
Solving ODEs in a Bayesian Model

Fω(α+m)! 2022

Charles Margossian

I Outline:

ODE-based Bayesian models
Solving ODEs across the parameter space
Propagating derivatives through ODEs

Integrating mechanistic models inside probabilistic models

Goal: learn the latent variables via p(θ | y).

Integrating mechanistic models inside probabilistic models

I Goal: learn the latent variables via p(θ | y).

Example 1: “textbook” model of planetary motion1

I k: star-planet gravitational
interaction

I position q(t, k) and momentum
p(t, k) solve Hamilton’s equations.

I observations: y(t) = q(t, k) + ε,
with ε ∼ normal(0, σ2).

1: Gelman et al. (2020) Bayesian Workflow, preprint

Example 2: SEIR model for Covid-19 to estimate mortality rate2,3

Mechanistic model:

ODE model for disease
transmission, stratified by age.

Probabilistic model:

Combine multiple (biased) data
sources
Use prior on symptomatic rate for
identifiability

2: Riou et al. (2020) Estimation of SARS-CoV-2 mortality during the early stages of a pandemic,
PLOS Medicine

3: Grinsztajn et al. (2021) Bayesian workflow for disease transmission, Statistics in Medicine

Example 2: SEIR model for Covid-19 to estimate mortality rate2,3

Mechanistic model:

ODE model for disease
transmission, stratified by age.

Probabilistic model:

Combine multiple (biased) data
sources
Use prior on symptomatic rate for
identifiability

2: Riou et al. (2020) Estimation of SARS-CoV-2 mortality during the early stages of a pandemic,
PLOS Medicine

3: Grinsztajn et al. (2021) Bayesian workflow for disease transmission, Statistics in Medicine

Example 3: Population pharmacokinetic model4,5

Pharmacokinetic model: Hierarchical model:

4: Wakefield (1996) The Bayesian analysis of pop. PK models JASA

5: M et al. (2022) Pharmacometrics modeling using Stan and Torsten... CPT: Pharmacometrics

& Systems Pharmacology

Bayesian inference: probing p(θ | y) with MCMC

I Probabilistic programming languages are expressive and allow us to specify
ODE-based likelihoods (e.g. Stan, Turing, TensorFlow Probability, ...)

I Across the parameter space:

Evaluate the likelihood, log p(y | θ).
Evaluate the gradient, ∇θ log p(y | θ).

Bayesian inference: probing p(θ | y) with MCMC

I Probabilistic programming languages are expressive and allow us to specify
ODE-based likelihoods (e.g. Stan, Turing, TensorFlow Probability, ...)

I Across the parameter space:

Evaluate the likelihood, log p(y | θ).
Evaluate the gradient, ∇θ log p(y | θ).

I Outline:

ODE-based Bayesian models
Solving ODEs across the parameter space
Propagating derivatives through ODEs

Model of planetary motion

chain run time (s)
1 10.56
2 3.40
3 4433.93
4 181.98

Model of planetary motion

chain run time (s)
1 10.56
2 3.40
3 4433.93
4 181.98

Model of planetary motion

q′(t) =
p

m

p′(t) = − k

r3
(q − q�)

I use a numerical integrator.

e.g. Euler’s method (for simplicity):

u(t+ ε)← u(t) + εu′(t+ ε)

Error: O(ε2|u′′(t)|)
In practice, set the error tolerance and tune ε.

Model of planetary motion

q′(t) =
p

m

p′(t) = − k

r3
(q − q�)

I use a numerical integrator.

e.g. Euler’s method (for simplicity):

u(t+ ε)← u(t) + εu′(t+ ε)

Error: O(ε2|u′′(t)|)
In practice, set the error tolerance and tune ε.

Posterior predictive checks

log p(y | θ) = K + 1
2σ2

∑τ
t=t0

(u(t)− yt)2

Potential Fixes

I Use a stronger prior (still multimodal)

I Correct samples in post-processing step

I Don’t rely on default initializations!
Draw inits from prior.

