Solving ODEs in a Bayesian Model

 $F_{\omega}(\alpha+m)!$ 2022

Charles Margossian

▶ Outline:

- ODE-based Bayesian models
- Solving ODEs across the parameter space
- Propagating derivatives through ODEs

Integrating mechanistic models inside probabilistic models

Integrating mechanistic models inside probabilistic models

▶ Goal: learn the latent variables via $p(\theta \mid y)$.

Example 1: "textbook" model of planetary motion¹

- ► k: star-planet gravitational interaction
- ▶ position q(t, k) and momentum p(t, k) solve Hamilton's equations.
- observations: $y(t) = q(t, k) + \epsilon$, with $\epsilon \sim \text{normal}(0, \sigma^2)$.

1: Gelman et al. (2020) Bayesian Workflow, preprint

Example 2: SEIR model for Covid-19 to estimate mortality rate^{2,3}

Mechanistic model:

• ODE model for disease transmission, stratified by age.

2: Riou et al. (2020) Estimation of SARS-CoV-2 mortality during the early stages of a pandemic, PLOS Medicine

Example 2: SEIR model for Covid-19 to estimate mortality rate^{2,3}

Mechanistic model:

• ODE model for disease transmission, stratified by age.

Probabilistic model:

- Combine multiple (biased) data sources
- Use prior on symptomatic rate for identifiability

2: Riou et al. (2020) Estimation of SARS-CoV-2 mortality during the early stages of a pandemic, PLOS Medicine

Example 3: Population pharmacokinetic model^{4,5}

Pharmacokinetic model: Hierarchical model: PERIPHERAL COMPARTMENT φ Ornans and tissues into which the drug gets absorbed slowly 0 θ_2 θ_M θ_1 CENTRAL ka CLCOMPARTMENT GUT Blood and oroans into which the drug $y_{1:n_1}^{(1)}$ $y_{1:n_2}^{(2)}$ $y_{1:n_M}^{(M)}$ gets absorbed rapidly . . .

4: Wakefield (1996) The Bayesian analysis of pop. PK models JASA

5: M et al. (2022) *Pharmacometrics modeling using Stan and Torsten...* CPT: Pharmacometrics & Systems Pharmacology

Bayesian inference: probing $p(\theta \mid y)$ with MCMC

Probabilistic programming languages are expressive and allow us to specify ODE-based likelihoods (e.g. Stan, Turing, TensorFlow Probability, ...) Bayesian inference: probing $p(\theta \mid y)$ with MCMC

- Probabilistic programming languages are expressive and allow us to specify ODE-based likelihoods (e.g. Stan, Turing, TensorFlow Probability, ...)
- ► Across the parameter space:
 - Evaluate the likelihood, $\log p(y \mid \theta)$.
 - Evaluate the gradient, $\nabla_{\theta} \log p(y \mid \theta)$.

▶ Outline:

- ODE-based Bayesian models
- Solving ODEs across the parameter space
- Propagating derivatives through ODEs

chain	run time (s)
1	10.56
2	3.40
3	4433.93
4	181.98

chain	run time (s)
1	10.56
2	3.40
3	4433.93
4	181.98

$$q'(t) = \frac{p}{m}$$
$$p'(t) = -\frac{k}{r^3}(q - q_{\odot})$$

$$q'(t) = \frac{p}{m}$$
$$p'(t) = -\frac{k}{r^3}(q - q_{\odot})$$

use a numerical integrator.e.g. Euler's method (for simplicity):

$$u(t+\epsilon) \leftarrow u(t) + \epsilon u'(t+\epsilon)$$

- Error: $\mathcal{O}(\epsilon^2 |u''(t)|)$
- In practice, set the error tolerance and tune $\epsilon.$

Posterior predictive checks

$$\log p(y \mid \theta) = K + \frac{1}{2\sigma^2} \sum_{t=t_0}^{\tau} (u(t) - y_t)^2$$

Potential Fixes

⁶: Gabrié et al (2022) Adaptive Monte Carlo augmented with normalizing flows, PNAS
*: Kaze (2022), FlowMC, https://github.com/kazewong/flowMC

$$\log p(y \mid \theta) = K + \frac{1}{2\sigma^2} \sum_{t=t_0}^{\tau} (u(t) - y_t)^2$$

