
GPUs: The Good, The Bad, and the Ugly

Robert Blackwell, Géraud Krawezik

Scientific Computing Core

From video games to data centers?

1996 2022

Outline

• GPUs: past, present and future [Géraud]

• GPU programming and performance [Robert]

• The fine prints about GPU programming [Géraud]

What are GPUs?

• Graphics Processing Unit
• Early 1990s: 3D accelerators

– They were separated from the video card!

• These got merged, and what we call now GPUs are their
offspring

• Since 2010, their performance with dense matrix operations
have made them a key to HPC systems: “GPGPU”

Computing on GPUs: GPGPU

• Initially, graphics-specific languages: OpenGL, DirectX
– 2003: Krüger, Westermann “Linear algebra operators for GPU

implementation of numerical algorithms”
– 2003: Bolz, Farmer, Grinspun, Schröder: “Sparse matrix solvers on

the GPU: conjugate gradients and multigrid”

• 2007: First CUDA version
• 2008: HPC paper: Volkov + Demmel: “Benchmarking GPUs to

Tune Dense Linear Algebra”
• 2009: First ML paper: Raina, Madhavan, Ng: “Large-scale

Deep Unsupervised Learning using Graphics Processors”

• Special purpose
• > 1000 cores “Many core”
• Control logic is fairly limited
• Small programmable cache
• High bandwidth memory
• ~ 80 billion transistors

How do GPUs differ from CPUs?
CPU

Control
ALU

ALU

ALU

ALU

Cache

RAM RAM

• General purpose
• < 100 cores “Multi core”
• Large cache
• ~ 11 billion transistors

GPU

Slide adapted from Nvidia

The Future: CPU + GPU integration

• On the same socket:
– CPU cores
– GPU cores
– HBM memory on some modules

• Both CPU and GPU can address the same memory space

Grace
CPU

Hopper
GPU

NVidia Grace-Hopper
Superchip (2023)

Intel Falcon Shores XPU (2023)

3D-stacked
CPU+GPU

Looking at the vendors’ roadmaps

AMD Instinct MI300 APU
(2023)

CDN3 GPU ZEN4 CPU

The GPU market

• A very preeminent vendor has most of the market
– BLAS closed source
– FFT closed source
– HPLinpack closed source

• However CPU companies are coming out with GPUs for
HPC/ML:
– AMD Instinct MI (used in Oak Ridge’s Frontier)
– Intel Ponte Vecchio (used in Argonne’s Aurora)

GPU Programming is hard

• Bad or no optimizations often means sluggish code
• For non experts, it can feel overwhelming:

– Global memory
– Texture memory
– Shared memory
– Local memory
– L1/L2/constant cache

– Warps, blocks, grids
– Tensor cores
– Streams
– Coalesced accesses, memory bank

conflicts

But there are vendor optimized libraries

• BLAS
• FFT
• DNN
• Tensors
• Solvers
• PyTorch, TensorFlow integration

Performance and programming examples

• Gromacs & LAMMPS
• DNN training acceleration with pytorch

– DeepBLAST

• All pairs summation
– SkellySim – CCB/SCC – Blackwell, Shelley, Kabacaoglu, Stein
– Pvfmm — CCM – Malhotra

https://github.com/flatironinstitute/deepblast
https://github.com/flatironinstitute/skellysim
https://github.com/dmalhotra/pvfmm

Software performance: GROMACS

Ion Channel 150k atoms - Sonya Hanson CCB Covid Spike 750k atoms - Pilar Cossio CCM

Phu Tang CCM

• Hand-optimized version by/for Nvidia GPUs: everything runs on the GPUs
• AMD GPU uses hipSYCL: some parts are still on the CPU!

