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Integrating mechanistic models inside probabilistic models

Goal: learn the latent variables via p(θ | y).
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Example 1: “textbook” model of planetary motion1

I k: star-planet gravitational
interaction

I position q(t, k) and momentum
p(t, k) solve Hamilton’s equations.

I observations: y(t) = q(t, k) + ε,
with ε ∼ normal(0, σ2).

1: Gelman et al. (2020) Bayesian Workflow, preprint



Example 2: SEIR model for Covid-19 to estimate mortality rate2,3

Mechanistic model:

ODE model for disease
transmission, stratified by age.

Probabilistic model:

Combine multiple (biased) data
sources
Use prior on symptomatic rate for
identifiability

2: Riou et al. (2020) Estimation of SARS-CoV-2 mortality during the early stages of a pandemic,
PLOS Medicine

3: Grinsztajn et al. (2021) Bayesian workflow for disease transmission, Statistics in Medicine
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Example 3: Population pharmacokinetic model4,5

Pharmacokinetic model: Hierarchical model:

4: Wakefield (1996) The Bayesian analysis of pop. PK models JASA

5: M et al. (2022) Pharmacometrics modeling using Stan and Torsten... CPT: Pharmacometrics

& Systems Pharmacology



Bayesian inference: probing p(θ | y) with MCMC

I Probabilistic programming languages are expressive and allow us to specify
ODE-based likelihoods (e.g. Stan, Turing, TensorFlow Probability, ...)

I Across the parameter space:

Evaluate the likelihood, log p(y | θ).
Evaluate the gradient, ∇θ log p(y | θ).
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Model of planetary motion

chain run time (s)
1 10.56
2 3.40
3 4433.93
4 181.98
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Model of planetary motion

q′(t) =
p

m

p′(t) = − k

r3
(q − q�)

I use a numerical integrator.

e.g. Euler’s method (for simplicity):

u(t+ ε)← u(t) + εu′(t+ ε)

Error: O(ε2|u′′(t)|)
In practice, set the error tolerance and tune ε.
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Posterior predictive checks



log p(y | θ) = K + 1
2σ2

∑τ
t=t0

(u(t)− yt)2

Potential Fixes

I Use a stronger prior (still multimodal)

I Correct samples in post-processing step

I Don’t rely on default initializations!
Draw inits from prior.

I Use “global” algorithms:

tempering

MCMC with normalizing flow6,∗

“momaVI”

6: Gabrié et al (2022) Adaptive Monte Carlo augmented with normalizing flows, PNAS
∗: Kaze (2022), FlowMC, https://github.com/kazewong/flowMC
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What makes a good initialization for MCMC?

I Draw from the prior, p(θ).

I Draw from an approximation
q(θ) ≈ p(θ | y), e.g. using a

pathfinder.7

I Draw overdispersed initializations to
make convergence diagnostics such as
R̂ reliable.8

I How much overdispersion do we need?
For unimodal target, the initial
variance must be lower-bounded by a
linear function of the initial squared
bias.9

7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint
8: Gelman et al. (2013) Bayesian Data Analysis, textbook

9: M et al. (2022) Nested R̂: assessing convergence, preprint
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Study on Michaelis-Menten Pharmacokinetic model10

I Which numerical integrator should we use in Stan?

RK4th/5th (non-stiff solver)
BDF (stiff solver)

BDF RK45
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I Poses a challenge when running many chains in parallel (ongoing work with
Stanislas Du Ché).

10: M et al. Solving ODEs in a Bayesian context poster at PAGE.
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Need ∇θ log p(θ | y) = ∇θ [log p(y | θ) + log p(θ)].

log p(y | θ) = f(u(θ), θ)

df

dθ
=
∂f

∂θ
+

τ∑
t=t0

∂f

∂u(t)

du(t)

dθ

I Hidden in this equation is a Fréchet derivative between f and u, i.e. between
two infinite-dimensional objects. Such a derivative cannot be stored on a finite
computer, so we need to make sure we don’t compute it.11

11M and Betancourt (2022) Efficient automatic differentiation of implicit functions, preprint.
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Automatic differentiation of implicit functions

(1) Direct method

I Treat u as a sequence of explicit
functions, u(t+ ε) ≈ u(t) + εu′(t).