Potential Fixes

- ▶ Use a stronger prior (still multimodal)
- Correct samples in post-processing step
- Don't rely on default initializations! Draw inits from prior.
- ▶ Use "global" algorithms:
 - tempering
 - MCMC with normalizing flow^{6,*}
 - "momaVI"

⁶: Gabrié et al (2022) Adaptive Monte Carlo augmented with normalizing flows, PNAS
*: Kaze (2022), FlowMC, https://github.com/kazewong/flowMC

$$\log p(y \mid \theta) = K + \frac{1}{2\sigma^2} \sum_{t=t_0}^{\tau} (u(t) - y_t)^2$$

Potential Fixes

- ▶ Use a stronger prior (still multimodal)
- ► Correct samples in post-processing step
- Don't rely on default initializations! Draw inits from prior.
- ▶ Use "global" algorithms:
 - tempering
 - MCMC with normalizing flow.
 - "momaVI"

7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint
8: Gelman et al. (2013) Bayesian Data Analysis, textbook
9: M et al. (2022) Nested Â: assessing convergence, preprint

▶ Draw from the prior, $p(\theta)$.

7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint
8: Gelman et al. (2013) Bayesian Data Analysis, textbook
9: M et al. (2022) Nested Â: assessing convergence, preprint

- ▶ Draw from the prior, $p(\theta)$.
- ► Draw from an approximation $q(\theta) \approx p(\theta \mid y)$, e.g. using a

7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint
8: Gelman et al. (2013) Bayesian Data Analysis, textbook
9: M et al. (2022) Nested Â: assessing convergence, preprint

- ▶ Draw from the prior, $p(\theta)$.
- ► Draw from an approximation $q(\theta) \approx p(\theta \mid y)$, e.g. using a

- How much overdispersion do we need? For unimodal target, the initial variance must be lower-bounded by a linear function of the initial squared bias.⁹

7: Zhang et al (2021) Pathfinder: quasi-Newton VI, preprint
8: Gelman et al. (2013) Bayesian Data Analysis, textbook
9: M et al. (2022) Nested *R*: assessing convergence, preprint

- ▶ Which numerical integrator should we use in Stan?
 - $RK4^{th}/5^{th}$ (non-stiff solver)
 - BDF (stiff solver)

- ▶ Which numerical integrator should we use in Stan?
 - $RK4^{th}/5^{th}$ (non-stiff solver)
 - BDF (stiff solver)

10: M et al. Solving ODEs in a Bayesian context poster at PAGE.

- ▶ Which numerical integrator should we use in Stan?
 - $RK4^{th}/5^{th}$ (non-stiff solver)
 - BDF (stiff solver)

10: M et al. Solving ODEs in a Bayesian context poster at PAGE.

- ▶ Which numerical integrator should we use in Stan?
 - $RK4^{th}/5^{th}$ (non-stiff solver)
 - BDF (stiff solver)

 Poses a challenge when running many chains in parallel (ongoing work with Stanislas Du Ché).

10: M et al. Solving ODEs in a Bayesian context poster at PAGE.

▶ Outline:

- ODE-based Bayesian models
- Solving ODEs across the parameter space
- Propagating derivatives through ODEs

 $\log p(y \mid \theta) = f(u(\theta), \theta)$

 $\log p(y \mid \theta) = f(u(\theta), \theta)$

$$\frac{\mathrm{d}f}{\mathrm{d}\theta} = \frac{\partial f}{\partial \theta} + \sum_{t=t_0}^{\tau} \frac{\partial f}{\partial u(t)} \frac{\mathrm{d}u(t)}{\mathrm{d}\theta}$$

 $\log p(y \mid \theta) = f(u(\theta), \theta)$

$$\frac{\mathrm{d}f}{\mathrm{d}\theta} = \frac{\partial f}{\partial \theta} + \sum_{t=t_0}^{\tau} \frac{\partial f}{\partial u(t)} \frac{\mathrm{d}u(t)}{\mathrm{d}\theta}$$

▶ Hidden in this equation is a Fréchet derivative between f and u, i.e. between two infinite-dimensional objects. Such a derivative cannot be stored on a finite computer, so we need to make sure we don't compute it.¹¹

Automatic differentiation of implicit functions

(1) Direct method

(2) Forward method

(3) Adjoint method

Automatic differentiation of implicit functions

(1) Direct method

- ► Treat u as a sequence of explicit functions, $u(t + \epsilon) \approx u(t) + \epsilon u'(t)$.
- (2) Forward method
 - ▶ Write an ODE solved by $du/d\theta(t)$.
- (3) Adjoint method
 - Write an ODE solved by $\partial f / \partial u(t) \cdot du / d\theta(t)$.

