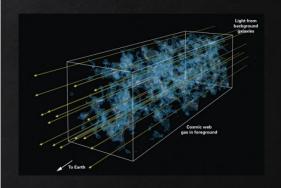
Ly-alpha tomography at cosmic noon A motivation for hydro sims

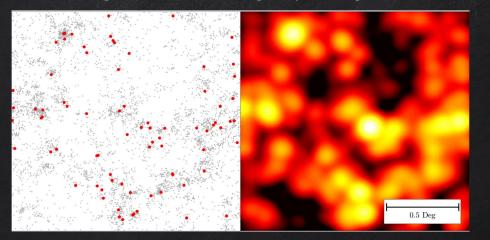
Our Team:

Mahdi Qezlou^{1,2} Simeon Bird¹, Andrew Newman², Gwen Rudie²


- + LATIS Collaboration
- 1. University of California Riverside
- 2. Carnegie Institute of science, Observatories

Dense Lya surveys (tomography)

						A STATE OF THE STA
Survey	Background sources	Footprint (degre ²)	Mean sightline seperation (cMpc/h)	Forest redshift	Volume (cMpc/h) ³	Instrument
CLAMATO	240	0.157	~ 2.5	2.05 - 2.55	3.15 ×10 ⁵	LRIS Keck
LATIS	3800	1.7	~2.5	2.20-2.80	4.0 ×10 ⁶	IMACS Magellan
PFS		12.3	~2.5-3.7	2.5-3.5		
DESI	8.4e5	14,000	~10	z > 2.1	-	
eBOSS Stripe 82	8199	220	~ 13	2.20-2.80	9.4 ×10 ⁸	SDSS DR 16


Credit: CLAMATO Collaboration

Making forecast using ASTRID simulation (L=250 cMpc/h, N=5500³).

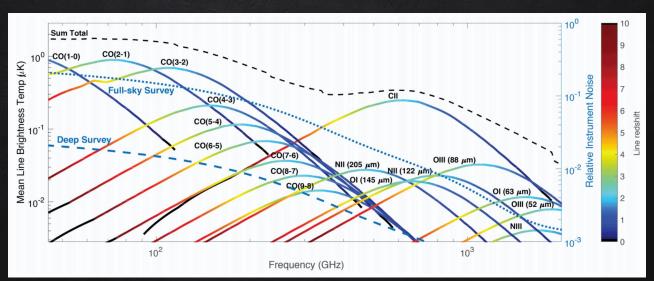
Helping out the line-intensity maps at cosmic noon (Preliminary results)

What is LIM?

Measuring aggregate emission in a particular line (or frequency) from galaxies without resolving them individually.

Credit: Patrick Breysse
Kovetz et al. 2017

Left: CO emitting galaxies detected with 4500 hours of VLA, Right: CO intensity mapping instrument (COMAP) for 1500 hours


Modeling the signal requires large galaxy catalogs. So hydro or SAM can help with this.

LIM is challenging

Detection sensitivity: The instrumental noise is significant.

Contamination is an important challenge:

Foreground/background Line emissions in other frequencies redshifted to the target frequency, a.k.a Line interlopers

Kovetz et al. 2017

Helping out LIM at cosmic noon

Cross-correlation with known tracers of line-emission and large-scale density helps:

- Enhance the detection sensitivity
- Constrain the line emission models (clustering vs shot noise terms)
- Remove the interlopers

Galaxy surveys have been extensively studied:

E.g. Spherically averaged Power-spectrum model in CO × Galaxy surveys (G.Sun et al. 2020, TIME collaboration, Chung et al. 2018, COMAP Collaboration)

$$P_{\text{CO}}(k,z) = \overline{I}_{\text{CO}}^{2}(z)\overline{b}_{\text{CO}}^{2}(z)P_{\delta\delta}(k,z) + P_{\text{CO}}^{\text{shot}}(z)$$

$$P_{\text{CO}\times\text{gal}}(k,z) = \overline{b}_{\text{gal}}(z)\overline{b}_{\text{CO}}(z)\overline{I}_{\text{CO}}(z)P_{\delta\delta}(k,z) + \frac{\overline{I}_{\text{CO},\text{gal}}(z)}{n_{\text{gal}}(z)}$$

Breaking the degeneracy between the clustering and shot noise term.

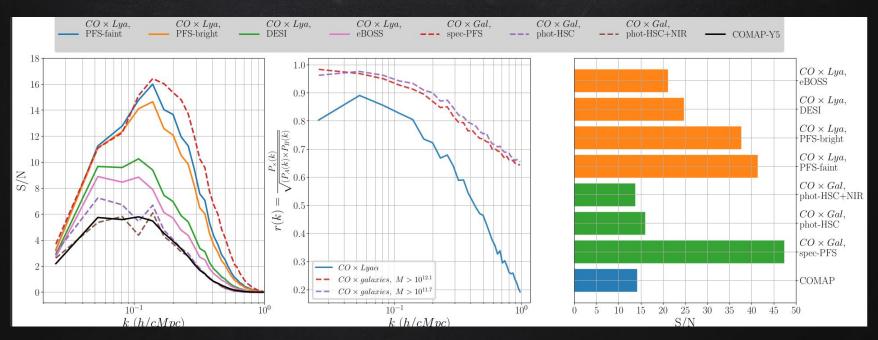
How about Lya forest: (Preliminary results) A multifield observation

Qezlou et al. In prep.

Why should we use Lya tomography:

Galaxy surveys are limited:

- to larger galaxies while the abundant small galaxies also contribute to the line emission
- by uncertainties in the redshift estimation, i.e. coarser spatial resolution


However, Lya tomography:

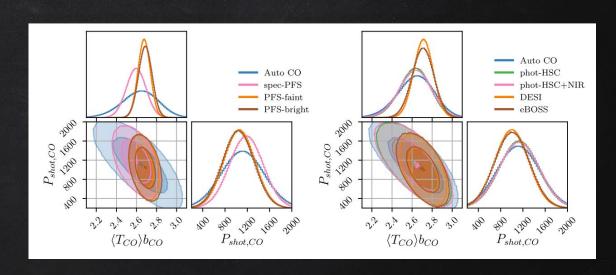
- provides the information on the continuum underlying density
- has high spatial resolution
- is easier to model Lya forest's statistics (e.g. no shot-noise term in the P(k) formalism)

How about Lya forest: (Preliminary results) A multifield observation

Qezlou et al. In prep.

Enhance the detection sensitivity of the line emission.

How about Lya forest: (Preliminary results) A multifield observation


Qezlou et al. In prep.

Cosmology:

Tighter constraints on the emission clustering due to:

- 1. high S/N
- 2. easier to model

Breaking the degeneracies

Summary:

Application of the Lya tomography:

- Helping out the upcoming line intensity map experiments at cosmic noon
 - Improve the detection sensitivity
 - o Provide tighter constraints on the emission models
- We need:
 - o large hydro simulations to consistently model the IGM and galaxies: ~ 3 × of ASTRID's volume.
 - better ML tools to infer cosmology/astrophysics from this synergy (we are working on this)

Thank you for listening!!