(2) Forward method

I Write an ODE solved by du/dθ(t).

(3) Adjoint method

I Write an ODE solved by
∂f/∂u(t) · du/dθ(t).
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Forward method

u′(t) = g(t, u, ϑ) ∈ RN

I Let K be the dimension of input which depend on θ

ϑ: explicit ODE parameters
u0: initial condition if parameter dependent → Can rewrite the ODE as a
deviation from a baseline and take u0 = 0.
time steps: t0, t1, · · ·

du

dϑ
(t) =

∫ τ

t0

dt
du′

dϑ
(t)

I Solve a system of N +NK coupled ODEs.

I Our goal should be to minimize K.

In Covid-19 model, went from K = 62 to K = 5, meaning solving 3596 to 290
ODEs3 → 3 days to 2 hours to fit model.

3: Grinsztajn et al. (2021) Bayesian workflow for disease transmission, Statistics in Medicine



Forward method

u′(t) = g(t, u, ϑ) ∈ RN

I Let K be the dimension of input which depend on θ

ϑ: explicit ODE parameters
u0: initial condition if parameter dependent → Can rewrite the ODE as a
deviation from a baseline and take u0 = 0.
time steps: t0, t1, · · ·

du

dϑ
(t) =

∫ τ

t0

dt
du′

dϑ
(t)

I Solve a system of N +NK coupled ODEs.

I Our goal should be to minimize K.

In Covid-19 model, went from K = 62 to K = 5, meaning solving 3596 to 290
ODEs3 → 3 days to 2 hours to fit model.

3: Grinsztajn et al. (2021) Bayesian workflow for disease transmission, Statistics in Medicine



Forward method

u′(t) = g(t, u, ϑ) ∈ RN

I Let K be the dimension of input which depend on θ

ϑ: explicit ODE parameters
u0: initial condition if parameter dependent → Can rewrite the ODE as a
deviation from a baseline and take u0 = 0.
time steps: t0, t1, · · ·

du

dϑ
(t) =

∫ τ

t0

dt
du′

dϑ
(t)

I Solve a system of N +NK coupled ODEs.

I Our goal should be to minimize K.

In Covid-19 model, went from K = 62 to K = 5, meaning solving 3596 to 290
ODEs3 → 3 days to 2 hours to fit model.

3: Grinsztajn et al. (2021) Bayesian workflow for disease transmission, Statistics in Medicine



Adjoint method

I Construct an ODE which directly returns

δ† · du

dθ
(t).

I Requires solving the ODE forward and backward in time.

I Solve a total of 2N +K coupled ODEs (rather than N +NK).

I Eligibly method is old;12 popularized in Machine Learning by Neural ODEs.13

I Better scaling but not always better performance than forward method.14

12: Pontryagin et al (1963) The Mathematical Theory of Point Processes, textbook
13: Chen et al (2018) Neural Ordinary Differential Equations, NeurIPS

14: Rackauckas et al (2021) A comparison of Autodiff [...] for derivatives of differential equations

IEEE HPEC



Arsenal of tools

I Prob languages which support
ODEs:

Stan:

supports three ODE integrators
(RK45, BDF, Adams).

supports forward and adjoint
differentiation methods.

supports matrix exponential for
linear ODEs.

supports several implicit
functions.

Torsten:

extends Stan for
pharmacometrics modeling.

solve ODEs within a clinical
event schedule.

TensorFlow Probability

tip: use it with JAX, rather
than TensorFlow.
ODE support exists but is
limited.
support for finite-dim implicit
functions seems quite good.

Turing

uses Julia
I have not tried it, but I
suspect it’s good.

I Questions? Comments?

cmargossian@flatironinstitute.org

CCM third floor!
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