I Use “global” algorithms:

tempering

MCMC with normalizing flow6,∗

“momaVI”

6: Gabrié et al (2022) Adaptive Monte Carlo augmented with normalizing flows, PNAS
∗: Kaze (2022), FlowMC, https://github.com/kazewong/flowMC

log p(y | θ) = K + 1
2σ2

∑τ
t=t0

(u(t)− yt)2

Potential Fixes

I Use a stronger prior (still multimodal)

I Correct samples in post-processing step

I Don’t rely on default initializations!
Draw inits from prior.

I Use “global” algorithms:

tempering

MCMC with normalizing flow6,∗

“momaVI”

6: Gabrié et al (2022) Adaptive Monte Carlo augmented with normalizing flows, PNAS
∗: Kaze (2022), FlowMC, https://github.com/kazewong/flowMC

log p(y | θ) = K + 1
2σ2

∑τ
t=t0

(u(t)− yt)2

Potential Fixes

I Use a stronger prior (still multimodal)

I Correct samples in post-processing step

I Don’t rely on default initializations!
Draw inits from prior.

I Use “global” algorithms:

tempering

MCMC with normalizing flow.

“momaVI”

What makes a good initialization for MCMC?

I Draw from the prior, p(θ).

I Draw from an approximation
q(θ) ≈ p(θ | y), e.g. using a

pathfinder.7

I Draw overdispersed initializations to
make convergence diagnostics such as
R̂ reliable.8

I How much overdispersion do we need?
For unimodal target, the initial
variance must be lower-bounded by a
linear function of the initial squared
bias.9

7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint
8: Gelman et al. (2013) Bayesian Data Analysis, textbook

9: M et al. (2022) Nested R̂: assessing convergence, preprint

What makes a good initialization for MCMC?

I Draw from the prior, p(θ).

I Draw from an approximation
q(θ) ≈ p(θ | y), e.g. using a

pathfinder.7

I Draw overdispersed initializations to
make convergence diagnostics such as
R̂ reliable.8

I How much overdispersion do we need?
For unimodal target, the initial
variance must be lower-bounded by a
linear function of the initial squared
bias.9

7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint
8: Gelman et al. (2013) Bayesian Data Analysis, textbook

9: M et al. (2022) Nested R̂: assessing convergence, preprint

What makes a good initialization for MCMC?

I Draw from the prior, p(θ).

I Draw from an approximation
q(θ) ≈ p(θ | y), e.g. using a

pathfinder.7

I Draw overdispersed initializations to
make convergence diagnostics such as
R̂ reliable.8

I How much overdispersion do we need?
For unimodal target, the initial
variance must be lower-bounded by a
linear function of the initial squared
bias.9

7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint
8: Gelman et al. (2013) Bayesian Data Analysis, textbook

9: M et al. (2022) Nested R̂: assessing convergence, preprint

What makes a good initialization for MCMC?

I Draw from the prior, p(θ).

I Draw from an approximation
q(θ) ≈ p(θ | y), e.g. using a

pathfinder.7

I Draw overdispersed initializations to
make convergence diagnostics such as
R̂ reliable.8

I How much overdispersion do we need?
For unimodal target, the initial
variance must be lower-bounded by a
linear function of the initial squared
bias.9

7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint
8: Gelman et al. (2013) Bayesian Data Analysis, textbook

9: M et al. (2022) Nested R̂: assessing convergence, preprint

Study on Michaelis-Menten Pharmacokinetic model10

I Which numerical integrator should we use in Stan?

RK4th/5th (non-stiff solver)
BDF (stiff solver)

BDF RK45

0 20 40 60 80 0 20 40 60 80

2

4

6

8

Run time (s)

C
ha

in
 ID

phase
sampling
phase 3
phase 2
phase 1

I Poses a challenge when running many chains in parallel (ongoing work with
Stanislas Du Ché).

10: M et al. Solving ODEs in a Bayesian context poster at PAGE.

Study on Michaelis-Menten Pharmacokinetic model10

I Which numerical integrator should we use in Stan?

RK4th/5th (non-stiff solver)
BDF (stiff solver)

BDF RK45

0 20 40 60 80 0 20 40 60 80

2

4

6

8

Run time (s)
C

ha
in

 ID

phase
sampling
phase 3
phase 2
phase 1

I Poses a challenge when running many chains in parallel (ongoing work with
Stanislas Du Ché).

