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● Current observations remarkably well fit by a model with: 
● Cosmological constant (“Dark Energy”) which drives current acceleration 
● Cold Dark Matter plus some baryonic matter (gas and stars) 
● Initial conditions from an early period of “inflation”

MEASURING THE UNIVERSE: THE ΛCDM MODEL



Inflation (initial conditions):

Dark Matter:

Dark Energy:

The nature, properties, or origin of the field 
causing inflation are completely unknown

Is not even remotely understood.

What is known:  
only that it exists and gravitates

BUT WE DO NOT UNDERSTAND THE MODEL COMPONENTS
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1. (A) DEVELOP NEW STELLAR & BH FEEDBACK MODELS 
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1. (B) FORWARD MODEL TO OBSERVATIONAL SPACE 
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2. (A) GENERATE LARGE SUITES OF TRAINING SIMULATIONS

● Star Formation and Black Hole models will be 
implemented in the AREPO cosmological 
hydrodynamics code. 

• Well-tested, widely used, scales well 
● Large suite of cosmological simulations required 

for emulator training 
• Vary cosmological parameters 
• Vary initial conditions 
• Vary astrophysics parameters 

• Training sets: 
• “small boxes” (~25-50 Mpc) for galaxy properties 
• “zoom simulations” (small regions in large boxes) 

for rare clusters of galaxies

Navarro-Villaescusa et al. (2021)
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3. INFERENCE WITH FULL PHYSICAL FORWARD MODELS 

• Infer the posterior pdf of cosmological parameters and the initial curvature 
perturbations based on galaxy surveys and CMB maps enabled by high-
fidelity, fast forward modeling of cosmic structure, and galaxy formation and 
evolution


• Principled approach: compute the posterior pdf  using two techniques: 

A. An explicit likelihood-based (EL) inference approach: BORG. Will serve as 
validation benchmark. 

B. Multiple simulation-based inference (SBI) approaches: more flexible, but 
more heavily reliant on machine learning.

p(θ |d)



OUR APPROACH
1.DEVELOP NEXT-GENERATION GALAXY FORMATION SIMULATIONS 
● Calibrated sub-grid model for star formation and galactic winds from resolved (small-scale) simulations 
● Comprehensive set of sub-grid models for black hole accretion/feedback from resolved simulations 
● Carry out a large suite of cosmological simulations, varying parameters 
● Create synthetic observations from this suite 
2.DEVELOP MACHINE-LEARNING TECHNIQUES TO ACCELERATE FORWARD MODELS 
● Use large suite of N-body simulations to train neural network to predict dark matter distribution 
● Use cosmological simulation suite to train machine to predict galaxy properties from dark matter 
● Use active learning to minimize number of galaxy simulations required to train 
3.INFER “INITIAL CONDITIONS” (PARAMETERS AND PHASES) 
● Use the accelerated forward models to constrain parameters using two approaches: 

1. A forward model built on a physical map from initial conditions to survey likelihood (BORG) 
2. Simulation-based inference (SBI): use machine to learn the posterior



LtU Working groups
Star formation/wind subgrid model (Ostriker, Kim,  …) 
Black hole accretion and feedback (Hernquist, …) 
Cosmological Modeling (Springel, Burger, …) 
Synthetic observations (Somerville/Ferraro, …) 
Training set generation (Genel, Navarro, Angles-Alcazar,  …) 
Accelerated forward modeling (S. Ho, Lavasseur, Lemos, …)  
Inference with physical model (BORG) (Jasche/Lavaux, …) 
Simulation-based (IL) inference (Wandelt, M. Ho, …)  
Understanding models/Inference robustness (Singh, …)
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See talks by: 
Ana Maria Delgado 

Shivam Pandey 
Ben Wandelt 
Boon Kiat Oh 

Francisco Villaescusa-Navarro 
Yongseok Jo 

Tjitske Starkenburg 
Daniel Angles-Alcazar 

Ulirch Steinwandel 
Yueying Ni 
Lucia Perez 

Christopher Lovell

A COLLABORATION OF COLLABORATIONS?
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GALAXY FORMATION SIMULATIONS: MODELING STAR 
FORMATION AND FEEDBACK  
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 v = 380 km s−1

T = 3.8 × 105 K

Matthew Smith (MPIA) 
w/Drummond Fielding

“CLASSIC”  
WINDS 



MULTIPHASE 
OUTFLOWS

Kim & Ostriker 2017 
Kim, Ostriker & SMAUG 2020

TIGRESS simulations 
produce highly 
multiphase outflows 

Mass loading 
dominated by cold/
warm slow moving 
material 

Energy loading 
dominated by hot, 
fast, metal enriched 
outflow
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MULTIPHASE LAUNCHING

Kim, Ostriker & SMAUG 2020

When launching a wind particle, draw 
velocity and temperature from a 
distribution, instead of using single 
value.

Mass-weighted 
average

“Classical”



HOT, FAST WINDS

High specific energy outflows are hard to model: 

-  is large, so coarse mass resolution means poor time sampling. 
- Low density means poor spatial resolution.

ηE /ηM

Arkenstone “hot recoupling” model: 
1. Throw low mass wind particles (e.g. 100 times lower mass than gas cells) 
2. Refine when recoupling

Gives smooth energy injection, high temperatures and refined wind.



ARKENSTONE  
WINDS 
 (HOT RECOUPING)
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ARKENSTONE WINDS REGULATE STAR FORMATION WITH LOW MASS-LOADING  

No wind

high mass 
loaded winds

high specific  
energy winds 
(Arkenstone)
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Instead of using numerical simulations as an approximation of newton’s laws for DM  particles,  
we make use of the universal approximation theorem to approximate them with a deep model.  

Goal: using machine learning to  
“learn”/ interpolate from a large number of pre-run simulations. 

ACCELERATING N-BODY (DARK MATTER ONLY) SIMULATIONS 
WITH MACHINE LEARNING (F’)

First step: 
For a fixed set of cosmological parameters, over a small volume  
(512 (h-1Mpc)3), at low resolution (mean separation of particles 1 h-1 Mpc)

Predictions
Analytical 

approximation 

Input Prediction

S. He, Y. Li, Y. Feng, S.Ho., S. Ravanbaksh, B. Poczos, PNAS 2019



Errors in displacement field (difference between current position to the 
initial position of the particles), predicted by the benchmark model 
(2LPT), and the ML model

ASSESSING PERFORMANCES

Machine Learning Model  
prediction errors

Benchmark (2LPT) 
prediction errors

Mpc/h

S. He, Y. Li, Y. Feng, S.Ho., S. Ravanbaksh, B. Poczos, PNAS 2019



CNN WITH “STYLE” - GENERALIZE TO DIFFERENT COSMOLOGIES

Jamieson+ 2022

Comparing the following: 
1) The average power spectrum of 1000 sims,  

2) The ratios to the true power-spectrum (T(k)), 

3) The cross-correlation coefficients. 



WHAT IS THE NETWORK LEARNING?
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BENCHMARK EXPLICIT LIKELIHOOD APPROACH WITH  
BORG (BAYESIAN ORIGIN RECONSTRUCTION FROM GALAXIES)

ML-accelerated gravity and hydro model for 3-5



MCMC EXPLORATION OF THE INITIAL CONDITIONS WITH BORG

Initial Conditions Evolved DM 2M++ Galaxy survey 
(centered on Milky Way)

Jasche & Lavaux 2019
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