Numerical solution of ODEs: A practical guide

Fruzsina Agocs

 $F_{\omega}(\alpha + m)!$, 2022

Overview

Outline

Preliminaries The residual Conditioning or sensitivity Stability and stiffness

Methods for IVPs Basic concepts Map of fixed order methods Accelerated low order methods Special cases: oscillations and Hamiltoninan systems Programming tools

Methods for BVPs

What this talk is about

- Hopefully this talk will help you:
 - Assess whether a numerical solution is satisfactory,
 - · Evaluate what accuracy you can reasonably demand,
 - Know what methods exist and where to look for an *implementation* and *further reading*.
- I'll also highlight some powerful methods developed by CCM colleagues
- Check out Alex Barnett's talk from $F_{\omega}(\alpha + m)!$ 2021 for computational preliminaries (finite-precision arithmetic, convergence/complexity of algorithms, etc.)
- Based on the books Corless and Fillion 2013; Butcher 2016; Press et al. 2007; Hairer et al. 1993a,b and many references therein

Notation and some definitions

• System of ODEs in standard form w.l.o.g. :

$$\mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}(t)) \tag{1}$$

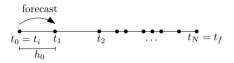
- Only one independent variable, t, therefore ODE
- Solve on the solution interval $t \in [t_i, t_f]$
- $\mathbf{y}:\mathbb{R} \to \mathbb{C}^n$ is solution vector with the dependent variables as its n components
- $\mathbf{f}: \mathbb{R} \times \mathbb{C}^n \to \mathbb{C}^n$ is vector-valued function (RHS)
- Can always write higher order ODE (containing $\frac{d^m y}{dt^n} := y^{(m)}$ with m > 1) in standard form: let $y_i = y^{(i)}$
- Can always write eq. (1) in *autonomous* form: f(t, y(t)) = f(y), by setting $y_0 = t$
- Initial (IVP) or boundary value problem (BVP):

 $\mathbf{y}(t_i) = \mathbf{y}_i$ IVP: all conditions specified at one value of t, e.g. $\mathbf{y}_0(t_i) = \mathbf{a}$, $\mathbf{y}_0(t_f) = \mathbf{b}$ for $\mathbf{y} = [\mathbf{y}, \mathbf{y}']$ BVP: conditions specified at different t-values

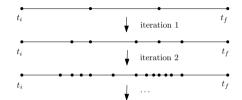
• Approximate numerical solution $\hat{\mathbf{y}}(t)$ and reference solution $\mathbf{y}(t)$. How close is $\hat{\mathbf{y}}(t)$ to $\mathbf{y}(t)$?

IVP v BVP solvers, in a nutshell

• In practice, similar to call and assess, but algorithms qualitatively different



- Timestepping / marching: increment indep variable, use ODE to compute associated increment in dep variables
- Size of steps, *h*(*t*), determined by estimate of local error
- Controller adapts stepsize to keep local error beneath tolerance



- No preferred direction for independent variable
- Mesh (usually) start off uniform
- Mesh computed simultaneously with the solution, refined iteratively

When to trust a numerical solution?

- Reference solution $\mathbf{y}(t)$ satisfies ODE exactly, $\mathbf{y}'(t) \mathbf{f}(t, \mathbf{y}(t)) = 0$. But $\mathbf{y}(t)$ is not known!
- Instead, we have $\hat{\mathbf{y}},$ for which $\widehat{\mathbf{y}}'(t) \mathbf{f}(t, \widehat{\mathbf{y}}(t)) = \Delta(t)$
 - Δ(t) is the absolute residual,
 - $\delta_i(t) = rac{\widehat{\mathbf{y}}_i' \mathbf{f}_i(t, \widehat{\mathbf{y}})}{\mathbf{f}_i(t, \widehat{\mathbf{y}})}$ is the relative residual,
 - We can always compute the residual¹! It is a way to assess the quality of the solution $\hat{y}(t)$.
- $\widehat{\mathbf{y}}(t)$ is an exact solution of the modified, *nearby* problem

$$\widehat{\mathbf{y}}'(t) = \mathbf{f}(t, \widehat{\mathbf{y}}(t)) + \Delta(t)$$

- How nearby? Controlled by the *tolerance* param supplied to the num method.
- $\Delta(t)$ is a perturbation of f, which is an input parameter to our IVP
- Residual is therefore a *backward error*²
- Forward error is the difference $\mathbf{y}(t) \hat{\mathbf{y}}(t)$

¹It's not free: one eval of $\Delta(t)$ costs one *f*-evaluation.