Forward method

$$u'(t) = g(t, u, \vartheta) \in \mathbb{R}^N$$

▶ Let K be the dimension of input which depend on θ

- ϑ : explicit ODE parameters
- u_0 : initial condition if parameter dependent \rightarrow Can rewrite the ODE as a deviation from a baseline and take $u_0 = 0$.
- time steps: t_0, t_1, \cdots

Forward method

$$u'(t) = g(t, u, \vartheta) \in \mathbb{R}^N$$

▶ Let K be the dimension of input which depend on θ

- ϑ : explicit ODE parameters
- u_0 : initial condition if parameter dependent \rightarrow Can rewrite the ODE as a deviation from a baseline and take $u_0 = 0$.
- time steps: t_0, t_1, \cdots

$$\frac{\mathrm{d}u}{\mathrm{d}\vartheta}(t) = \int_{t_0}^{\tau} \mathrm{d}t \frac{\mathrm{d}u'}{\mathrm{d}\vartheta}(t)$$

▶ Solve a system of N + NK coupled ODEs.

Forward method

$$u'(t) = g(t, u, \vartheta) \in \mathbb{R}^N$$

▶ Let K be the dimension of input which depend on θ

- ϑ : explicit ODE parameters
- u_0 : initial condition if parameter dependent \rightarrow Can rewrite the ODE as a deviation from a baseline and take $u_0 = 0$.
- time steps: t_0, t_1, \cdots

$$\frac{\mathrm{d}u}{\mathrm{d}\vartheta}(t) = \int_{t_0}^{\tau} \mathrm{d}t \frac{\mathrm{d}u'}{\mathrm{d}\vartheta}(t)$$

- ▶ Solve a system of N + NK coupled ODEs.
- Our goal should be to minimize K.
 - In Covid-19 model, went from K = 62 to K = 5, meaning solving 3596 to 290 ODEs³ \rightarrow 3 days to 2 hours to fit model.

Adjoint method

Construct an ODE which *directly* returns

$$\delta^{\dagger} \cdot \frac{\mathrm{d}u}{\mathrm{d}\theta}(t).$$

▶ Requires solving the ODE forward and backward in time.

- Solve a total of 2N + K coupled ODEs (rather than N + NK).
- ► Eligibly method is old;¹² popularized in Machine Learning by Neural ODEs.¹³
- ▶ Better scaling but not always better performance than forward method.¹⁴

12: Pontryagin et al (1963) The Mathematical Theory of Point Processes, textbook
13: Chen et al (2018) Neural Ordinary Differential Equations, NeurIPS
14: Rackauckas et al (2021) A comparison of Autodiff [...] for derivatives of differential equations
IEEE HPEC

Arsenal of tools

- Prob languages which support ODEs:
 - Stan:
 - supports three ODE integrators (RK45, BDF, Adams).
 - supports forward and adjoint differentiation methods.
 - supports matrix exponential for linear ODEs.
 - supports several implicit functions.

• Torsten:

- extends Stan for pharmacometrics modeling.
- solve ODEs within a clinical event schedule.

- TensorFlow Probability
 - tip: use it with JAX, rather than TensorFlow.
 - ODE support exists but is limited.
 - support for finite-dim implicit functions seems quite good.

• Turing

- uses Julia
- I have not tried it, but I suspect it's good.

Arsenal of tools

- Prob languages which support ODEs:
 - Stan:
 - supports three ODE integrators (RK45, BDF, Adams).
 - supports forward and adjoint differentiation methods.
 - supports matrix exponential for linear ODEs.
 - supports several implicit functions.
 - Torsten:
 - extends Stan for pharmacometrics modeling.
 - solve ODEs within a clinical event schedule.

- TensorFlow Probability
 - tip: use it with JAX, rather than TensorFlow.
 - ODE support exists but is limited.
 - support for finite-dim implicit functions seems quite good.

• Turing

- uses Julia
- I have not tried it, but I suspect it's good.
- Questions? Comments? cmargossian@flatironinstitute.org CCM third floor!