

Lucia A. Perez (Princeton & CCA) Shy Genel, Paco Villaescusa-Navarro, Rachel Somerville, Daniel Angles-Alcazar, Austen Gabrielpillai

New large-volume simulation 'hump' of CAMELS project

- 1000+ N-body simulations: (100 h⁻¹ Mpc)³ large ; N=640³ particles of ~1-6 x 10⁸ h⁻¹ M_{sol} ; 100 snapshots between 0<z<27
- Cosmological parameter space: Ω_m (fraction of energy density in DM+baryons) & σ_8 (~amplitude of density fluctuations)
- Run through the Santa Cruz Semi-Analytic Model:

"A_{SN}": mass outflow + reheating rates of cold gas due to SNe + stars "A_{AGN}": AGN feedback, how much mass ejected in radio jets?

Proof-of-concept in Perez+2022: constraining power of galaxy clustering statistics (3D two-point correlation function, count-in-cells, Void Probability Function)

LH_643: $\Omega_{\rm m}$ = 0.131 ; $\sigma_{\rm 8}$ = 0.986

CAMELS-SAM public data | *camels-sam.readthedocs.io*

From 1000+ simulations with 100 snapshots between 20 < z < 0:

- **ROCKSTAR** halo catalogs
- *ConsistentTrees* merger trees
- Santa Cruz SAM galaxy catalogs
- Full snapshots are on tape-reach out if you really want them!

Data product flavors:

- ۲
- **1000 LH** simulations over Ω_m , σ_8 , A_{sn1} , A_{sn2} , A_{AGN} **5 CV** simulations: fiducial Ω_m =0.3, σ_8 =0.8, default SC-SAM, unique random seeds
- **12** ~**1P** galaxy catalogs: fiducial cosmology, min/max SC-SAM parameters for 2 unique random seeds

(Princeton & CCA) Shy Genel, Paco Villaescusa-Navarro, Rachel Somerville, Daniel Angles-Alcazar, Austen Gabrielpillai

The Santa Cruz SAM:

$$\dot{m}_{\text{out}} = \epsilon_{\text{SN}} \left(\frac{V_0}{V_c} \right)^{\alpha_{\text{rh}}} \dot{m}_{*}^{\text{A}_{\text{SN2}}}$$

$$\overset{\mathbf{A}_{\mathsf{AGN1}}}{m_{\mathrm{radio}}} = \overset{\mathbf{K}_{\mathrm{radio}}}{\mathbf{K}_{\mathrm{radio}}} \left[\frac{kT}{\Lambda(T, Z_{\mathrm{h}})} \right] \left(\frac{M_{\mathrm{BH}}}{10^8 \,\mathrm{M}_{\odot}} \right)$$

Typical to most SAMs are physically-motivated prescriptions for:

- How gas cools & accretes onto halos/galaxies
- How stars form from cooled gas in ISM
- How mass/metals return to the ISM

Unique/notable in the SC-SAM:

- Multiphase partitioning & tracking of the ISM
- How supermassive black holes form and grow, 'black hole feedback'

Somerville et al. (2008, 2015, 2021) + Porter et al. (2014) + Gabrielpillai et al. (2022) Cool example: mocks for JWST and Roman by Yung et al. 2019-2022!

Why clustering?

Clustering of a sample of galaxies ? ? ? Underlying cosmology? Underlying astrophysics?

Galaxy clustering as Lucia does it:

Two-point correlation function

- Fourier Transform of power spectrum, common in observations
- Compare galaxies to a random distribution; pair counts
- Brief summary statistic: 1 R gives 1 ξ value

Count-in-cells

- Drop test spheres of a given size
- How many galaxies are in each test spheres?
- Volume averaged measurements
- Contains all higher order correlations!
- Computationally expensive + dense: 1 R can give 100's of points

Void Probability Function

- Only *empty* test spheres-very cheap to calculate
- Influenced by higher order correlations
- Brief summary statistic: 1 R gives 1 VPF value

Basics of assessing neural network results:

Parameter regression + likelihood-free inference

OK, how rough are constraints with galaxy clustering in CAMELS?

