Multi-Fidelity Emulation for Matter Power Spectrum and Lya Forest

Ming-Feng Ho UC Riverside NASA FINESST FI

MSIRONOMY

December 2022 | New York City NY

mho026 @ <u>ucr.edu</u>

... using Astrid simulation code

1. Ho, Bird, Shelton (2022) arXiv:2105.01081 2. Fernandez, Ho, Bird (2022) arXiv:2207.06445 3. Ho, Bird, Fernandez, Shelton (in prep)

Simeon Bird (UCR Astro)

Martin A. Fernandez (UCR Astro)

Christian Shelton (UCR CS)

Outline

- What's multi-fidelity emulation?
- Example 1: Matter power spectrum using DM only simulations with different number of particles + box sizes
- Example 2: Lyman alpha 1D flux power using Astrid simulations with different number of particles

What's multi-fidelity emulation? The trade-off between speed and accuracy

cost

High-Fidelity* (e.g., N-body simulations with **many** particles)

Accurate results but expensive to run

Illustration credit: adapted from Perherstorfer et al (2018) Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization

mho026 @ ucr.edu

What's multi-fidelity emulation? An analogy: University's hiring

PROFESSOR

cost

Accurate results but expensive to hire

High-Fidelity

Professors

image credit: PHD comics

error

Idea: Many Grad Students + A few Professors = minimize the cost and maximize the accuracy.

Kennedy & O'Hagan (2000)

Deep GP: $f_{\rm HF}(x) = \rho(x, f_{\rm LF}(x)) + \delta(x)$.

mho026 @ ucr.edu

CAMELS - 2022

Multi-fidelity emulators: Transfer learn the the simulations from different resolutions + box sizes

Deep GP: $f_{\rm HF}(x) = \rho(x, f_{\rm LF}(x)) + \delta(x)$.

mho026 @ ucr.edu

Example 1: matter power spectrum Experimental design using DM-only simulations

- Parameters: $(h, \Omega_0, \Omega_b, A_s, n_s)$
- 50 Low-fidelity: space-filling strategy (Latin hypercube)
 - 128^3 , $256 \,\mathrm{Mpc} \,\mathrm{h}^{-1}$
- 3 High-fidelity: a subset of lowfidelity runs
 - 512^3 , $256 \,\mathrm{Mpc} \,\mathrm{h}^{-1}$
- *HF* choices were optimized using LF suite as a prior

Error

z = 0

Ho, Bird, Shelton (2022)

CAMELS - 2022

Example 1: matter power spectrum Graphical GP with simulations from different box sizes

 MF approach economically achieves sub-percent error, outperforming traditional single-fidelity emulator.

Graphical-GP bridges the information from different box sizes.

mho026 @ ucr.edu

CAMELS - 2022

Ho, Bird, Fernandez, Shelton (in prep)

Error analysis and budget estimation

- GP error roughly scales as a power law of the number of training points

- mho026 @ ucr.edu

Each multi-fidelity node opens a new dimension to improve the emulator accuracy

Example 2: Lya flux power spectrum Simulated Lya forest using Astrid simulations (30 Mpc/h)

- 32,000 simulated spectra per snapshot
- Lya flux power spectrum: Measure correlation between neutral hydrogen within a slightline

mho026 @ ucr.edu

Fernandez, Ho, Bird (2022) CAMELS - 2022

Example 2: Lya flux power spectrum Experimental design in 9 dimensions

- 9 parameters (z = 2 5.4), including reionization ightarrowparameters and black hole feedback
- Choice of HF optimized using LF suite as a prior ightarrow

 $P_F(k)$

z:3.0

LF/HF

z:3.8

z:4.6

z:5.4

CAMELS - 2022

Fernandez, Ho, Bird (2022)

0.02

k [s/km]

0.03

0.04

0.01

BOSS/

 $+10^{1}$

-1.1

1.0

-0.9

-1.1

1.0

+0.9

1.1

1.0

+0.9

High Fidelity

Low Fidelity

Example 2: Lya flux power spectrum Application to Lya flux power

• MFEmulator with 40 LF + 6 HF has $\approx 1\%$ accuracy.