10: M et al. Solving ODEs in a Bayesian context poster at PAGE.

Study on Michaelis-Menten Pharmacokinetic model10

I Which numerical integrator should we use in Stan?

RK4th/5th (non-stiff solver)
BDF (stiff solver)

BDF RK45

0 20 40 60 80 0 20 40 60 80

2

4

6

8

Run time (s)
C

ha
in

 ID

phase
sampling
phase 3
phase 2
phase 1

I Poses a challenge when running many chains in parallel (ongoing work with
Stanislas Du Ché).

10: M et al. Solving ODEs in a Bayesian context poster at PAGE.

Study on Michaelis-Menten Pharmacokinetic model10

I Which numerical integrator should we use in Stan?

RK4th/5th (non-stiff solver)
BDF (stiff solver)

BDF RK45

0 20 40 60 80 0 20 40 60 80

2

4

6

8

Run time (s)
C

ha
in

 ID

phase
sampling
phase 3
phase 2
phase 1

I Poses a challenge when running many chains in parallel (ongoing work with
Stanislas Du Ché).

10: M et al. Solving ODEs in a Bayesian context poster at PAGE.

I Outline:

ODE-based Bayesian models
Solving ODEs across the parameter space
Propagating derivatives through ODEs

Need ∇θ log p(θ | y) = ∇θ [log p(y | θ) + log p(θ)].

log p(y | θ) = f(u(θ), θ)

df

dθ
=
∂f

∂θ
+

τ∑
t=t0

∂f

∂u(t)

du(t)

dθ

I Hidden in this equation is a Fréchet derivative between f and u, i.e. between
two infinite-dimensional objects. Such a derivative cannot be stored on a finite
computer, so we need to make sure we don’t compute it.11

11M and Betancourt (2022) Efficient automatic differentiation of implicit functions, preprint.

Need ∇θ log p(θ | y) = ∇θ [log p(y | θ) + log p(θ)].

log p(y | θ) = f(u(θ), θ)

df

dθ
=
∂f

∂θ
+

τ∑
t=t0

∂f

∂u(t)

du(t)

dθ

I Hidden in this equation is a Fréchet derivative between f and u, i.e. between
two infinite-dimensional objects. Such a derivative cannot be stored on a finite
computer, so we need to make sure we don’t compute it.11

11M and Betancourt (2022) Efficient automatic differentiation of implicit functions, preprint.

Need ∇θ log p(θ | y) = ∇θ [log p(y | θ) + log p(θ)].

log p(y | θ) = f(u(θ), θ)

df

dθ
=
∂f

∂θ
+

τ∑
t=t0

∂f

∂u(t)

du(t)

dθ

I Hidden in this equation is a Fréchet derivative between f and u, i.e. between
two infinite-dimensional objects. Such a derivative cannot be stored on a finite
computer, so we need to make sure we don’t compute it.11

11M and Betancourt (2022) Efficient automatic differentiation of implicit functions, preprint.

Need ∇θ log p(θ | y) = ∇θ [log p(y | θ) + log p(θ)].

log p(y | θ) = f(u(θ), θ)

df

dθ
=
∂f

∂θ
+

τ∑
t=t0

∂f

∂u(t)

du(t)

dθ

I Hidden in this equation is a Fréchet derivative between f and u, i.e. between
two infinite-dimensional objects. Such a derivative cannot be stored on a finite
computer, so we need to make sure we don’t compute it.11

11M and Betancourt (2022) Efficient automatic differentiation of implicit functions, preprint.

Automatic differentiation of implicit functions

(1) Direct method

I Treat u as a sequence of explicit
functions, u(t+ ε) ≈ u(t) + εu′(t).

(2) Forward method

I Write an ODE solved by du/dθ(t).

(3) Adjoint method

I Write an ODE solved by
∂f/∂u(t) · du/dθ(t).

Automatic differentiation of implicit functions

(1) Direct method

I Treat u as a sequence of explicit
functions, u(t+ ε) ≈ u(t) + εu′(t).

(2) Forward method

I Write an ODE solved by du/dθ(t).

(3) Adjoint method

I Write an ODE solved by
∂f/∂u(t) · du/dθ(t).

