Solving ODEs in a Bayesian Model

 $F_{\omega}(\alpha + m)!$ 2022

Charles Margossian

\blacktriangleright Outline:

- ODE-based Bayesian models
- \bullet Solving ODEs across the parameter space
- Propagating derivatives through ODEs

Integrating mechanistic models inside probabilistic models

Integrating mechanistic models inside probabilistic models

Goal: learn the latent variables via $p(\theta | y)$.

Example 1: "textbook" model of planetary motion¹

- \blacktriangleright k: star-planet gravitational interaction
- position $q(t, k)$ and momentum $p(t, k)$ solve Hamilton's equations.
- between today observations: $y(t) = q(t, k) + \epsilon$, with $\epsilon \sim \text{normal}(0, \sigma^2)$.

1: Gelman et al. (2020) Bayesian Workflow, preprint

Example 2: SEIR model for Covid-19 to estimate mortality rate^{2,3}

Mechanistic model:

ODE model for disease transmission, stratified by age.

2: Riou et al. (2020) Estimation of SARS-CoV-2 mortality during the early stages of a pandemic, PLOS Medicine

Example 2: SEIR model for Covid-19 to estimate mortality rate^{2,3}

Mechanistic model:

ODE model for disease transmission, stratified by age. Probabilistic model:

- Combine multiple (biased) data sources
- Use prior on symptomatic rate for identifiability

2: Riou et al. (2020) Estimation of SARS-CoV-2 mortality during the early stages of a pandemic, PLOS Medicine

Example 3: Population pharmacokinetic model $4,5$

PERIPHERAL **COMPARTMENT** ϕ Organs and tissues. into which the drug gets absorbed slowly O θ_2 θ_M θ_1 \cdots CENTRAL ka **CL COMPARTMENT** GUT Blood and organs into which the drug $y_{1:n_2}^{(2)}$ $y_{1:n_M}^{(M)}$ $y_{1:n_1}^{(1)}$ gets absorbed rapidly \cdots

Pharmacokinetic model: Hierarchical model:

4: Wakefield (1996) The Bayesian analysis of pop. PK models JASA

5: M et al. (2022) Pharmacometrics modeling using Stan and Torsten... CPT: Pharmacometrics & Systems Pharmacology

Bayesian inference: probing $p(\theta | y)$ with MCMC

• Probabilistic programming languages are expressive and allow us to specify ODE-based likelihoods (e.g. Stan, Turing, TensorFlow Probability, ...)

Bayesian inference: probing $p(\theta | y)$ with MCMC

- \triangleright Probabilistic programming languages are expressive and allow us to specify ODE-based likelihoods (e.g. Stan, Turing, TensorFlow Probability, ...)
- ▶ Across the parameter space:
	- Evaluate the likelihood, $\log p(y | \theta)$.
	- Evaluate the gradient, $\nabla_{\theta} \log p(y | \theta)$.

\blacktriangleright Outline:

- ODE-based Bayesian models
- \bullet Solving ODEs across the parameter space
- Propagating derivatives through ODEs

$$
q'(t) = \frac{p}{m}
$$

$$
p'(t) = -\frac{k}{r^3}(q - q_\odot)
$$

$$
q'(t) = \frac{p}{m}
$$

$$
p'(t) = -\frac{k}{r^3}(q - q_\odot)
$$

 \blacktriangleright use a numerical integrator.

e.g. Euler's method (for simplicity):

$$
u(t+\epsilon) \leftarrow u(t) + \epsilon u'(t+\epsilon)
$$

- Error: $\mathcal{O}(\epsilon^2|u''(t)|)$
- In practice, set the error tolerance and tune ϵ .

Posterior predictive checks

$$
\log p(y | \theta) = K + \frac{1}{2\sigma^2} \sum_{t=t_0}^{\tau} (u(t) - y_t)^2
$$

Potential Fixes

 $6:$ Gabrié et al (2022) Adaptive Monte Carlo augmented with normalizing flows, PNAS ∗ : Kaze (2022), FlowMC, https://github.com/kazewong/flowMC

$$
\log p(y | \theta) = K + \frac{1}{2\sigma^2} \sum_{t=t_0}^{\tau} (u(t) - y_t)^2
$$

Potential Fixes

- \triangleright Use a stronger prior (still multimodal)
- Correct samples in post-processing step
- Don't rely on default initializations! Draw inits from prior.
- Use "global" algorithms:
	- tempering
	- MCMC with normalizing flow^{6,*}
	- "momaVI"