CAMELS - 2022

Fernandez, Ho, Bird (2022)

Conclusion

- *Multi-fidelity emulation* economically uses simulations from different qualities
- Example 1: First application of MFEmulator to cosmology (DM only) ightarrow
- Example 2: Application to Lya forest (Astrid) \rightarrow currently running large-volume production runs
- Possibilities in applying to CAMELS
 - Help fill the parameter space of SB-28 using many more low-fidelity simulations
 - Bridge the information from different box sizes at the emulation level

arXiv:2105.01081 | github.com/jibanCat/matter_multi_fidelity_emu arXiv:2207.06445 | github.com/mafern/MFEmulatorLyaData Paper for Graphical GP is expected to be submitted later this year.

- We thanks Yi Ji (Duke, Stat) and Simon Mak (Duke, Stat) for kindly providing the GMGP code in Python.
 - CAMELS 2022

Backup slides

mho026 @ <u>ucr.edu</u>

What's emulation? Bayesian inference using simulations

CAMELS - 2022

Slide 4: figures k big as th also em simulation do this i simulation An anal

What's emulation? Bayesian inference using simulations

image credit: wiki, cobaya

CAMELS - 2022

Slide 4: figures k big as th also em simulation do this i simulation An anal

What's emulation? Bayesian inference using simulations

image credit: wiki, cobaya

MCMC using emulation: require ~10² simulations

CAMELS - 2022

Slide 4: figures k big as th also em simulation do this i simulation An anal

What's emulation? Reducing time on exploring parameter space

- but you only have time to run 5 simulations.

image credit: PHD comics

• Your PI asks you to run 20 simulations before next meeting

What's emulation? Reducing time on exploring parameter space

- but you only have time to run 5 simulations.

image credit: PHD comics

• Your PI asks you to run 20 simulations before next meeting

What's emulation? It's your *Bayesian* prior/posterior Emulation = Simulations Posterior predictions given Prior and Data

Simulations you haven't run

• Gaussian process prior: Smoothness features of y(x) before data are collected.

A distribution over smooth functions

CAMELS - 2022

What's emulation? Cosmic calibration

- Key ingredients for emulation:
 - Surrogate modelling: interpolation
 - Experimental design: space-filling

input θ (cosmologies)

Illustration credit: Perherstorfer et al (2018) Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization

CAMELS - 2022

Optimization

(summary statistics)

What's emulation?-Cosmic calibration Bayesian calibration for computer experiments • Key ingredients for emulation *Bayesian* modeling:

- - Surrogate modelling: interpolation Prior
 - Experimental design: space filling Data

Simulations Emulation = **Posterior predictions given Prior and Data**

Simulations you haven't run

A distribution over smooth functions

Gaussian process: Bayesian function prediction

- are collected.
- predictions.*

image credit: wikipedia * This Bayesian attitude is mentioned in Santner (2003), The Design and Analysis of Computer Experiments

• Gaussian process prior: Smoothness features of y(x) before data

• Bayesian approach: Choose a flexible prior allowing many shapes of y(x), and let the Bayesian machinery to direct the details of the

Example 1: matter power spectrum Experimental design

• Parameters: $(h, \Omega_0, \Omega_b, A_s, n_s)$

- Low-fidelity: space-filling strateg (Latin hypercube)
 - $.128^3$, $256 \,\mathrm{Mpc} \,\mathrm{h}^{-1}$
- *High-fidelity*: a subset of lowfidelity runs
 - $.512^3$, 256 Mpc h⁻¹
- HF choices were optimized using *LF* simulations

Ho, Bird, Shelton (2022)

13

0

ightarrow

Example 1: matter power spectrum

- The quality of LF simulations affects the accuracy of MF emulation
- Small scales emulation can be improved with a better quality of LF simulation suite. \rightarrow Question: Can we use small box LF to *improve emulation?*

