
Numerical solution of ODEs: A practical guide

Fruzsina Agocs

Fω(α + m)!, 2022

1 / 18

Overview

Outline

Preliminaries
The residual
Conditioning or sensitivity
Stability and stiffness

Methods for IVPs
Basic concepts
Map of fixed order methods
Accelerated low order methods
Special cases: oscillations and Hamiltoninan systems
Programming tools

Methods for BVPs

2 / 18

What this talk is about

• Hopefully this talk will help you:
• Assess whether a numerical solution is satisfactory,
• Evaluate what accuracy you can reasonably demand,
• Know what methods exist and where to look for an implementation and further reading.

• I’ll also highlight some powerful methods developed by CCM colleagues

• Check out Alex Barnett’s talk from Fω(α+ m)! 2021 for computational preliminaries
(finite-precision arithmetic, convergence/complexity of algorithms, etc.)

• Based on the books Corless and Fillion 2013; Butcher 2016; Press et al. 2007; Hairer et al.
1993a,b and many references therein

3 / 18

Notation and some definitions

• System of ODEs in standard form w.l.o.g. :

y′(t) = f(t, y(t)) (1)

• Only one independent variable, t, therefore ODE
• Solve on the solution interval t ∈ [ti , tf]

• y : R → Cn is solution vector with the dependent variables as its n components
• f : R× Cn → Cn is vector-valued function (RHS)
• Can always write higher order ODE (containing dmy

dtn := y(m) with m > 1) in standard form: let
yi = y(i)

• Can always write eq. (1) in autonomous form: f(t, y(t)) = f(y), by setting y0 = t

• Initial (IVP) or boundary value problem (BVP):

y(ti) = yi IVP: all conditions specified at one value of t,
e.g. y0(ti) = a, y0(tf) = b for y = [y , y ′] BVP: conditions specified at different t-values

• Approximate numerical solution ŷ(t) and reference solution y(t). How close is ŷ(t) to y(t)?

4 / 18

IVP v BVP solvers, in a nutshell

• In practice, similar to call and assess, but algorithms qualitatively different

t0 = ti t1 t2 . . . tN = tf

h0

forecast

• Timestepping / marching: increment
indep variable, use ODE to compute
associated increment in dep variables

• Size of steps, h(t), determined by
estimate of local error

• Controller adapts stepsize to keep local
error beneath tolerance

ti tf

ti

ti

tf

tf

iteration 1

iteration 2

. . .

• No preferred direction for independent
variable

• Mesh (usually) start off uniform

• Mesh computed simultaneously with the
solution, refined iteratively

5 / 18

When to trust a numerical solution?
• Reference solution y(t) satisfies ODE exactly, y′(t)− f(t, y(t)) = 0. But y(t) is not known!
• Instead, we have ŷ, for which ŷ′(t)− f(t, ŷ(t)) = ∆(t)

• ∆(t) is the absolute residual,

• δi (t) =
ŷ′i −fi (t,ŷ)

fi (t,ŷ) is the relative residual,

• We can always compute the residual1! It is a way to assess the quality of the solution ŷ(t).

• ŷ(t) is an exact solution of the modified, nearby problem

ŷ′(t) = f(t, ŷ(t)) + ∆(t)

• How nearby? Controlled by the tolerance
param supplied to the num method.

• ∆(t) is a perturbation of f, which is an
input parameter to our IVP

• Residual is therefore a backward error2

• Forward error is the difference y(t)− ŷ(t)

input
f(t, y), yi

f(t, ŷ) + ∆(t), yi

output
y(t)

ŷ(t)

IVP

IVP

backward
error

numerical method
forward

error

1It’s not free: one eval of ∆(t) costs one f -evaluation.
2Specifically, a perturbation in f. But one may consider perturbing y0, or both.

6 / 18

Conditioning or sensitivity

• How are the backward and forward errors related? Via the conditioning of the problem.
• Alternatively: how do perturbations in the input affect the output?

Definition 1.
The condition number, κ, expresses the sensitivity of the problem to perturbations in the input
parameters.

• Forward error ≤ κ × backward error = κ×∆

• How to find κ? A crude practical estimate (Corless and Fillion 2013):
1. Solve IVP with two, very different tolerance settings. Get ŷ1(t), ŷ2(t). They satisfy

y′1 = f(t, y1) + ∆1 and y′2 = f(t, y2) + ∆2.
2. Calculate their residuals, ∆1,∆2, and assume (check) ∆1 � ∆2.
3. κ is then at least ||ŷ1(t)− ŷ2(t)||/||∆1||.

• Conditioning is a property of the IVP alone.

• The best accuracy you can hope to achieve is κ× εmachine, independent of the numerical method.

