Simulating Early Structure and Galaxy Formation - The THESAN Project -(a brief overview)

Mark Vogelsberger

Modeling Reionization

Stars (GMCs) and BH generate photons (~ pc)

Affect on IGM (~100s Mpc)

Transmission through CGM (~ 100s kpc)

Post-Processing

 \rightarrow post-process RT on grid

- \rightarrow approximate source functions, escape fractions, gas self shielding, source SEDs
- \rightarrow efficient parameter exploration

Full RHD-Simulations

- \rightarrow computationally expensive
- \rightarrow requires efficient RT solver
- \rightarrow requires accurate modeling of sources

THESAN

Reionization meets galaxy assembly

Rahul KannanAaron SmithEnrico GaraldiMark VogelsbergerRüdiger PakmorVolker SpringelLars Hernquist

www.thesan-project.com

Galaxy Formation Model: IllustrisTNG

TNG100

300 Mpc

Kannan+ 2019

<u>Dust Model:</u> Scalar Dust / Live Dust

→ growth depends on local gas density and temperature

→ shock-driven destruction depends on local SN rate

→ sputtering depends on local gas temperature

Ingredient 3

McKinnon+ 2018

Thesan Simulation Parameters

- → volume: (95.5 cMpc)³
- → particle number: 2×2100^3
- → dark matter particle mass: 3.1 x 10⁶ M_{\odot}
- → gas cell mass: 5.8 x $10^5 M_{\odot}$
- → softening length: 2.2 ckpc
- → smallest cell size: 10 pc

Thesan Simulation Suite

Name	L _{box} [cMpc]	N _{particles}	$m_{ m DM}$ $[m M_{\odot}]$	$m_{ m gas}$ $[{ m M}_{\odot}]$	€ [ckpc]	r _{cell} [pc]	Zend	fesc	Description
thesan-1	95.5	2×2100^{3}	3.12×10^{6}	5.82×10^{5}	2.2	~ 10	5.5	0.37	fiducial
thesan-2 thesan-wc-2 thesan-high-2 thesan-low-2 thesan-sdao-2	95.5 95.5 95.5 95.5 95.5	2×1050^{3} 2×1050^{3} 2×1050^{3} 2×1050^{3} 2×1050^{3}	2.49×10^{7} 2.49×10^{7} 2.49×10^{7} 2.49×10^{7} 2.49×10^{7} 2.49×10^{7}	4.66×10^{6} 4.66×10^{6} 4.66×10^{6} 4.66×10^{6} 4.66×10^{6}	4.1 4.1 4.1 4.1 4.1	~ 35 ~ 35 ~ 35 ~ 35 ~ 35 ~ 35	5.5 5.5 5.5 5.5 5.5	0.37 0.43 0.8 0.95 0.55	fiducial weak convergence of $x_{\rm HI}(z)$ $M_{\rm halo}(> 10^{10})$ $M_{\rm halo}(< 10^{10})$ Strong dark acoustic oscillations
thesan-tng-2 thesan-tng-sdao-2 thesan-nort-2 thesan-dark-1 thesan-dark-2	95.5 95.5 95.5 95.5 95.5	2×1050^{3} 2×1050^{3} 2×1050^{3} 2100^{3} 1050^{3}	2.49×10^{7} 2.49×10^{7} 2.49×10^{7} 3.70×10^{6} 2.96×10^{7}	4.66×10^{6} 4.66×10^{6} 4.66×10^{6}	4.1 4.1 4.1 2.2 4.1	~ 35 ~ 35 ~ 35 -	5.5 5.5 5.5 0.0 0.0	-	original TNG model original TNG model + sDAO no radiation DM only DM only

Resolution and Volume Comparison

Credit: Rahul Kannan

Nelson+ 2019

Alternative Dark Matter Models

 \rightarrow alternative DM models at level 2 resolution

→ sDAO model: collisional damping due to interactions between DM particles and relativistic particles in the early Universe causing Dark Acoustic Oscillations

THESAN-1 light cones

Kannan+ 2022

THESAN-1 light cones

Kannan+ 2022

→ sDAO has lower star formation rates in low mass systems
 → dip in star formation in low mass halos as reionization progresses (probably photoheating feedback)