Software performance: LAMMPS

• LAMMPS has several implementations that can use GPUs:
the default one is mediocre. We use the Kokkos one instead

• Model: 3D Lennard-Jones liquid

Pytorch DNN Training

● TM-Vec: template modeling vectors for fast homology
detection and alignment (Jamie Morton et al., in prep)

● “uses sequence alignments to learn structural features that
can then be used to search for structure-structure similarities
in large sequence databases”

● https://github.com/flatironinstitute/deepblast

https://github.com/flatironinstitute/deepblast

Pytorch DNN Training (2)

Differentiable Needleman-Wunsch algorithm as loss function

https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

● Original algorithm discrete (uses ‘max’)
○ not differentiable – no traceback/backward pass
○ Modified to use “softmax” for training

● Algorithm is O(m*n), i.e. the product of the two
sequence lengths

● Single matrix calculation is serial, but you can do a lot of
them at once!

https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

Pytorch DNN Training (3)

● All versions are calculated with python
○ no C/C++ code

● Pure python implementation
○ years to complete training
○ Hard to verify that it was even doing the

right thing…

https://github.com/flatironinstitute/deepblast/blob/master/deepblast/nw.py
https://github.com/flatironinstitute/deepblast/blob/master/deepblast/nw_cuda.py

https://github.com/flatironinstitute/deepblast/blob/master/deepblast/nw.py
https://github.com/flatironinstitute/deepblast/blob/master/deepblast/nw_cuda.py

Pytorch DNN Training (3)

● Numba-CPU
○ About a day or two of coding/testing
○ Direct modification of original code
○ Months of training time

■ ~20x faster on 40-core skylakes

https://github.com/flatironinstitute/deepblast/blob/master/deepblast/nw.py

https://github.com/flatironinstitute/deepblast/blob/master/deepblast/nw.py

Pytorch DNN Training (4)

● Numba-CUDA
○ About a week of coding/optimizing
○ Days of training time

■ ~10x faster than numba-cpu version on v100

○ Slightly more fragile
■ Max sequence size limited
■ Harder to debug, all objects on GPU

○ “Easy” to support multi-node + multi-gpu

https://github.com/flatironinstitute/deepblast/blob/master/deepblast/nw_cuda.py

https://github.com/flatironinstitute/deepblast/blob/master/deepblast/nw_cuda.py

Pytorch DNN Training (5)

● Conclusion – weeks to save years
○ ✅ Low precision OK
○ ✅ Many small independent problems
○ ✅ Enough parallel problems to saturate compute
○ ✅ Low development effort

Without a question: worth the effort!

All pairs summation

• AKA the N-Body problem
• Embarrassingly parallel

– Ideal for GPU calculations?

• Fast libraries for CPU approximations (Ewald, FMM, etc…
see: CCM)
– Often only ideal for large systems

All pairs summation (2)

Motivations:
1. FMM overkill/slow for small systems
2. Not all kernels needed are in FMM
3. Single point evaluations (streamlines)
4. No baseline to compare against
5. Generally useful for other projects
6. Curiosity!

All pairs summation (3)

A naive implementation on CPU:

All pairs summation (4)

A naive implementation on GPU**:

** Not a totally fair comparison! This is obviously more generic…
** Does not include the memory copy code

All pairs summation (5)

● Memory coalescence
● ~1.3x faster than naive
● Probably still far from

optimal

Stokeslet:

All pairs summation (6)

Quadro RTX 6000
2x Xeon Gold 6128 (skylake) @3.4GHz (6 cores x 2)

Stokeslet:

All pairs summation (7)

NVIDIA A100-SXM
2x Xeon Platinum 8358 (icelake) @2.6 GHz (32 cores x 2)

All pairs summation (8)

NVIDIA A100-SXM
2x Xeon Platinum 8358 (icelake) @3.4 GHz (32 cores x 2)

Theoretical for floats:
CPU ~3.5 Tflops -> ~100%
GPU ~19.5 Tflops -> ~65%

Theoretical for doubles:
CPU ~1.75 Tflops -> ~100%
GPU ~9.7 Tflops -> ~55%

All pairs summation (9)