²Specifically, a perturbation in f. But one may consider perturbing y_0 , or both.

Conditioning or sensitivity

- How are the backward and forward errors related? Via the conditioning of the problem.
 - Alternatively: how do perturbations in the input affect the output?

Definition 1.

The condition number, κ , expresses the sensitivity of the problem to perturbations in the input parameters.

- Forward error $\leq \kappa \times$ backward error $= \kappa \times \Delta$
- How to find κ ? A crude practical estimate (Corless and Fillion 2013):
 - 1. Solve IVP with two, very different tolerance settings. Get $\hat{y}_1(t), \hat{y}_2(t)$. They satisfy $y'_1 = f(t, y_1) + \Delta_1$ and $y'_2 = f(t, y_2) + \Delta_2$.
 - 2. Calculate their residuals, Δ_1, Δ_2 , and assume (check) $\Delta_1 \gg \Delta_2$.
 - 3. κ is then at least $||\hat{\mathbf{y}}_1(t) \hat{\mathbf{y}}_2(t)||/||\Delta_1||$.
- Conditioning is a property of the IVP alone.
- The best accuracy you can hope to achieve is $\kappa imes arepsilon_{\mathsf{machine}}$, independent of the numerical method.

Stability and stiffness

- How can we be sure that the numerical method gives the best achievable accuracy? By using a (backwards) stable algorithm.³
- But, "stability" in IVP methods is used for a different phenomenon, in relation to stiffness.
 - No generally accepted rigorous definition
 - But there exist extremely well-conditioned problems which certain (*explicit*) methods take unexpectedly long to solve, while others (*implicit*) can handle
 - Stiff problems have smooth solutions but explicit methods have to reduce their stepsize, not for accuracy but to maintain "stability".
- Best shown by example:
- How to tell if your problem is stiff? By trial and error. Run a stiff (implicit) solver and see if it mops the floor with a nonstiff (explicit) method.

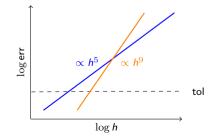
³See Alex's slides from last year!

Methods for IVPs: Euler and concepts

- Forecasting step $\mathbf{y}_{k+1} = \Phi(t_k; \mathbf{y}_{k+1}, \mathbf{y}_k, \mathbf{y}_{k-1}, \dots, \mathbf{y}_0; h; \mathbf{f})$
- If Φ contains \mathbf{y}_{k+1} then *implicit*, otherwise *explicit*
 - \bullet Implicit schemes will require solving a system of eqs \rightarrow computational overhead, but robust against stiffness
 - Explicit schemes can generate the forecast \mathbf{y}_{k+1} by iteration, \rightarrow cheap
- Simplest case: (forward) Euler

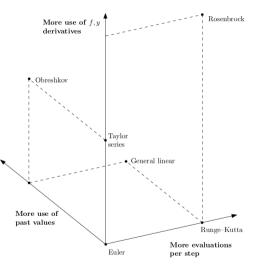
$$\mathbf{y}_{k+1} = \mathbf{y}_k + h_k \mathbf{f}(t, \mathbf{y}_k)$$

- Standard analysis in terms of local error, err: error accumulated in a single step
 - If err_i ~ O(h^{p+1}), it's a pth (convergence) order method
 - Euler has $\mathcal{O}(h^2)$ local error (compare with Taylor series) \rightarrow first order
 - Why does order matter? Determines how much the method needs to reduce its stepsize to match a given tolerance
 - How to get higher order?



Methods for IVPs: Generalisations of Euler, fixed order schemes

- Common strategy in marching methods: Taylor expand y(t) around t_k to get y(t_k + h) up to the pth term
- This requires derivatives: $\mathbf{y}'=\mathbf{f},$ but \mathbf{y}'' and above not known
- Various strategies for getting derivative information:
 - **Runge–Kutta**: use intermediate f-evaluations, $f(t_k + c_i h, y_i)$ for $i = 1, \dots s$ for an s-stage method
 - use Jacobian, $J_{ij} = \partial \mathbf{f}_i / \partial \mathbf{y}_j$
 - Linear multistep: store and re-use old y (& y') evaluations: $y_{k-1}, y_{k-2}, ...$
- "Grand unified theory": general linear methods, see Butcher 2016



