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What is Simba?

• Smoothed-particle hydrodynamics 
simulation suite (GIZMO)

• Galaxy formation & evolution

• Advanced sub-grid modelling (BH 
feedback, winds etc.)

• Chemistry and cooling is off-loaded to 
Grackle
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Why?

(Data from Bouwens et al., 2015)
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Star Formation Rate
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𝑡dyn

Star formation 
efficiency 
~0.02

Dynamical time
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Molecular 
hydrogen 
fraction

Particle densityHow do we 
calculate 
the 
molecular 
hydrogen 
fraction?
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KMT Chemical Network

The Setup:
• Add three new chemical species 

to the network in Grackle: H-, H2, 
H2

+

• Pass the abundance of each 
species to Simba

Explicitly solves chemistry for each 
particle

Much slower than KMT

The Setup:
• Spherical cloud of gas
• Exposed to isotropic, dissociating 

radiation field
• Assume atomic to molecular 

transition occurs in infinitely thin 
shell

The Inputs:
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H

Grain-atom collision

H

Atom “sticks” to dust

H
H

HH

H H

Atomic collisions on 
grain surface

H
H

Molecule dissociates 
from dust
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Dust column density is an input to 
the KMT model

No specific models for different 
formation pathways

KMT Grackle

𝑅 = !
"
𝑛#𝑛$%&'(𝜎$%&'(𝜖#!𝑆(𝑇, 𝑇$%&'()

(Schneider et al., 2006)

H density

Dust 
density

Dust
cross-
section

Formation 
efficiency

Grain
“sticking” 
potential

Explicit calculation – much more 
accurate!
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Dust Growth and Destruction
(Li et al., 2019)
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Dust Growth and Destruction
(Li et al., 2019)

Grains grow through 
accretion of gas-phase 

metals

M

Grains abraded by thermal 
sputtering

M

M
M

M

Grains destroyed by shocks

M
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The accretion timescale:
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Our Work

Solve gas-grain heat balance for 
dust temperature:

4𝜎𝑇!"+ 𝜅!" = 4𝜎𝑇,-.+ 𝜅!" + Λ!#)/!"#$%

Rate of heat transfer 
between gas and dust

Grain opacity

Radiative
cooling

Heating

Replace reference temperature:
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Dust model integrated into chemical 
network
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Isolated Case

Solve gas-grain heat balance for 
dust temperature:
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Dust model integrated into chemical 
network

External Radiation Field

Interstellar radiation field heats 
dust:

4𝜎𝑇!"# 𝜅!" = 4𝜎𝑇$%&# 𝜅!" + Λ!'()!"'*++ ΓISRF𝐺!
Dust heating rate

ISRF strength

Estimate ISRF from star formation 
in local environment: 

𝐺! =
𝐺!,#$
Σ#$

Σ

Star formation 
rate density

Milky-way values
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• Removal of KMT model left star formation unresolved

• Implement sub-grid model to fix this:
1. Gas reaches sufficiently high density à Treat as two phases
2. Only cool the molecular phase à Update its density to 

maintain pressure equilibrium

Modelling Changes



Our Simulations

• Two production simulations completed on Cirrus:
• 50 Mpc/h box – 10243 particles
• 25 Mpc/h box – 10243 particles

• Evolved from redshift 99 to 6



Mass Functions: SFR

25 Mpc/h



Molecular Hydrogen Fraction

(25 Mpc/h)



Dust-to-Gas Ratio



Dust Temperature

• Contours containing 10%, 50%, 80% 
and 95% of the data



Summary

What we’ve done
Improvements:

• Extended chemical network
• Solving for dust temperature
• Molecular hydrogen calculation

Additions:
• ISRF model
• Two-phase sub-grid model

What we’ve seen
• Good agreement with fiducial Simba
• Improved SFR
• Interesting results to look into!

What’s next?
• Run to lower redshifts
• Comparison to new 

observational data
• Higher resolutions (zooms)



Dust Heating Rate



Dust-to-Metal Ratio
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on grain 
surface

Gas cools and
cloud collapses

Gas of 
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(2) Stellar 
feedback injects 
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surrounding gas 
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