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What this talk is about

• Hopefully this talk will help you:
• Assess whether a numerical solution is satisfactory,
• Evaluate what accuracy you can reasonably demand,
• Know what methods exist and where to look for an implementation and further reading.

• I’ll also highlight some powerful methods developed by CCM colleagues

• Check out Alex Barnett’s talk from Fω(α+ m)! 2021 for computational preliminaries
(finite-precision arithmetic, convergence/complexity of algorithms, etc. )

• Based on the books Corless and Fillion 2013; Butcher 2016; Press et al. 2007; Hairer et al.
1993a,b and many references therein
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Notation and some definitions

• System of ODEs in standard form w.l.o.g. :

y′(t) = f(t, y(t)) (1)

• Only one independent variable, t, therefore ODE
• Solve on the solution interval t ∈ [ti , tf ]

• y : R → Cn is solution vector with the dependent variables as its n components
• f : R× Cn → Cn is vector-valued function (RHS)
• Can always write higher order ODE (containing dmy

dtn := y(m) with m > 1) in standard form: let
yi = y(i)

• Can always write eq. (1) in autonomous form: f(t, y(t)) = f(y), by setting y0 = t

• Initial (IVP) or boundary value problem (BVP):

y(ti) = yi IVP: all conditions specified at one value of t,
e.g. y0(ti) = a, y0(tf ) = b for y = [y , y ′] BVP: conditions specified at different t-values

• Approximate numerical solution ŷ(t) and reference solution y(t). How close is ŷ(t) to y(t)?
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IVP v BVP solvers, in a nutshell

• In practice, similar to call and assess, but algorithms qualitatively different

t0 = ti t1 t2 . . . tN = tf

h0

forecast

• Timestepping / marching: increment
indep variable, use ODE to compute
associated increment in dep variables

• Size of steps, h(t), determined by
estimate of local error

• Controller adapts stepsize to keep local
error beneath tolerance

ti tf

ti

ti

tf

tf

iteration 1

iteration 2

. . .

• No preferred direction for independent
variable

• Mesh (usually) start off uniform

• Mesh computed simultaneously with the
solution, refined iteratively

5 / 18



When to trust a numerical solution?
• Reference solution y(t) satisfies ODE exactly, y′(t)− f(t, y(t)) = 0. But y(t) is not known!
• Instead, we have ŷ, for which ŷ′(t)− f(t, ŷ(t)) = ∆(t)

• ∆(t) is the absolute residual,

• δi (t) =
ŷ′i −fi (t,ŷ)

fi (t,ŷ) is the relative residual,

• We can always compute the residual1! It is a way to assess the quality of the solution ŷ(t).

• ŷ(t) is an exact solution of the modified, nearby problem

ŷ′(t) = f(t, ŷ(t)) + ∆(t)

• How nearby? Controlled by the tolerance
param supplied to the num method.

• ∆(t) is a perturbation of f, which is an
input parameter to our IVP

• Residual is therefore a backward error2

• Forward error is the difference y(t)− ŷ(t)

input
f(t, y), yi

f(t, ŷ) + ∆(t), yi

output
y(t)

ŷ(t)

IVP

IVP

backward
error

numerical method
forward

error

1It’s not free: one eval of ∆(t) costs one f -evaluation.
2Specifically, a perturbation in f. But one may consider perturbing y0, or both.
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Conditioning or sensitivity

• How are the backward and forward errors related? Via the conditioning of the problem.
• Alternatively: how do perturbations in the input affect the output?

Definition 1.
The condition number, κ, expresses the sensitivity of the problem to perturbations in the input
parameters.

• Forward error ≤ κ × backward error = κ×∆

• How to find κ? A crude practical estimate (Corless and Fillion 2013):
1. Solve IVP with two, very different tolerance settings. Get ŷ1(t), ŷ2(t). They satisfy

y′1 = f(t, y1) + ∆1 and y′2 = f(t, y2) + ∆2.
2. Calculate their residuals, ∆1,∆2, and assume (check) ∆1 � ∆2.
3. κ is then at least ||ŷ1(t)− ŷ2(t)||/||∆1||.

• Conditioning is a property of the IVP alone.

• The best accuracy you can hope to achieve is κ× εmachine, independent of the numerical method.
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Stability and stiffness

• How can we be sure that the numerical method gives the best achievable accuracy? By using a
(backwards) stable algorithm.3

• But, “stability” in IVP methods is used for a different phenomenon, in relation to stiffness.
• No generally accepted rigorous definition
• But there exist extremely well-conditioned problems which certain (explicit) methods take

unexpectedly long to solve, while others (implicit) can handle
• Stiff problems have smooth solutions but explicit methods have to reduce their stepsize, not for

accuracy but to maintain “stability”.

• Best shown by example:

• How to tell if your problem is stiff? By trial and error. Run a stiff (implicit) solver and see if it
mops the floor with a nonstiff (explicit) method.