7 / 18

Stability and stiffness

• How can we be sure that the numerical method gives the best achievable accuracy? By using a
(backwards) stable algorithm.3

• But, “stability” in IVP methods is used for a different phenomenon, in relation to stiffness.
• No generally accepted rigorous definition
• But there exist extremely well-conditioned problems which certain (explicit) methods take

unexpectedly long to solve, while others (implicit) can handle
• Stiff problems have smooth solutions but explicit methods have to reduce their stepsize, not for

accuracy but to maintain “stability”.

• Best shown by example:

• How to tell if your problem is stiff? By trial and error. Run a stiff (implicit) solver and see if it
mops the floor with a nonstiff (explicit) method.

3See Alex’s slides from last year!
8 / 18

Methods for IVPs: Euler and concepts
• Forecasting step yk+1 = Φ(tk ; yk+1, yk , yk−1, . . . , y0; h; f)
• If Φ contains yk+1 then implicit, otherwise explicit

• Implicit schemes will require solving a system of eqs → computational overhead, but robust against
stiffness

• Explicit schemes can generate the forecast yk+1 by iteration, → cheap

• Simplest case: (forward) Euler
yk+1 = yk + hk f(t, yk)

• Standard analysis in terms of local error, err: error accumulated in a single step

• If erri ∼ O(hp+1), it’s a pth (convergence)
order method

• Euler has O(h2) local error (compare with
Taylor series) → first order

• Why does order matter? Determines how
much the method needs to reduce its
stepsize to match a given tolerance

• How to get higher order? log h

lo
g

er
r

tol

∝ h5 ∝ h9

9 / 18

Methods for IVPs: Generalisations of Euler, fixed order schemes

• Common strategy in marching methods:
Taylor expand y(t) around tk to get
y(tk + h) up to the pth term

• This requires derivatives: y′ = f, but y′′

and above not known
• Various strategies for getting derivative

information:
• Runge–Kutta: use intermediate

f-evaluations, f(tk + ci h, yi) for
i = 1, . . . s for an s-stage method

• use Jacobian, Jij = ∂fi/∂yj
• Linear multistep: store and re-use old y

(& y′) evaluations: yk−1, yk−2, . . .

• “Grand unified theory”: general linear
methods, see Butcher 2016

10 / 18

Methods for IVPs: Accelerated low order methods
• What if very high order is needed (and the system is large)? Extrapolation, deferred correction

methods.
• General strategies:

• Treat solution as analytic function of stepsize h. Probe at various values of h and extrapolate. →
Richardson extrapolation (e.g. Bulirsch-Stoer)

• Take a step with a low-order method. Write down ODE that its error (residual) satisfies, and solve it
with the same method. Iterate. → Classical deferred correction.

• Spectral deferred correction: Dutt et al. 2000
• Spectral accuracy, arbitrarily high order

Definition 2.
A spectral method is one whose conver-
gence rate is as fast as the smoothness
of the solution allows.

• Underlying low order method could be
explicit or implicit

• Recommended for smooth, stiff, large
systems

log evaluations, log N

lo
g

er
ro

r

tol

O(N−p)
O(c−N)

11 / 18

Special IVPs: oscillations /1

• Consider the IVP
y ′′(t) + 2γ(t)y ′(t) + ω2(t)y(t) = 0, t ∈ [ti , tf],

with y(ti) = yi , y ′(ti) = y ′
i

• Even if ω(t), γ(t) are smooth, all standard (read: polynomial-based) methods need O(ω)
steps/intervals/runtime → slow

• Methods based on asymptotic, non-convergent series may be efficient, offer O(1) runtime
• Asymptotic: cannot keep adding terms to make series more accurate
• But usually converges for a while. For these methods, ∆ = O(ω−k), where k is # of terms

• Available methods with code:
• fixed-order (fixed k) WKB expansion: Agocs et al. 2020 (oscode, Python, C++), Körner et al. 2022

(WKB-marching, MATLAB)
• not asymptotics (but valid only at large ω): Bremer 2018 (phase function method, Fortran90)
• adaptive, spectral asymptotics: Agocs and Barnett 2022 (Python)

12 / 18

Special IVPs: oscillations /2
y ′′ + λ2q(t)y = 0, q(t) = 1− t2 cos(3t), t ∈ [−1, 1]

102 104 106

frequency parameter, λ

10−4

10−3

10−2

10−1

100

101

102

103

104

ru
nt

im
e/

s

RK78

oscode

WKB marching

this work

ε = 10−12

ε = 10−6

102 104 106

λ

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
er

ro
r,
|∆
y
/y
|

RK78

oscode

WKB marching

this work

ε = 10−12

ε = 10−6

13 / 18

Special IVPs: Hamiltonian systems
• Special classes of problems: need e.g.

conserved quantity or time-reversibility

• Common in physics: N-body systems,
molecular dynamics, orbital dynamics,
mechanical systems

• Objects involved obey Hamiltonian dynamics
with q, p are position and momentum

dp
dt = −∂H(p, q)

∂q ,
dq
dt =

∂H(p, q)
∂p .