2ptCF, CiC, VPF at z={0, 0.1, 0.5, 1} for 1000 randomly selected halos with mass 6. greater than:

- 2e10 M_{sol} h⁻¹ CAMELS SIMBA+TNG (blue; within 10cMpc) 1.2e12 M_{sol} h⁻¹ CAMELS-SAM (red; within 40 cMpc)

- **Cosmic variance worsens constraints**
- Small volume focuses to small scales 2.
- Almost *no* galaxy selection can be done 3. across SIMBA and TNG!
 - SIMBA makes way more galaxies a.
 - b. Poisson noise starts mattering
- 4. Best case scenario-high density dark matter only selection-gets 10% errors on cosmology
- CAMELS-SAM at much lower density 5. meets or exceeds these easily, and allows for galaxy selections

Can we do it better? Rank-order galaxy selection! Stick to one CAMELS hump! Do this experiment properly

Takeaways from initial clustering work:

- 1. Use more than two-point statistics to improve constraints
- 2. SAM galaxy clustering measures cosmology well! Beginning to reach non-linear scales, too
- 3. Using a SAM, these clustering statistics do sense astrophysics!

How good are our constraints from clustering?

- Cosmology: 3-15% fractional error
 - Best-performing selections: low-threshold stellar mass
- Astrophysical SC-SAM feedback: >30% fractional error
 - Note: using clustering with low-hanging fruit ('pure' properties)

Galaxy clustering: more observable, loses info...

FULL 2D maps of CAMELS get 3-4% on Ω_{M} -what could CAMELS-SAM's do?!

Lucia A. Perez

#643: Ω_m = 0.131 ; σ₈ = 0.986

(Princeton & CCA) Shy Genel, Paco Villaescusa-Navarro, Rachel Somerville, Daniel Angles-Alcazar, Austen Gabrielpillai

Lucia A. Perez

CAMELS-SAM work in progress:

- A new set of LH SC-SAM catalogs over *all* SC-SAM parameters (Z. Tremitiere)
- Influence of baryonic physics on PNG bias? (w/ A. Barreira)
- A new LH hump with the Galacticus SAM *(open to collaborators!)*

Work with me!

- Let's run some HODs!
- More SAMs?
- Other work with the DMO volumes?

Answering big questions with

How much information is lost to astrophysics?

- Try running the most realistic fiducial SC-SAM over all the cosmologies:
 - Then, constraints from galaxy clustering are *at least as good as* DMO clustering!
 - \circ Constraints slightly better for σ_8 , without SC-SAM variation, especially if don't correct for number density
- The neural network maintains good accuracy on cosmology even when including astrophysics!
 - Cosmology constraints only a few percent worse (e.g. 9% vs. 5%)
 - \circ Still learn about some of the SC-SAM parameters

Other big questions from

What happens if our ranges are just too big? Are we hurting our own efforts?

- Definitely want to avoid priors that bias the neural network
- Is a very broad astrophysical parameter range limiting the constraints on cosmology?
 - \circ Note: predicting parameters one at a time does the same or a little worse than all 5
- How do you tell apart 'you need more training data' vs. 'no information exists'?

Other big questions from

Is this approach better than the 'traditional' method of constraining cosmology with galaxy clustering?

- Pros:
 - Don't have to identify a likelihood, or creating a covariance matrix, or create emulator for one given cosmology
 - Instead, create a large & representative enough training set
 - \circ We're probing non-linear scales with robust galaxies that theory can struggle with
- Cons:
 - \circ Constraints could be much better, how do we improve them?
 - Is clustering an unoptimized application of CAMELS-SAM?

Lucia A. Perez

(Princeton & CCA) Shy Genel, Paco Villaescusa-Navarro, Rachel Somerville, Daniel Angles-Alcazar, Austen Gabrielpillai

CAMELS-SAM public data | *camels-sam.readthedocs.io* 1000+ simulations with 100 snapshots between 27 < z < 0:

- $(100 h^{-1} Mpc)^3$ large ; N=640³ particles of ~1-6 x 10⁸ h⁻¹ M_{sol} •
- *ROCKSTAR* halo catalogs
- *ConsistentTrees* merger trees
- Santa Cruz SAM galaxy catalogs
- *Full snapshots are on tape_reach out if you really want them!*

Data product flavors:

- ۲
- **1000 LH** simulations over Ω_m , σ_8 , A_{sn1} , A_{sn2} , A_{AGN} **5 CV** simulations: fiducial Ω_m =0.3, σ_8 =0.8, default SC-SAM, unique random seeds
- 12 ~1P galaxy catalogs: fiducial cosmology, min/max SC-SAM parameters ulletfor 2 unique random seeds