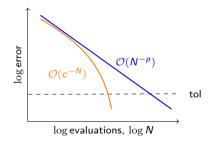
Methods for IVPs: Accelerated low order methods

- What if very high order is needed (and the system is large)? Extrapolation, deferred correction methods.
- General strategies:
 - Treat solution as analytic function of stepsize h. Probe at various values of h and extrapolate. \rightarrow Richardson extrapolation (e.g. Bulirsch-Stoer)
 - Take a step with a low-order method. Write down ODE that its error (residual) satisfies, and solve it with the same method. Iterate. \rightarrow Classical deferred correction.
- Spectral deferred correction: Dutt et al. 2000
 - Spectral accuracy, arbitrarily high order

Definition 2.

A spectral method is one whose convergence rate is as fast as the smoothness of the solution allows.

- Underlying low order method could be explicit or implicit
- Recommended for smooth, stiff, large systems



Special IVPs: oscillations /1

Consider the IVP

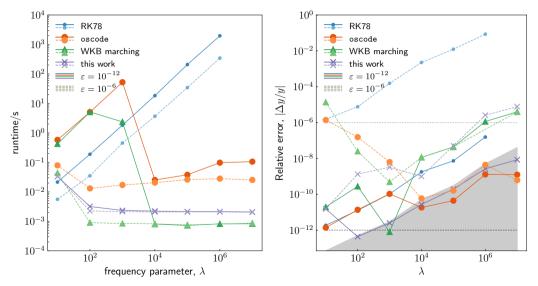
$$y''(t) + 2\gamma(t)y'(t) + \omega^2(t)y(t) = 0, \quad t \in [t_i, t_f],$$

with $y(t_i) = y_i$, $y'(t_i) = y'_i$

- Even if $\omega(t)$, $\gamma(t)$ are smooth, *all* standard (read: polynomial-based) methods need $\mathcal{O}(\omega)$ steps/intervals/runtime \rightarrow **slow**
- Methods based on *asymptotic*, non-convergent series may be efficient, offer $\mathcal{O}(1)$ runtime
 - Asymptotic: cannot keep adding terms to make series more accurate
 - But usually converges for a while. For these methods, $\Delta = \mathcal{O}(\omega^{-k})$, where k is # of terms
- Available methods with code:
 - fixed-order (fixed k) WKB expansion: Agocs et al. 2020 (oscode, Python, C++), Körner et al. 2022 (WKB-marching, MATLAB)
 - not asymptotics (but valid only at large ω): Bremer 2018 (phase function method, Fortran90)
 - adaptive, spectral asymptotics: Agocs and Barnett 2022 (Python)

Special IVPs: oscillations /2

$$y'' + \lambda^2 q(t)y = 0, \quad q(t) = 1 - t^2 \cos(3t), \quad t \in [-1, 1]$$



13 / 18

Special IVPs: Hamiltonian systems

- Special classes of problems: need e.g. conserved quantity or time-reversibility
- Common in physics: *N*-body systems, molecular dynamics, orbital dynamics, mechanical systems
- Objects involved obey Hamiltonian dynamics with q, p are position and momentum

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -\frac{\partial H(\mathbf{p},\mathbf{q})}{\partial \mathbf{q}}, \quad \frac{\mathrm{d}\mathbf{q}}{\mathrm{d}t} = \frac{\partial H(\mathbf{p},\mathbf{q})}{\partial \mathbf{p}}.$$

- Philosophy: output of numerical method is satisfactory if it solves a nearby *Hamiltonian* problem
- Methods: leapfrog, symplectic integrators
- Programming tools: **REBOUND** and references therein

REBOUND is an N-body integrator, i.e. a software package that can integrate the motion of particles under the influence of gravity. The particles can represent atars, planets, moons, ring or dust particles. REBOUND is very flexible and can be outomized to accurately and efficiently solve many problems in astrophysics.

