

Genomics is Data-Driven

• Timeline of Single-cell sequencing milestones

Evolution of modern deep learning methods

- CNN popular in the last decade but plateaued
- GNN starting to rise!

Google Trends, accessed Mar 27, 2022

Type 1: sequence-to-molecule predictions

General Framework: one-hot encoded sequence -> molecular

The classic Epigenetics multi-tasking model: DeepSEA (Zhou and Troyanskaya, 2015)

Input: 1000 base-pair (bp) DNA sequence Output: multi-label classes of 919 biochemical markers Genome-wide signals from DNA/RNA/protein sequences, for example TFs, DNase, histone

Type 1: sequence-to-molecule predictions

 A follow-up hybrid CNN-RNN for the same task; Quang and Xie, 2016

Type 2: molecule-to-phenotype predictions

• DrugCell: interpretable deep learning model of human cancer cells and drug interactions (Kuenzi and Park et al., 2020)

Type 2: molecule-to-phenotype predictions

• P-net: primary vs metastatic prostate cancer predictions from tumor mutations (Elmarakeby et al., 2021)

Challenges and Opportunities for Al in Medicine

AMBER Automates Deep Learning Deployment

<u>Automated Modeling for Biological Evidence-based Research</u>

- The process of architecture tuning is automated by Reinforcement learning (RL).
- AMBER is efficient and data-driven, searching >10³⁰ models in 72 GPU hours.

Zhang, Cofer, Troyanskaya, Proceedings of MLCB, 2020

Formulations of NAS Basics

1. To learn a function that maps *x* to *y*, optimize its architectures *a*:

$$y_i = f_{\omega;a}(x_i)$$

2. Sample a_t from the conditional probability $P(a_t|a_{t-1}, ..., a_0)$ by a Recurrent Neural Network $\sigma_{\theta}(\cdot)$ with parameters θ :

 $a_t \sim P(a_t | a_{t-1}, \dots, a_0) = \sigma_{\theta}(h_t)$

3. Optimize θ w.r.t. to a reward *R* (usually validation accuracy):

$$\frac{1}{m}\sum_{k=1}^m \nabla_{\theta}\pi(a_k;\theta)(R_k-b)$$

Hidden Output Output

 $\pi(a_k; \theta)$: log-likelihood of a_k R_k : reward for a_k b: moving average of R

Objective: high reward with large likelihood

AMBER-searched Model is Accurate and Parameterefficient

- Applied AMBER to 919 epigenetics markers (i.e. DeepSEA task)
- AMBER searched architectures matched or exceed expert model

Zhang et al., Nat. MI, 2021

AMBER: Publicly Available and Reusable across Biological Domains

https://github.com/zj-zhang/AMBER

Automated Modeling for Biological Evidence-based Research

AMBER is a toolkit for designing high-performance neural network models automatically in Genomics and Bioinformatics.

The overview, tutorials, API documentation can be found at: https://amber-automl.readthedocs.io/en/latest/

To get quick started, use this Google Colab notebook. Open in Colab

- Predicting 919 epigenetics regulatory markers
 - 1000 bp sequence \rightarrow 919 binary epigenetic markers

- Predicting 6 genome editing outcomes induced by CRISPR/Cas9
 - 60 bp sequence \rightarrow probabilities of 6 editing outcomes

AMBIENT: towards data-specific, training-free NAS

 Datasets from different biology factors use different neural network architectures!

Zhang et al., MLCB, 2021

AMBER Benchmarked on Electrocardiograms (ECG)

- NAS-bench-360: Tu et al., 2021
- Input: 9 to 60-second ECG recordings sampled at 300 Hz
- Output: four classes, normal, disease, other, or noisy rhythms

Figure 1. Examples of the ECG waveforms.