● Conclusion
○ ✅🇽 Low precision (limited workstation power for doubles)
○ ✅ Many small independent problems
○ ✅🇽 Enough parallel problems to saturate compute
○ 🇽 Low development effort

Mixed – worth it in special cases

Needs more work for smaller systems

All pairs summation (10)
Further possible improvements:

● Cache memory (avoid extra mallocs on cuda device)
● Memory pinning
● Force better alignment
● Better blocking strategies? Block size?
● Tensor cores?
● Just talk to the Astro community :)
● Streaming

○ Overlaps memory transfers with calculation

● Hybridize algorithms**
○ FMM + GPU

** Actually in the works with Dhairya Malhotra’s pvfmm

Getting the best possible performance

• FP64: 2x in Tensor Core?
• FP32: > 8x in Tensor Core?

How to get the Tensor Core teraflops?

• If you can use cu* libraries, use
them

• In CUDA, you need to use them
explicitly (wrappers around ASM)
– They can only do one thing: MMA
– D = A x B + C
– Small matrices ~O(8x8)

Tools to help programmers

• Nsight and Nvprof provide low
level information to CUDA
developers:
– Kernel performance
– Memory pattern issues
– CPU ↔ GPU communications

• Profiler data can be imported
by Tau (useful when mixing
MPI, CUDA, OpenMP)

Portability

Between generations of GPUs

• Architectures evolve quickly
• Old optimizations get broken
• With GPUs:

– No or bad optimizations often means
slow code

Between vendors

• Different languages
– CUDA (Nvidia)
– hip/ROCm (AMD)
– SYCL (standard, used by Intel)

• Different architectures: different
optimizations

– Tensor vs Matrix cores?
– Memory hierarchy

Between models of the same generation

• Data center vs workstation cards
– FP64 is capped on workstations
– Memory speeds: HBM vs GDDR

Portability (2): generic frameworks
There are at least some attempts at standardization!

OpenACC
● Uses directives (#pragma) like OpenMP
● Built with Nvidia/PGI compiler
● Bugs in the compiler!

HIP (AMD high level language)
● Can be compiled as CUDA
● Source-to-source CUDA→HIP translator
● Low level optimizations are not portable!

SYCL (syntactic sugar for OpenCL)
● Can be compiled as CUDA, HIP, OpenMP
● Pushed by Intel in OneAPI
● Data transfers are transparent
● Mix of regular C and C++ lambdas
● Low level optimizations are not portable

Kokkos Framework
● Provides a parallel execution environment
● + architecture optimized libraries (linear

algebra, graph)
● Can be overwhelming to start with

The Good, the Bad, and the Ugly?

The Good:

• Great performance
• Optimized vendor libraries
• More and more optimized codes

The Bad:

• Programming them directly is hard
• Getting their peak performance is

harder (and requires ASM)

The Ugly:

• Getting portable performance is
very hard

• For 10+ years, a single vendor
has been preeminent, and they
don’t like Open Source

Should you use GPUs?

• The “absolutely!” cases:
– You are using ML, or programs optimized for GPUs
– You can use the BLAS, FFT, DNN libraries provided by the vendors

• The “maybe” cases:
– Your code uses dense linear algebra
– You are patient enough to reorganize it by blocks

• The “hum…” cases:
– Your code is highly irregular (eg: graph)
– Your project needs to be finished in 2 weeks

Resources at FI

Hardware

• 60 Nvidia V100 nodes*
• 72 Nvidia A100 nodes*
• 20 Nvidia H100 nodes*
• 2 AMD Instinct MI210 nodes**

*: 4 GPUs per node

**: 3 GPUs per node

Software in modules

• CUDA (and CUDA-aware OpenMPI)
• Nvidia/PGI compiler
• SYCL through Intel OneAPI
• HIP (module load rocm)
• hipSYCL
• LLVM

• Tools already configured for GPUs:
– BLAS, FFT, NN, tensor libraries
– PyTorch
– GPU-aware OpenMPI

