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Talk outline 

1.  The problem we want to solve 
2.  Bacterial inheritance 101 

3.  A new pangenome reference approach 

4.  Initial results for E. coli 

5.  How this infrastructure can be extended to mixtures 
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Motivation 

•  Enterobacteriaceae �are commonly found  in normal microflora in the human 
gastrointestinal tract 

•  Horizontal gene transfer often occurs among Enterobacteriaceae and 
between  pathogenic and commensal strains 

•  To fully understand the dynamic interactions with and within such species in 
the microbiome we need to be able to compare diverse genomes (at the 
single nucleotide level) 

 

 

 

 

Schjørring & Krogfelt, Int J Microbiol (2011)
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Pangenome diversity 

For E. coli: 

•  A single genome contains ~5000 genes 

•  The pangenome contains ~90,000 genes 
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Pangenome diversity 

For E. coli: 

•  A single genome contains ~5000 genes 

•  The pangenome contains ~90,000 genes 

•  Most genes are rare 

Touchon et al., PloS Genetics (2009)

McInerney et al., Nat Micro (2017)



Relatedness in the core and accessory 

Didelot et al., BMC Genomics (2012)



Relatedness in the core and accessory 

Didelot et al., BMC Genomics (2012)

Two genomes distant on the core tree can have more similar gene repertoires 
than two genomes which are close on the core tree
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Suppose this
is the reference

If we take perfect reads 
from the other genomes, 
and map them to this 
reference, how many of 
the 50 SNPs can we 
call?
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We can call SNPs 
1,2,3,4

Total = 4
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Total = 4+6
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Look at the green gene

We can call SNPs 
11,12,13,14,15,16

However SNPs 17-22
are from a 
recombination event and 
are densely clustered. 
No reads map. So we 
cannot detect them.

Total = 4+6+6
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We can call SNPs 
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Total = 4+6+6+6+5
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The key problem 

There is a lack of correlation between:  
•  detailed (core SNP/tree) distance 

•  coarse (repertoire) distance. 

 

At present for diverse genomes:  

•  We cannot get SNP calls outside the core genome with reference-based 
variant calling 

•  Multiple sequence alignments do not scale to many whole genomes (plus is 
nightmare to determine if a SNP in one place on one genome, is “the same” 
as another SNP at a different place in another) 

 



Bacterial Inheritance 

Vertically inherited variation: 
•  Errors during replication -> SNPs 

•  Strand slippage during replication ->small indels 

•  Errors due to DNA damage and repair -> SNPs and indels 
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Vertically inherited variation: 
•  Errors during replication -> SNPs 

•  Strand slippage during replication ->small indels 

•  Errors due to DNA damage and repair -> SNPs and indels 



Bacterial Inheritance 

Horizontally acquired variation: 

Furuya & Lowy, Nat Rev Micro (2006)



Bacterial Inheritance 

Horizontally acquired variation: 

Allelic recombination and HGTHomologous recombination



Bacterial Inheritance 

Horizontally acquired variation: 

Allelic recombination and HGTHomologous recombination

Locally (within genes) sequences look 
like mosaics of those seen before 

Globally genomes look like mosaics of 
those seen before 



Goals 

•  Detect SNP variation between genomes in any gene/intergenic region shared 
between them 

•  Detect gene/allele presence in variety of contexts 

•  Compatible with long Nanopore or short Illumina reads 

•  Allow analysis of genome organization  

•  Flexible enough to cope with plasmid/phage/MGE 

•  Extensible to mixed read datasets 

Pandora



A Pangenome Reference Graph (PanRG) 

Local graph 
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Comparison with Pandora 

Pan-genome graph 
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Comparison with Pandora 

Pan-genome graph 
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Comparison with Pandora 

Pan-genome graph 

Local graph 

We choose the best reference path for each gene! 