• Philosophy: output of numerical method is
satisfactory if it solves a nearby Hamiltonian
problem

• Methods: leapfrog, symplectic integrators

• Programming tools: REBOUND and references
therein

14 / 18

https://rebound.readthedocs.io/en/latest/

Programming tools

• Scientific Computing Template
Library (SCTL)

• Benchmarks game

• Comparison of methods
callable from Julia

• Comparison of methods from
C++ libraries (Sundials, GSL,
boost):

• Guide to available
mathematical software
(GAMS)

• NodePy

15 / 18

https://github.com/dmalhotra/SCTL
https://github.com/dmalhotra/SCTL
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://github.com/SciML/SciMLBenchmarks.jl
https://github.com/SciML/SciMLBenchmarks.jl
https://gams.nist.gov/Background.html
https://gams.nist.gov/Background.html
https://gams.nist.gov/Background.html
https://github.com/ketch/nodepy/blob/master/examples/Internal_stability.ipynb

Methods for BVPs

• Beware: κBVP 6= κIVP!

• κBVP can be computed, see Corless and Fillion 2013.
• General ideas:

• Shooting:
1. Solve associated IVP instead from ti from a guess of i.c. Compute solution at tf .
2. Embed in a root finding process until solution satisfies boundary conditions at tf .

• Collocation:
1. Approximate the solution in a finite-dimensional space (e.g. space of some polynomials up to a given degree).
2. Require that the ODE is satisfied exactly at a finite number of points (nodes). This gives a set of conditions.
3. Solve to give the finite-dimensional representation of the solution.
4. Compute residual; iterate (over dimensions of solution space) until satisfactory.

• Tricky part: choosing the right mesh of nodes (e.g. Equispaced v Chebyshev) and refining the mesh.

• Example: Chebyshev spectral method4

• Codes: MATLAB, Python, Julia: Chebfun, Chebop, Dedalus, Approxfun
• Reading: Boyd 2001; Trefethen 2000, 2019

4See Dan Fortunato’s talk from Fω(α + m)! 2021.
16 / 18

chebfun.org
https://dedalus-project.org
https://github.com/JuliaApproximation/ApproxFun.jl
https://danfortunato.com/talks/ModernSpectralMethods.pdf

References I

R. M. Corless and N. Fillion (2013). “A graduate introduction to numerical methods”. In: AMC 10, p. 12.

J. C. Butcher (2016). Numerical methods for ordinary differential equations. John Wiley & Sons.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007). Numerical recipes 3rd edition:
The art of scientific computing. Cambridge university press.

E. Hairer, S. P. Nørsett, and G. Wanner (1993a). Solving Ordinary Differential Equations I. Vol. 1.
Springer Series in Computational Mathematics. Springer Berlin Heidelberg. isbn: 978-3-642-08158-3.

— (1993b). Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer
Series in Computational Mathematics. Springer. isbn: 9783540604525.

A. Dutt, L. Greengard, and V. Rokhlin (2000). “Spectral deferred correction methods for ordinary
differential equations”. In: BIT Numerical Mathematics 40.2, pp. 241–266.

F. J. Agocs, W. J. Handley, A. N. Lasenby, and M. P. Hobson (2020). “Efficient method for solving highly
oscillatory ordinary differential equations with applications to physical systems”. In: Physical Review
Research 2.1, 013030 .

J. Körner, A. Arnold, and K. Döpfner (2022). “WKB-based scheme with adaptive step size control for the
Schrödinger equation in the highly oscillatory regime”. In: Journal of Computational and Applied
Mathematics 404, p. 113905.

J. Bremer (2018). “On the numerical solution of second order ordinary differential equations in the
high-frequency regime”. In: Applied and Computational Harmonic Analysis 44.2, pp. 312–349.

17 / 18

References II

F. J. Agocs and A. H. Barnett (2022). “An adaptive spectral method for oscillatory second-order linear
ODEs with frequency-independent cost”. In: in prep.

J. P. Boyd (2001). Chebyshev and Fourier spectral methods. Courier Corporation.

L. N. Trefethen (2000). Spectral methods in MATLAB. SIAM.

— (2019). Approximation Theory and Approximation Practice, Extended Edition. SIAM.

18 / 18

	
	Outline
	Preliminaries
	The residual
	Conditioning or sensitivity
	Stability and stiffness

	Methods for IVPs
	Basic concepts
	Map of fixed order methods
	Accelerated low order methods
	Special cases: oscillations and Hamiltoninan systems
	Programming tools

	Methods for BVPs
	References