Features

- · Symplectic integrators (WHFast, SEI, LEAPFROG, EOS)
- · High order symplectic integrators for integrating planetary systems (SABA, WH Kernel methods)
- · Hybrid symplectic integrators for planetary dynamics with close encounters (MERCURIUS)
- · High acouracy non-symplectic integrator with adaptive time-stepping (IAS15)
- · Support for collisional/granular dynamics, various collision detection routines
- + The code is written entirely in C, conforms to the ISO standard C99 and can be used as a thread-safe shared library
- · Easy-to-use Python module, installation in 3 words: pip install rebound
- · Extensive set of example problems in both C and Python
- + Real-time, 3D OpenGL visualization (C version)
- · Parallelized with OpenMP (for shared memory systems)
- · Parallelized with MPI is supported for some special use cases only (using an essential tree for gravity and collisions)
- + No dependencies on external libraries (use of OpenGL/glfw3 for visualization is optional)
- The code is 100% open-source. All features are inluced in the public repository on github
- No configuration is needed to run any of the example problems. Just type make #6 .../rebound in the problem directory to run them
- + Comes with standard ASCII or binary output routines
- Different modules are easily interchangeable at runtime

Programming tools

• Scientific Computing Template Library (SCTL) O Deltr. O his

- Benchmarks game
- Comparison of methods callable from Julia
- Comparison of methods from C++ libraries (Sundials, GSL, boost): 🐍
- Guide to available mathematical software (GAMS)
- NodePy

TL (Non)			when (i) + V for (i) + when it	The computer Language 22.01 Benchmarks Game				
s 🖪 Pultequesis 🛞 Asia	ra 🗄 Popela 🔘 Beauty 🖂 Inspi			The programs have been crowd sourced, contributed to the by an ever-changing self-selected group.				
P master + P 2 Insectors - C	D.L tro	Ge to the Add file * Code *	About Scientific Computing Template Library	Programs age. Language implementations add new features programs are needed to show the modern language.				
devailation. This modeline-explains computation for Intel contexes gathulines Means Update contexes peri restate Prix machine explains computation for Intel		K kalisides 28 disps ages (\$233 convents) T morelins ages convoler 28 disps ages	 Disatro Φ Aparte-2.0 terror Φ Aparte-2.0 terror Φ Aparte-2.0 terror Φ Aparte-2.0 terror 	Double-precision N-body simulation				
re cimplomat	Add more tools Add .clamp-format	T monitra ago 6 yeans ago	9 300	fannkuch - redux				
C ptiprov C LCEMSE C Nakolia	add spherical harmonics Create LACENSE Focusarings and campilation issues with	4 pers age 6-montes age GCC-3.5 3 montes age	Releases () by which () on the like	sequence spectral-norm				
C REACHEINE	Croate #EAO/rE.md	T movits age	Packages Ne packages published	Eigenvalue using the power method mandelbrot Generate Mandelbrot set portable				
SCTL: Scienti	fic Computing Templ	ate Library	Contributors 2	bitmap file				
(* Balances for a second difference	un 1886 first tig 19.00 ednam (skild)		deadharait Chuirya Intinona wenyandesisk xenyanharah	pidigits Streaming arbitrary-precision arithmetic				
			Languages	regex - redux Match DNA 8-mers and substitute				

Comparison Of Di	Terential Equ	ation Solver 1	otware											
Subject/Nem	MATLAS	Selfy	detaive	Otherandial Experience J	Svedich	Hoher	ODEPACK/Nellb /MAG	JICODE	PyOSTeel	FATODE	GH	80057	Holsenates	Maple
language	MATLAR	Python		Julia	C++ and Farlian	Fortion	Fedron	Tythen	Fythen	Forbon	с	C++	Notversation	Maple
Selection of Methods for ODEs	Fair	Poor	fair	Excellert	Geod	Fair	Good	Poor	tear	fak	Poor	Fair	Fair	fair
Efficiency*	tour	Poor****	Poor***	Excellert	Excellent	Good	Good	Good	Good	Good	fair -	fair (Fair	Good
Twenhobility	Pole	Poor	Good	Excellent	Excellent	Geed	Good	Pair .	Pair	Tok	tui -	Pair (Geed	Pole
Event Hondling	Good	Good	Fair (Excellert	Good"	Norm	Good"	****	fair:	Hara	Nora	Neva	Good	Good
Symbolic Calculation of Jacobians and Autodifferentiation	N 210	Nove	New	Excellert	Nove.	Name	Hora	No	No. 10	Nove	Nore	Nere	Excellent	Incolori
Complex Numbers	Excellent	Good	Fait	Good	Harm	Name	None	Nora	Nana	Hane	None	Good	Excellent	Excellent
Additory Precision Numbers	1.0.0	None	No.	Excedent	Nare	Name	None	Neva	Rese	Name	None	tacebord	Excelent	Excellent
Control Over Unear/Nonlinear Solvers	N 210	Poor	No.	Excellert	Excelent	Good	Depends on the solver	No. 4	No.00	Nane	Nore	Nce4	Fair	Nore
Built-in Porallelism	Name	None	Nore	Excellert	Excellent	Name	Hore	Note	None	Hore	None	Fair	Nane	Hone
Differential Algebraic Equation (DAE) Solvers	Good	Nora	Good	Excellent	Good	Excellent	Good	Nora	Fair	Good	Nore	No.44	Good	Good
Implicitly-Defined DAt Solvers	Geed	Nore	Incohered	nu:	Excellent	Nave	Excellent	No. 4	No. 10	Hore	Nora	No. 4	Geed	Norse
(00t) Solvers	Fair	Nore	Poer	Excelleri	Nore	Good	Feit (vie DOVERS)	Tak	No. 10	None	Nore	Nera	Good	Excellent
State Dependent 024 Solvers	tear	Nove	Poor	Excellent	Nove	Excellent	Good	Neve	Neve	Nove	None	Neve	Nese	Excellent
Nochestic Differential Equation (SDE) Solvers	tox	None	None	Excellert	None	None	Nore	Good	No.94	None	None	Note	fair	Poor