 $6:$ Gabrié et al (2022) Adaptive Monte Carlo augmented with normalizing flows, PNAS ∗ : Kaze (2022), FlowMC, https://github.com/kazewong/flowMC

$$
\log p(y | \theta) = K + \frac{1}{2\sigma^2} \sum_{t=t_0}^{\tau} (u(t) - y_t)^2
$$

Potential Fixes

- \triangleright Use a stronger prior (still multimodal)
- \triangleright Correct samples in post-processing step
- \triangleright Don't rely on default initializations! Draw inits from prior.
- \blacktriangleright Use "global" algorithms:
	- tempering
	- MCMC with normalizing flow.
	- "momaVI"

- 7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint
- 8: Gelman et al. (2013) Bayesian Data Analysis, textbook
- 9: M et al. (2022) Nested \hat{R} : assessing convergence, preprint

Draw from the prior, $p(\theta)$ **.**

^{7:} Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint

^{8:} Gelman et al. (2013) Bayesian Data Analysis, textbook

^{9:} M et al. (2022) Nested \hat{R} : assessing convergence, preprint

- I Draw from the prior, $p(\theta)$.
- I Draw from an approximation $q(\theta) \approx p(\theta | y)$, e.g. using a

7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint 8: Gelman et al. (2013) Bayesian Data Analysis, textbook 9: M et al. (2022) Nested \hat{R} : assessing convergence, preprint

- Draw from the prior, $p(\theta)$.
- Draw from an approximation $q(\theta) \approx p(\theta | y)$, e.g. using a

- Draw *overdispersed* initializations to make convergence diagnostics such as \widehat{R} reliable.⁸
- I How much overdispersion do we need? For unimodal target, the initial variance must be lower-bounded by a linear function of the initial squared hias⁹

7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint 8: Gelman et al. (2013) Bayesian Data Analysis, textbook 9: M et al. (2022) Nested \hat{R} : assessing convergence, preprint

- \triangleright Which numerical integrator should we use in Stan?
	- $RK4th/5th$ (non-stiff solver)
	- BDF (stiff solver)

- \triangleright Which numerical integrator should we use in Stan?
	- $RK4th/5th$ (non-stiff solver)
	- BDF (stiff solver)

- \triangleright Which numerical integrator should we use in Stan?
	- $RK4th/5th$ (non-stiff solver)
	- BDF (stiff solver)

- \triangleright Which numerical integrator should we use in Stan?
	- $RK4th/5th$ (non-stiff solver)
	- BDF (stiff solver)

I Poses a challenge when running many chains in parallel (ongoing work with Stanislas Du Ché).

\blacktriangleright Outline:

- ODE-based Bayesian models
- Solving ODEs across the parameter space
- Propagating derivatives through ODEs

 11 M and Betancourt (2022) *Efficient automatic differentiation of implicit functions*, preprint.

 $\log p(y | \theta) = f(u(\theta), \theta)$

¹¹M and Betancourt (2022) *Efficient automatic differentiation of implicit functions*, preprint.

 $\log p(y | \theta) = f(u(\theta), \theta)$

$$
\frac{\mathrm{d}f}{\mathrm{d}\theta} = \frac{\partial f}{\partial \theta} + \sum_{t=t_0}^{\tau} \frac{\partial f}{\partial u(t)} \frac{\mathrm{d}u(t)}{\mathrm{d}\theta}
$$

¹¹M and Betancourt (2022) *Efficient automatic differentiation of implicit functions*, preprint.

 $\log p(y | \theta) = f(u(\theta), \theta)$

$$
\frac{\mathrm{d}f}{\mathrm{d}\theta} = \frac{\partial f}{\partial \theta} + \sum_{t=t_0}^{\tau} \frac{\partial f}{\partial u(t)} \frac{\mathrm{d}u(t)}{\mathrm{d}\theta}
$$

Hidden in this equation is a Fréchet derivative between f and u, i.e. between two infinite-dimensional objects. Such a derivative cannot be stored on a finite computer, so we need to make sure we don't compute it.¹¹

¹¹M and Betancourt (2022) *Efficient automatic differentiation of implicit functions*, preprint.