CAMELS - 2022

Ho, Bird, Shelton (2022)

Example 2: matter power spectrum Extending to using hoxsize as a fidelity

- L₁: 128³, 256 Mpc/h
- L₂: 128³, 100 Mpc/h
- H: 512³, 256 Mpc/h

Deep Graphical Multi-fidelity GP (dGMGP) $f_{\rm HF}(x) = \rho(\{f_{\rm LF,1}, f_{\rm LF,2}\} \cup x) + \delta(x)$

 $K_{\rm SE}$: Squared-exponential kernel, guarantees smooth functions $K_{\rm LIN}$: Linear kernel, doing Bayesian linear regression

GMGP: Ji (2021)

A graphical multi-fidelity Gaussian process model, with application to emulation of expensive computer simulations

• Number of particles is not the only fidelity variable, *boxsize* is also a fidelity variable

• A smaller boxsize, *better* resolution at *small scales*

• We can combine both *large box (L1)* and *small box* (L2) information through a graphical model construction.

• A graphical GP (Ji et al., 2021) allows us to do so.

$K([x, f_{\rm LF}], [x', f'_{\rm LF}]) = K_{\rm SE}(x, x')[K_{\rm LIN}(f_{\rm LF}, f'_{\rm LF}) + K_{\rm SE}(f_{\rm LF}, f'_{\rm LF})] + K_{\rm SE}(x, x')$

Example: matter power spectrum Error analysis & optime of the scales as a power law

Theoretical basis: Wendland (2004), Ji (2021)

mho026 @ ucr.edu

100

- Solve the Lagrangian multiplier with a fixed budget gives you the optimal design:

$$n_{
m HF} \propto (rac{1}{C_{
m HF}})^{rac{d}{
u+d}}$$
 $n_{
m LF} \propto (rac{
ho}{C_{
m LF}})^{rac{d}{
u+d}}$

- **n_{HF}: number of HF simulations**
- C_{HF}: cost of a HF simulation
- p: correlation between LF and HF

CAMELS - 2022 Ho, Bird, Fernandez, Shelton (in prep)

Example 3: Lya flux power spectrum Experimental design in 9 dimensions

n _s - <u>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</u>	<u> </u>
0.8	0.99
A _p - <u>×⋙×∞∞×∞∞×∞∞∞∞∞∞</u>	
1.2e-09	2.6e-
z ^{Hell} - <u>×</u> *** © *©×***× ©© ×***	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.5	4.1
z _f ^{Hell} - <u>×</u> ₩××₩××⊗×××⊗×	
2.6	3.2
α _q - <u>××××∞×××××××∞××∞</u>	(@×@××××××@××@
1.6	2.5
h- <u>>>>@>>>>>@@>>@>>>>>>@@>>@>>>>>></u>	<pre>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>
0.65	0.75
Ω _M h ² - <u>××∞×××∞××∞∞∞∞∞∞</u>	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0.14	0.14
z ^{HI} - <u>>>>>>@@>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></u>	<pre>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>
6.5	8.0
BHF- <u>@***********************</u>	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0.03	0.07

- 9 parameters (z = 2 5.4), including reionization parameters and black hole feedback
- The discrepancy between LF/HF appears across scales (k), varies with redshifts

figure credit: Martin Fernandez

What's multi-fidelity? Multi-fidelity wark law in the Ho (2022)

Experimental design: optimal simulations within prior volume, space-filling

Extract quantity of interest: power spectrum

Statistical modelling: interpolation, Gaussian process

Testing: calibrate the emulator

Inference: input observations

mho026 @ <u>ucr.edu</u>

Non-linear (NARGP) or linear (KO)?

Figure 1: Limitations addressed and resolved jointly by our proposed MF-DGP architecture. Blue and red markers denote low and high-fidelity observations respectively. Shaded regions indicate the 95% confidence interval.

Uncertainty quantification depends on kernel choice

fig: Cutajar et al. - 2019 - Deep Gaussian Processes for Multifidelity Modeling