Forward method

u′(t) = g(t, u, ϑ) ∈ RN

I Let K be the dimension of input which depend on θ

ϑ: explicit ODE parameters
u0: initial condition if parameter dependent → Can rewrite the ODE as a
deviation from a baseline and take u0 = 0.
time steps: t0, t1, · · ·

du

dϑ
(t) =

∫ τ

t0

dt
du′

dϑ
(t)

I Solve a system of N +NK coupled ODEs.

I Our goal should be to minimize K.

In Covid-19 model, went from K = 62 to K = 5, meaning solving 3596 to 290
ODEs3 → 3 days to 2 hours to fit model.

3: Grinsztajn et al. (2021) Bayesian workflow for disease transmission, Statistics in Medicine

Forward method

u′(t) = g(t, u, ϑ) ∈ RN

I Let K be the dimension of input which depend on θ

ϑ: explicit ODE parameters
u0: initial condition if parameter dependent → Can rewrite the ODE as a
deviation from a baseline and take u0 = 0.
time steps: t0, t1, · · ·

du

dϑ
(t) =

∫ τ

t0

dt
du′

dϑ
(t)

I Solve a system of N +NK coupled ODEs.

I Our goal should be to minimize K.

In Covid-19 model, went from K = 62 to K = 5, meaning solving 3596 to 290
ODEs3 → 3 days to 2 hours to fit model.

3: Grinsztajn et al. (2021) Bayesian workflow for disease transmission, Statistics in Medicine

Forward method

u′(t) = g(t, u, ϑ) ∈ RN

I Let K be the dimension of input which depend on θ

ϑ: explicit ODE parameters
u0: initial condition if parameter dependent → Can rewrite the ODE as a
deviation from a baseline and take u0 = 0.
time steps: t0, t1, · · ·

du

dϑ
(t) =

∫ τ

t0

dt
du′

dϑ
(t)

I Solve a system of N +NK coupled ODEs.

I Our goal should be to minimize K.

In Covid-19 model, went from K = 62 to K = 5, meaning solving 3596 to 290
ODEs3 → 3 days to 2 hours to fit model.

3: Grinsztajn et al. (2021) Bayesian workflow for disease transmission, Statistics in Medicine

Adjoint method

I Construct an ODE which directly returns

δ† · du

dθ
(t).

I Requires solving the ODE forward and backward in time.

I Solve a total of 2N +K coupled ODEs (rather than N +NK).

I Eligibly method is old;12 popularized in Machine Learning by Neural ODEs.13

I Better scaling but not always better performance than forward method.14

12: Pontryagin et al (1963) The Mathematical Theory of Point Processes, textbook
13: Chen et al (2018) Neural Ordinary Differential Equations, NeurIPS

14: Rackauckas et al (2021) A comparison of Autodiff [...] for derivatives of differential equations

IEEE HPEC

Arsenal of tools

I Prob languages which support
ODEs:

Stan:

supports three ODE integrators
(RK45, BDF, Adams).

supports forward and adjoint
differentiation methods.

supports matrix exponential for
linear ODEs.

supports several implicit
functions.

Torsten:

extends Stan for
pharmacometrics modeling.

solve ODEs within a clinical
event schedule.

TensorFlow Probability

tip: use it with JAX, rather
than TensorFlow.
ODE support exists but is
limited.
support for finite-dim implicit
functions seems quite good.

Turing

uses Julia
I have not tried it, but I
suspect it’s good.

I Questions? Comments?

cmargossian@flatironinstitute.org

CCM third floor!

Arsenal of tools

I Prob languages which support
ODEs:

Stan:

supports three ODE integrators
(RK45, BDF, Adams).

supports forward and adjoint
differentiation methods.

supports matrix exponential for
linear ODEs.

supports several implicit
functions.

Torsten:

extends Stan for
pharmacometrics modeling.

solve ODEs within a clinical
event schedule.

TensorFlow Probability

tip: use it with JAX, rather
than TensorFlow.
ODE support exists but is
limited.
support for finite-dim implicit
functions seems quite good.

Turing

uses Julia
I have not tried it, but I
suspect it’s good.

I Questions? Comments?

cmargossian@flatironinstitute.org

CCM third floor!

	