New

manic natterns

Methods for BVPs

- Beware: $\kappa_{BVP} \neq \kappa_{IVP}!$
- $\kappa_{\rm BVP}$ can be computed, see Corless and Fillion 2013.
- General ideas:
 - Shooting:
 - 1. Solve associated IVP instead from t_i from a guess of i.e. Compute solution at t_f .
 - 2. Embed in a root finding process until solution satisfies boundary conditions at t_f .
 - Collocation:
 - 1. Approximate the solution in a finite-dimensional space (e.g. space of some polynomials up to a given degree).
 - 2. Require that the ODE is satisfied exactly at a finite number of points (nodes). This gives a set of conditions.
 - 3. Solve to give the finite-dimensional representation of the solution.
 - 4. Compute residual; iterate (over dimensions of solution space) until satisfactory.
 - Tricky part: choosing the right mesh of nodes (e.g. Equispaced v Chebyshev) and refining the mesh.
- Example: Chebyshev spectral method⁴
 - Codes: MATLAB, Python, Julia: Chebfun, Chebop, Dedalus, Approxfun
 - Reading: Boyd 2001; Trefethen 2000, 2019

⁴See Dan Fortunato's talk from $F_{\omega}(\alpha + m)!$ 2021.

References I

- R. M. Corless and N. Fillion (2013). "A graduate introduction to numerical methods". In: AMC 10, p. 12.
- 🧧 J. C. Butcher (2016). Numerical methods for ordinary differential equations. John Wiley & Sons.
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007). *Numerical recipes 3rd edition: The art of scientific computing*. Cambridge university press.
- E. Hairer, S. P. Nørsett, and G. Wanner (1993a). Solving Ordinary Differential Equations I. Vol. 1. Springer Series in Computational Mathematics. Springer Berlin Heidelberg. ISBN: 978-3-642-08158-3.
- (1993b). Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer. ISBN: 9783540604525.
- A. Dutt, L. Greengard, and V. Rokhlin (2000). "Spectral deferred correction methods for ordinary differential equations". In: *BIT Numerical Mathematics* 40.2, pp. 241–266.
- F. J. Agocs, W. J. Handley, A. N. Lasenby, and M. P. Hobson (2020). "Efficient method for solving highly oscillatory ordinary differential equations with applications to physical systems". In: *Physical Review Research* 2.1, 013030 *****.
- J. Körner, A. Arnold, and K. Döpfner (2022). "WKB-based scheme with adaptive step size control for the Schrödinger equation in the highly oscillatory regime". In: *Journal of Computational and Applied Mathematics* 404, p. 113905.
- J. Bremer (2018). "On the numerical solution of second order ordinary differential equations in the high-frequency regime". In: *Applied and Computational Harmonic Analysis* 44.2, pp. 312–349.

References II

- F. J. Agocs and A. H. Barnett (2022). "An adaptive spectral method for oscillatory second-order linear ODEs with frequency-independent cost". In: *in prep*.
- J. P. Boyd (2001). Chebyshev and Fourier spectral methods. Courier Corporation.
- L. N. Trefethen (2000). Spectral methods in MATLAB. SIAM.
- 📄 (2019). Approximation Theory and Approximation Practice, Extended Edition. SIAM.