- \rightarrow UV luminosity function (1500 Å)
- \rightarrow sDAO model shows stronger suppression than THESAN-2

small contribution of AGN to total ionizing photon budget

→ THESAN-LOW-2 shows early reionization

THESAN-LOW-2 slightly too large optical depth b/c reionization fully completed already by z around 6.3

neutral hydrogen fractions around relatively massive halos:

→ early stages: I-fronts stall close to sources due to quick absorption / short recombination time scales

→ as I-fronts reach low density gas, they speed up, causing rapid expansion of ionized bubbles

→ by z=6 all gas in the selected volume is ionized, except for high density filaments and nodes

Reionizatîon Redshift

→ reionization redshift = minimum redshift with hydrogen ionization fraction >= 0.99

 \rightarrow inside-out reionization

 $z_{\rm reion}$

→ largest structures reionize first (z>=10) (blue)

→ much later low density IGM regions (yellow to red)

→ densest structures (galaxies and filaments) stay neutral until the end of the simulation

THESAN-LOW-2

THESAN-HIGH-2

THESAN-HIGH-2: later reionization

Garaldi+ 2022

→ HII regions formed during the initial phases of the reionization process are quite small b/c early sources of radiation not very luminous

→ as reionization progresses ionized regions begin to become larger as galaxies become bigger and star formation rates increase **Bubble Size Distribution at Ionization Fraction 0.3**

THESAN-1

THESAN-HIGH-2

Bubble Size Distribution at Ionization Fraction 0.7

THESAN-1

THESAN-HIGH-2

size / distribution ionized bubbles depend on astrophysics and cosmology: star formation rate, escape fractions, gas distribution, dark matter models etc.

NEXT: THESAN-HR

Box Length [cMpc]	<i>m</i> g [M _☉]	<i>m</i> _{DM} [M _☉]	ε _g [ckpc]	EDM [ckpc]
95.5	5.82×10^{5}	3.12×10^{6}	2.2	2.2
5.9	1.13×10^{4}	6.03×10^{4}	0.425	0.425
11.8	9.04×10^{4}	4.82×10^{5}	0.85	0.85

Borrow+ 2023

Kannan+ 2021

- Introducing the THESAN project: radiation-magnetohydrodynamic simulations of the epoch of reionization Kannan, Rahul (et al.)
 MNRAS, 2022, 511, 4005 [ads] [arXiv]
- The THESAN project: properties of the intergalactic medium and its connection to reionization-era galaxies Garaldi, Enrico (et al.)

MNRAS, 2022, 512, 4909 [ads] [arXiv]

 The THESAN project: Lyman-alpha emission and transmission during the Epoch of Reionization Smith, Aaron (et al.)
 MNRAS, 2022, 512, 3243 [ads] [arXiv]

PAPERS USING THESAN DATA

- The THESAN project: predictions for multi-tracer line intensity mapping in the Epoch of Reionization Kannan, Rahul (et al.)
 MNRAS, 2022, 514, 3857 [ads] [arXiv]
- The THESAN project: ionizing escape fractions of reionization-era galaxies Yeh, Jessica Y.-C. (et al.)
 MNRAS, Submitted [arXiv]
- An Effective Bias Expansion for 21 cm Cosmology in Redshift Space Qin, Wenzer (et al.)

Phys. Rev. D, Submitted [arXiv]

- Bridging the Gap between Cosmic Dawn and Reionization favors Faint Galaxies-dominated Models Bera, Ankita (et al.)
 ApJ, Submitted [arXiv]
- The MillenniumTNG Project: The galaxy population at z≥8 Kannan, Rahul (et al.)

MNRAS, Submitted [arXiv]

 The THESAN project: Lyman-alpha emitter luminosity function calibration Xu, Clara (et al.)

MNRAS, Submitted [arXiv]

EIGER I: a large sample of [OIII]-emitting galaxies at 5.3<z<6.9 and direct evidence for local reionization by galaxies
 Kashino, Daichi (et al.)

ApJ, Submitted [arXiv]

More Results....