Model Space	Algorithm	ECG	DeepSEA	
WRN	default	0.57±0.01	0.60±0.001	
DenseNAS	random	0.58±0.01	0.60±0.001	
DenseNAS	original	0.60±0.01	0.60±0.001	
WRN	ASHA	0.57±0.01	0.59±0.002	
DARTS	GAEA	0.66±0.01	0.64±0.02	
AMBER	ENAS	0.67±0.015	0.68±0.01	

AMBER is Easy to Use

https://github.com/rtu715/NAS-Bench-360/blob/main/AMBER/examples/amber_ecg.py

[30 lines for Model Space Setup – from Example Script]

```
# Next, define the specifics
wd = "./outputs/AmberECG/"
X_train, Y_train, X_val, Y_val = read_data_physionet_4_with_val('.')
Y_train = to_categorical(Y_train, num_classes=4)
Y_val = to_categorical(Y_val, num_classes=4)
train_data = (X_train, Y_train)
val_data = (X_val, Y_val)
input_node = Operation('input', shape=(1000, 1), name="input")
output_node = Operation('dense', units=4, activation='sigmoid')
```

[70 lines for Run Configuration – from Example Script]

```
# finally, run program
amb = Amber(types=type_dict, specs=specs)
amb.run()
```

Outline

• Basics of Deep learning in Genomics and Neural Architecture Search (NAS)

Biophysics-interpretable modeling of CRISPR/Cas9 offtarget effect

Victoria Li

Hunter College High School

Predictable CRISPR/Cas9 Editing Outcomes

Cas9 cuts target and generates mutations

Cas9 Editing Outcomes

CAGGCTTGGCTGCAAGAGCATCGGCCTGAAAGC AGTGAGGAGGCAGCGGCCCTGGTGGTAGACTTG ACC

11	CAGGCTTGGCTGCAAGAGCATCGGCCTGAAAGC	AGTGAGGAGGCAGCGGCCCTGGTGGTAGACTT GAC	57.	.1%
D3	CAGGCTTGGCTGCAAGAGCATCGGCCTGAAAG	TGAGGAGGCAGCGGCCCTGGTGGTAGACTTGAC C	4.0%	
D25	CAGGCTTGGCTGCAAGAGCATCGGCC	CTGGTGGTAGACTTGACC	1.6%	
D9	CAGGCTTGGCTGCAAGAGCATCGGCCTGA	GGAGGCAGCGGCCCTGGTGGTAGACTTGACC	1.6%	
D25	CAGGCTTGGCTGCAAGAGCA	GCGGCCCTGGTGGTAGACTTGACC	1.6%	

Allen et al., Nat. Biotechnol., 2019

Existing CRISPR/Cas9 editing outcome predictors are reliant on feature and model engineering

	(1) inDelphi (Shen et al. 2018)	(2) FORECasT (Allen et al. 2019)	(3) SPROUT (Leenay et al. 2019)		
Number of gRNAs	2,000	<mark>~40,000</mark>	1,656		
Cell Line	mESC, HCT116, HEK293, K562, U2OS	Cas9-expressing K562 (Artificial)	Primary T cells		
Method	Neural Networks and k-nearest neighbors	Multinomial Logistic Regression	Gradient-boosting Decision Trees		

Objective: generating an automated and variant-aware CRISPR/Cas9 outcome predictor

The CROTON ML pipeline is highly automated

CROTON: CRISPR Outcomes Through cONvolutional neural networks

Li, Zhang*, Troyanskaya*. Bioinformatics, 2021

NAS designs effective multi-task deep CNN architectures

CROTON Outperforms Existing Models

• Trained on synthetic sequences in K562, tested on endogenous genomic sequences in primary human T cells.

	CROTON	inDelphi	FORECasT	_
Deletion*	81.12	51.00	73.17	[
1 bp Insertion*	82.42	52.40	75.10	1
1 bp Deletion*	57.51	21.45	30.36	1
1 bp Frameshift*	73.84	54.69	66.71	
2 bp Frameshift*	64.30	42.40	50.04	
Frameshift*	55.56	51.54	57.94	

	CROTON	SPROUT
Deletion*	81.12	77
1 bp Insertion**	65.22	62
1 bp Deletion**	43.81	40

*Pearson's Correlation, **Kendall's Tau

(Since testing was conducted on SPROUT (T cell) data, CROTON was compared to SPROUT's published metrics)

Li, Zhang*, Troyanskaya*. Bioinformatics, 2021

Nucleotides upstream of the PAM sequence are important to CRISPR/Cas9 editing outcomes

