+

Charting the redshift evolution of metallicity indicators using SIMBA

Prerak Garg (University of Florida)

Advisor: Desika Narayanan

In collaboration with Nell Byler, Ryan L. Sanders, Alice E. Shapley, Allison L. Strom, Chris Lovell and others

(Curti et al. 2017)

Auroral lines: [OIII] λ 4363, [OII] λ 7320,7330, [SII] λ 4069 and many more.

(Curti et al. 2017)

Do the strong line metallicity indicators evolve with redshifts ?

SIMBA Box

We use 4 simulation boxes: $25h^{-1}$ Mpc with 512^3 particles.

z = 0 - 5 : 2000 galaxies per redshift

(Davé et al 2019)

CLOUDY

It is a photoionization code. It simulates physical conditions within gas clouds over a wide range of density , temperature and physical state.

Young stars and Post-AGB stars

Diffused Ionized Gas (DIG)

Powderday

Powderday

SIMBA Box Galaxy

- Constant density (n_H)
 - HII regions & pAGB 30 cm³
 - \circ DIG 1 cm³
- BPASS model grids (Binary Stars)
- Geometry
 - HII regions & pAGB Spherical shell
 - DIG Plane parallel
- Escape Fraction: 40% & 60% for HII regions and post-AGB stars

VVVVI

Nebular Line Emission

(Curti et al. 2017)

[NII]/H α (z = 0)

Garg et al. (in prep) ₁₉

[NII]/H α (z = 0)

[NII]/H α (z = 0)

Diffused Ionized Gas (DIG)

Relative Contribution of DIG

Do the strong line metallicity indicators evolve with redshifts ?

Do the strong line metallicity indicators evolve with redshifts ?

Model properties that vary across redshifts

- Stellar and gas metallicities
- Spectrum of ionizing photons in HII regions and post-AGB stars
- Incident radiation field for DIG emission
- Frequency of young and post-AGB stars
- Amount of gas available for ionization

N2S2: 0.2[N II]/Ha + 0.8[S II]/Ha

Higher Ionization Parameter

$$U=\left(rac{Q}{4\pi\,R_S^2\,n_H\,c}
ight)$$

• Move to a Spherical Shell Geometry

 $U \propto n_H^{1/3} Q^{1/3}$

Do the strong line metallicity indicators evolve with redshifts ?

Summary

- Our updated nebular emission model now includes nebular emission contribution from HII regions, Post-AGB stars and Diffused Ionized Gas.
- We can reproduce the general trends for different strong line metallicity calibrations at z = 0.
- We show that DIG is important source of nebular emission and can contribute as much as 70% of the line flux in some cases.
- Preliminary JWST observations indicate that metallicity indicators might evolve at high-z towards having a higher ionization parameter.

z = 0 SIMBA galaxies on the BPT diagram

z = 2 SIMBA galaxies on the BPT diagram

z = 2 SIMBA galaxies on the BPT diagram

SIMBA and KBSS Mass Distribution

47

z = 2 SIMBA galaxies on the BPT diagram