Automatic differentiation of implicit functions

(1) Direct method

(2) Forward method

(3) Adjoint method

Automatic differentiation of implicit functions

Direct method

- \blacktriangleright Treat u as a sequence of explicit functions, $u(t + \epsilon) \approx u(t) + \epsilon u'(t)$.
- (2) Forward method
	- \blacktriangleright Write an ODE solved by $du/d\theta(t)$.
- (3) Adjoint method
	- ▶ Write an ODE solved by $\partial f / \partial u(t) \cdot du / d\theta(t)$.

Forward method

$$
u'(t) = g(t, u, \vartheta) \in \mathbb{R}^N
$$

I Let K be the dimension of input which depend on θ

- \bullet ϑ : explicit ODE parameters
- u_0 : initial condition if parameter dependent \rightarrow Can rewrite the ODE as a deviation from a baseline and take $u_0 = 0$.
- time steps: t_0, t_1, \cdots

Forward method

$$
u'(t) = g(t, u, \vartheta) \in \mathbb{R}^N
$$

In Let K be the dimension of input which depend on θ

- \bullet ϑ : explicit ODE parameters
- u_0 : initial condition if parameter dependent \rightarrow Can rewrite the ODE as a deviation from a baseline and take $u_0 = 0$.
- time steps: t_0, t_1, \cdots

$$
\frac{\mathrm{d}u}{\mathrm{d}\vartheta}(t) = \int_{t_0}^{\tau} \mathrm{d}t \frac{\mathrm{d}u'}{\mathrm{d}\vartheta}(t)
$$

 \triangleright Solve a system of $N + NK$ coupled ODEs.

Forward method

$$
u'(t) = g(t, u, \vartheta) \in \mathbb{R}^N
$$

In Let K be the dimension of input which depend on θ

- \bullet ϑ : explicit ODE parameters
- u_0 : initial condition if parameter dependent \rightarrow Can rewrite the ODE as a deviation from a baseline and take $u_0 = 0$.
- time steps: t_0, t_1, \cdots

$$
\frac{\mathrm{d}u}{\mathrm{d}\vartheta}(t) = \int_{t_0}^{\tau} \mathrm{d}t \frac{\mathrm{d}u'}{\mathrm{d}\vartheta}(t)
$$

- \triangleright Solve a system of $N + NK$ coupled ODEs.
- Our goal should be to minimize K .
	- In Covid-19 model, went from $K = 62$ to $K = 5$, meaning solving 3596 to 290 $ODEs^3 \rightarrow 3$ days to 2 hours to fit model.

Adjoint method

 \triangleright Construct an ODE which *directly* returns

$$
\delta^{\dagger} \cdot \frac{\mathrm{d}u}{\mathrm{d}\theta}(t).
$$

I Requires solving the ODE forward and backward in time.

- \triangleright Solve a total of $2N + K$ coupled ODEs (rather than $N + NK$).
- Eligibly method is old;¹² popularized in Machine Learning by Neural ODEs.¹³
- Better scaling but not always better performance than forward method.¹⁴

12: Pontryagin et al (1963) The Mathematical Theory of Point Processes, textbook 13: Chen et al (2018) Neural Ordinary Differential Equations, NeurIPS

14: Rackauckas et al (2021) A comparison of Autodiff [...] for derivatives of differential equations IEEE HPEC

Arsenal of tools

▶ Prob languages which support $ODEs.$

Stan:

- supports three ODE integrators (RK45, BDF, Adams).
- supports forward and adjoint differentiation methods.
- supports matrix exponential for linear ODEs.
- supports several implicit functions.

Torsten:

- extends Stan for pharmacometrics modeling.
- solve ODEs within a clinical event schedule.
- TensorFlow Probability
	- tip: use it with JAX, rather than TensorFlow.
	- ODE support exists but is limited.
	- support for finite-dim implicit functions seems quite good.

Turing

- uses Julia
- I have not tried it, but I suspect it's good.

Arsenal of tools

I Prob languages which support $ODEs.$

Stan:

- supports three ODE integrators (RK45, BDF, Adams).
- supports forward and adjoint differentiation methods.
- supports matrix exponential for linear ODEs.
- supports several implicit functions.
- Torsten:
	- extends Stan for pharmacometrics modeling.
	- solve ODEs within a clinical event schedule.
- TensorFlow Probability
	- tip: use it with JAX, rather than TensorFlow.
	- ODE support exists but is limited.
	- support for finite-dim implicit functions seems quite good.

Turing

- uses Julia
- I have not tried it, but I suspect it's good.
- ▶ Questions? Comments? cmargossian@flatironinstitute.org CCM third floor!