CROTON is publicly-available

github.com/vli31/CROTON

CROTON

Please input a 60-nucleotide target sequence: (ex. TCCAGGGCCTAATCTGACCGTCCTAGATACCTCAGGGTGG GCAATACGAGGTAATGGCAG)

Your sequence	
	I
Predict	

Input:

Output:

- 1 bp Insertion Probability:
- 1 bp Deletion Probability:
- Deletion Frequency:
- 1 bp Frameshift Frequency:
- 2 bp Frameshift Frequency:
- Frameshift Frequency:

Objective: generating an automated and variant-aware CRISPR/Cas9 outcome predictor

CRISPR/Cas9 is used to inactivate genes in clinical trails

Single nucleotide variants can substantially impact CRISPR/Cas9 editing outcomes

 There are ~10-15 million common human SNVs, which can impact CRISPR/Cas9 editing outcomes (Eichleret al., 2007)

Single nucleotide variants substantially impact CRISPR/Cas9 editing outcomes

• SNVs with a high impact on 1 bp insertion prediction

Gene	Variant	Reference Pred.	Alternate Pred.	Absolute Difference
PDCD1	rs1284638279	0.576	0.110	0.466
ACE2	rs1482922566	0.656	0.222	0.434
ACE2	rs370610075	0.056	0.489	0.432
PDCD1	rs535799968	0.029	0.429	0.399
PDCD1	rs141119263	0.202	0.601	0.398
PDCD1	rs769685838	0.130	0.524	0.394
PDCD1	rs371902970	0.132	0.515	0.382
PDCD1	rs370660750	0.116	0.497	0.381
PDCD1	rs1021665035	0.110	0.475	0.365
PDCD1	rs1185044781	0.399	0.036	0.363
CCR5	rs1032906612	0.060	0.422	0.362
CCR5	rs139737901	0.190	0.552	0.362
CCR5	rs767205045	0.546	0.186	0.360

CROTON Identifies Cas9-altering Genetic Variants

 Inheritable, population-stratified genetic variants can substantially influence Cas9 editing outcomes.

CROTON-db, In preparation

Variant Effect Analysis for gRNAs in Clinical Trials

- *PDCD1* is knocked-out in non-small cell lung carcinoma (ClinicalTrials.gov NCT02793856).
- Each column is a PAM; each dot is a variant.

Li, Zhang*, Troyanskaya*. Bioinformatics, 2021

CROTONdb: variant effect prediction database for CRISPR/Cas9 editing outcomes

Ref. Allele	Alt. Allele ^{\$}	PAM ID	PAM Range 🔶	Max Variant Effect (%)	Ref. 1bp Insertion (%)	Ref. 1bp Frameshift (%)	Ref. 2bp Frameshift (%)	Alt. 1bp Insertion 🗍 (%)	Alt. 1bp Frameshift 🕴 (%)	Alt. 2bp Frameshift (%)
A	G	CD33 17	+ : 51225245 - 51225305	45.8	51.5	64.3	20.6	5.7	34.1	43.1
G	A	CD33 17	+ : 51225245 - 51225305	12.8	51.5	64.3	20.6	38.7	54.4	29.0
G	A	CD33 17	+ : 51225245 - 51225305	8.7	51.5	64.3	20.6	60.1	72.3	16.0

rs1339188502

rs770795199

rs201510739

51225275

51225276

51225270

CROTON-db: 5.38 million gRNA targets 90.82 million estimated variant effects

CROTON-db, In preparation

Summary of CROTON

- CROTON is a fully automated, publicly-available deep learning predictor for CRISPR/Cas9 editing outcomes.
- CROTON achieves SOTA performance and outperforms existing models manually tuned by experts.
- We use CROTON to identify that SNVs can substantially affect genome editing outcomes.
- These effects are systematically documented and analyzed in CROTONdb, facilitating safer and more effective CRISPR/Cas0based cell therapies.