Pandora workflow 
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Mosaic sequence inference 

CAC 
CAA 

ACA 
AAC ATT AGT GTC TCA CAT TTC TCA CAA 

ACA 
AAG 
CAG 

41 42 43 
34 35 35 46 

0 1 2 0 

29 38 44 40 

Pick the path with maximum likelihood
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Index Quasi-map

Mosaic
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Experiment: Compare 4 diverse E. coli 

•  Take 4 E.coli strains: 
•  2 from a cardiothoracic unit (human) outbreak (ST216) 

•  1 reference strain (ST73) 

•  1 from cattle faeces (ST3858) 

•   Both Nanopore and Illumina data (300X) and high quality Illumina-polished 
PacBio assemblies (“truth”) 



Experiment: Compare 4 diverse E. coli 

•  Build a PanRG for E. coli 
•  Construct graphs for 23052 genes built from 350 RefSeq genomes using the PanX 

tool from Neher lab (Ding et al) 

•  Construct graphs for 14374 intergenic regions from 228 E. coli from ST131 using 
the Piggy tool from Harry Thorpe (Ed Feil’s lab). 

•  58.9% of gene graphs and 43.8% of intergenic regions consist of just a single 
sequence, no variation  

 



Comparators 

Nanopolish  
•  Only published variant caller on Nanopore data.  

•  Used in Ebola outbreak 

Snippy (bwa+freebayes) 

•  Standard tool. Illumina-only. Gives us an illumina baseline. 

Try 10 different reference assemblies for variant calling 



Comparators 

Nanopolish  
•  Only published variant caller on Nanopore data.  

•  Used in Ebola outbreak 

Snippy (bwa+freebayes) 

•  Standard tool. Illumina-only. Gives us an illumina baseline. 

Try 10 different reference assemblies for variant calling 

 

(Don’t have signal level data for all samples) 



Metrics for evaluation 

•  Do all pairwise alignments between these 4, and use mummer/dnadiff to find 
a set of high quality SNPs between them. 

 

•  Proxy for “recall”: what % of all the pairwise dnadiff SNPs are found?  

Note: If a SNP difference is found in 3 pairs, it is counted 3 times – weighted 
towards higher frequency variants. 

Why do this? Hard to be sure if one SNP==another. 

 

•  Precision: what % of all calls made are correct (map variant and flanks to truth 
assembly) 



2 samples (1 human, 1 cattle) 
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2 samples (1 human, 1 cattle) 



3 samples (2 human, 1 cattle) 



4 samples (2 human, 1 cattle, 1 reference) 



Add a local de novo assembly step 

Identify regions of graph with low support. Cut out reads  
from that region, assemble candidate paths. 
Implemented and currently being tested, by Michael Hall 
 
 
Uses GATB: thanks Rayan Chikhi 

Index Quasi-map

Mosaic
 Sequence

Genotype

De novo

PanRG

Reads

Compare

Pangenome
VCF

Pangenome 
Matrix



A substrate for mixtures 

Pan-genome graph 

Local graph 



A single genome 

Pan-genome graph 



A single genome + plasmids 

Pan-genome graph 
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Mixed genomes 

Pan-genome graph 
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Mixed genomes 
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Metagenomes 

Pan-genome graph 



Metagenomes 

Pan-genome graph 



Thank you! 
MMM Group
Nicole Stoesser
Hang Phan
Sophie George
Louise Pankhurst

Biozentrum, 
University of Basel
Richard Neher

University of Bath
Harry Thorpe
Edward Feil

Max Planck Institute for 
Developmental Biology
Wei Ding

Manchester
Andrew Dodgson
Ryan George 

Iqbal Lab
Michael Hall
Martin Hunt
Robyn Ffrancon

@rmcolq 
https://github.com/rmcolq/pandora



2 samples including nanopolish (2 human) 
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Indexing in with (w,k)-minimizers 

AGGTGACA 

 
 

k=5, w=3 

GGTGA 
GTGAC 

AGGTG 

dictionary order 

TGACA 
GACAC, GACAG 

ACACG, ACAGG 
CACGT, CAGGT 

C 

G 
GT 



Indexing in with (w,k)-minimizers 

AGGTGACA 

 
 

k=5, w=3 

GGTGA 
GTGAC 

AGGTG 

dictionary order 

TGACA 
GACAC, GACAG 

ACACG, ACAGG 
CACGT, CAGGT 

GGTGA AGGTG GACAC ACACG 

C 

G 
GT 

GACAG ACAGG 