3See Alex’s slides from last year!
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Methods for IVPs: Euler and concepts
• Forecasting step yk+1 = Φ(tk ; yk+1, yk , yk−1, . . . , y0; h; f)
• If Φ contains yk+1 then implicit, otherwise explicit

• Implicit schemes will require solving a system of eqs → computational overhead, but robust against
stiffness

• Explicit schemes can generate the forecast yk+1 by iteration, → cheap

• Simplest case: (forward) Euler
yk+1 = yk + hk f(t, yk)

• Standard analysis in terms of local error, err: error accumulated in a single step

• If erri ∼ O(hp+1), it’s a pth (convergence)
order method

• Euler has O(h2) local error (compare with
Taylor series) → first order

• Why does order matter? Determines how
much the method needs to reduce its
stepsize to match a given tolerance

• How to get higher order? log h

lo
g

er
r

tol

∝ h5 ∝ h9
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Methods for IVPs: Generalisations of Euler, fixed order schemes

• Common strategy in marching methods:
Taylor expand y(t) around tk to get
y(tk + h) up to the pth term

• This requires derivatives: y′ = f, but y′′

and above not known
• Various strategies for getting derivative

information:
• Runge–Kutta: use intermediate

f-evaluations, f(tk + ci h, yi ) for
i = 1, . . . s for an s-stage method

• use Jacobian, Jij = ∂fi/∂yj
• Linear multistep: store and re-use old y

(& y′) evaluations: yk−1, yk−2, . . .

• “Grand unified theory”: general linear
methods, see Butcher 2016
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Methods for IVPs: Accelerated low order methods
• What if very high order is needed (and the system is large)? Extrapolation, deferred correction

methods.
• General strategies:

• Treat solution as analytic function of stepsize h. Probe at various values of h and extrapolate. →
Richardson extrapolation (e.g. Bulirsch-Stoer)

• Take a step with a low-order method. Write down ODE that its error (residual) satisfies, and solve it
with the same method. Iterate. → Classical deferred correction.

• Spectral deferred correction: Dutt et al. 2000
• Spectral accuracy, arbitrarily high order

Definition 2.
A spectral method is one whose conver-
gence rate is as fast as the smoothness
of the solution allows.

• Underlying low order method could be
explicit or implicit

• Recommended for smooth, stiff, large
systems

log evaluations, log N

lo
g

er
ro

r

tol

O(N−p)
O(c−N)
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Special IVPs: oscillations /1

• Consider the IVP
y ′′(t) + 2γ(t)y ′(t) + ω2(t)y(t) = 0, t ∈ [ti , tf ],

with y(ti) = yi , y ′(ti) = y ′
i

• Even if ω(t), γ(t) are smooth, all standard (read: polynomial-based) methods need O(ω)
steps/intervals/runtime → slow

• Methods based on asymptotic, non-convergent series may be efficient, offer O(1) runtime
• Asymptotic: cannot keep adding terms to make series more accurate
• But usually converges for a while. For these methods, ∆ = O(ω−k), where k is # of terms

• Available methods with code:
• fixed-order (fixed k) WKB expansion: Agocs et al. 2020 (oscode, Python, C++), Körner et al. 2022

(WKB-marching, MATLAB)
• not asymptotics (but valid only at large ω): Bremer 2018 (phase function method, Fortran90)
• adaptive, spectral asymptotics: Agocs and Barnett 2022 (Python)
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Special IVPs: oscillations /2
y ′′ + λ2q(t)y = 0, q(t) = 1− t2 cos(3t), t ∈ [−1, 1]
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Special IVPs: Hamiltonian systems
• Special classes of problems: need e.g.

conserved quantity or time-reversibility

• Common in physics: N-body systems,
molecular dynamics, orbital dynamics,
mechanical systems

• Objects involved obey Hamiltonian dynamics
with q, p are position and momentum

dp
dt = −∂H(p, q)

∂q ,
dq
dt =

∂H(p, q)
∂p .

• Philosophy: output of numerical method is
satisfactory if it solves a nearby Hamiltonian
problem

• Methods: leapfrog, symplectic integrators

• Programming tools: REBOUND and references
therein
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https://rebound.readthedocs.io/en/latest/


Programming tools

• Scientific Computing Template
Library (SCTL)

• Benchmarks game

• Comparison of methods
callable from Julia

• Comparison of methods from
C++ libraries (Sundials, GSL,
boost):

• Guide to available
mathematical software
(GAMS)

• NodePy
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https://github.com/dmalhotra/SCTL
https://github.com/dmalhotra/SCTL
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://github.com/SciML/SciMLBenchmarks.jl
https://github.com/SciML/SciMLBenchmarks.jl
https://gams.nist.gov/Background.html
https://gams.nist.gov/Background.html
https://gams.nist.gov/Background.html
https://github.com/ketch/nodepy/blob/master/examples/Internal_stability.ipynb


Methods for BVPs

• Beware: κBVP 6= κIVP!

• κBVP can be computed, see Corless and Fillion 2013.
• General ideas:

• Shooting:
1. Solve associated IVP instead from ti from a guess of i.c. Compute solution at tf .
2. Embed in a root finding process until solution satisfies boundary conditions at tf .

• Collocation:
1. Approximate the solution in a finite-dimensional space (e.g. space of some polynomials up to a given degree).
2. Require that the ODE is satisfied exactly at a finite number of points (nodes). This gives a set of conditions.
3. Solve to give the finite-dimensional representation of the solution.
4. Compute residual; iterate (over dimensions of solution space) until satisfactory.

• Tricky part: choosing the right mesh of nodes (e.g. Equispaced v Chebyshev) and refining the mesh.

• Example: Chebyshev spectral method4

• Codes: MATLAB, Python, Julia: Chebfun, Chebop, Dedalus, Approxfun
• Reading: Boyd 2001; Trefethen 2000, 2019

4See Dan Fortunato’s talk from Fω(α + m)! 2021.
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chebfun.org
https://dedalus-project.org
https://github.com/JuliaApproximation/ApproxFun.jl
https://danfortunato.com/talks/ModernSpectralMethods.pdf
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