Outline

Basics of Deep learning in Genomics and Neural Architecture Search (NAS)

Biophysics-interpretable modeling of CRISPR/Cas9 offtarget effect

Adam Lamson Flatiron Institute, Simons Foundation

CRISPR/Cas9 Off Target effects

 Off Target: <u>unintended cleavage</u> at genomic sites w/ a <u>similar but</u> <u>not an identical sequence</u>

- Therapeutic uses need minimize the risk of deleterious outcomes
 - Even low frequency off-target can be dangerous! (clonal expansion)

Chromosome

Chromosome ideogram of CRISPR-Cas9 on/off-target sites for VEGFA. Tsai et al., 2015, *Nat. Biotech*

Deciphering Cas9 Kinetics

- Existing off-target data and predictors can't profile kinetics rate directly.
 - uses hi-seq read counts as surrogates
 - can't differentiate enzyme-intrinsic kinetic parameters from-
 - exposure time
 - genetic context
 - cell cycle phase
 - DNA break repair pathway
- How many states are valid during the binding and cleavage process?
- Which of the transition is the slowest/fastest?

Eslami-Mossallam et al., biorxiv, 2020

Reaction rate modeled by <u>Kinetics Informed Neural Network (KINN)</u>

Build ODEs by Searching KINN

- Kinetic rates = f(seq)
- f is parameterized by convolution neural nets.

 $log(k_{\alpha\beta}) = f(x_{i:j})$ $f \in \{CNNs\}$

- range of sequence determinants for each rate
 - e.g., k3=f(seq[10bp, 20bp]) on the right: k3 is determined by the 10th -20th nt input seq

Build ODEs by Searching KINN

AMBER searches for KINN architectures by a probabilistic genetic algorithm

Benchmark with synthetic data

Benchmark with synthetic data

• Searched posterior for model architecture mode is aligned with ground-truth.

Massively Parallel Kinetic Profiling for CRISPR/Cas9

• Profiled 2 sgRNAs in vitro

Fit

Jones et al., 2020, Nat Biotech

AMBER deep CNN search for Cas9 cleavage

AMBER KINN search for Cas9 cleavage

KINN is interpretable and physical

Physics simulation of experiments from KINN learned kinetic rates

Comparison to existing Cas9 Off-targets predictors

- Test data is Guide-seq datasets in vivo (train data is in vitro)
- Task: edited off-targets vs non-edited sequences with the same Hamming distance

Performai	nce Comparison by	AUPR	
method	GUIDE (Kleinstiver)	GUIDE (Listgarten)	VEGFA_site1
AMBER-KINN	0.202	0.079	
AMBER-CNN	0.128	0.060	
AttnToMismatch	0.071	0.025	
Elevation-score	0.131	0.078	
CFD	0.066	0.030	
Ensemble SVM	0.113	0.048	
CNN_std	0.115	0.034	
CRISPRoff	0.104	0.046	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
	Chromosome	e ideogram of	CRISPR-Cas9 on/off-target sites for VEGFA
	Tsai et al., 202	15, Nat. Bioted	h

Predicted cleavage rate consistent with independent experiment measurements

• Among off-target sites, some are *more* edited than others.

Summary of AMBER/KINN

- AMBER search algorithm provides a general optimization method for building biophysics-interpretable neural networks.
- When applied on CRISPR/Cas9 kinetic data, we built a KINN that performs on par with the conventional AMBER-optimized CNN.
- KINN shed mechanistic insights on Cas9 kinetics.
- KINN outperforms existing SOTA methods for off-target predictions on external datasets, including AMBER-optimized CNN.

Outline

Basics of Deep learning in Genomics and Neural Architecture Search (NAS)

Biophysics-interpretable modeling of CRISPR/Cas9 offtarget effect

Acknowledgements

Olga Troyanskaya Adam Lamson Victoria Li Natalie Sauerwald Christopher Park Evan Cofer Chandra Theesfeld Alicja Tadych Aaron Wong Troyanskaya lab members

Zhang Lab is starting in September 2022!!

Division of Artificial Intelligence in Medicine Depart of Medicine Cedars-Sinai Medical Center Los Angeles, CA 90048

Interested in exploring deep learning and machine learning in genomics and biomedicine? Reach out to me!

Email: <u>zj.z@ucla.edu</u> Website: <u>https://zhanglab-aim.github.io</u>

FLATIRON SIMONS INSTITUTE FOUNDATION