Pangenome graph structures reveal more genetic variation between divergent genomes

Rachel Colquhoun, Michael Hall, Derrick Crook, Zamin Iqbal
rmcolq@ebi.ac.uk

Talk outline

1. The problem we want to solve
2. Bacterial inheritance 101
3. A new pangenome reference approach
4. Initial results for E. coli
5. How this infrastructure can be extended to mixtures

Motivation

- Enterobacteriaceae are commonly found in normal microflora in the human gastrointestinal tract

Motivation

- Enterobacteriaceae are commonly found in normal microflora in the human gastrointestinal tract

Enterobacter sp.

E. coli

Klebsiella sp.

Salmonella enterica
Proteus mirabilis

Motivation

- Enterobacteriaceae are commonly found in normal microflora in the human gastrointestinal tract
- Horizontal gene transfer often occurs among Enterobacteriaceae and between pathogenic and commensal strains

Motivation

- Enterobacteriaceae are commonly found in normal microflora in the human gastrointestinal tract
- Horizontal gene transfer often occurs among Enterobacteriaceae and between pathogenic and commensal strains
- To fully understand the dynamic interactions with and within such species in the microbiome we need to be able to compare diverse genomes

Motivation

- Enterobacteriaceae are commonly found in normal microflora in the human gastrointestinal tract
- Horizontal gene transfer often occurs among Enterobacteriaceae and between pathogenic and commensal strains
- To fully understand the dynamic interactions with and within such species in the microbiome we need to be able to compare diverse genomes (at the single nucleotide level)

Pangenome diversity

For E. coli:

- A single genome contains ~ 5000 genes
- The pangenome contains $\sim 90,000$ genes

Pangenome diversity

Touchon et al., PloS Genetics (2009)
For E. coli:

- A single genome contains ~ 5000 genes
- The pangenome contains $\sim 90,000$ genes
- Most genes are rare

Relatedness in the core and accessory

Relatedness in the core and accessory

Two genomes distant on the core tree can have more similar gene repertoires than two genomes which are close on the core tree

Example of the problem

Example of the problem

Suppose this is the reference

If we take perfect reads from the other genomes, and map them to this reference, how many of the 50 SNPs can we call?

Example of the problem

Look at the navy gene

We can call SNPs 1,2,3,4

Total $=4$

Example of the problem

Look at the yellow gene We can call SNPs 5,6,7,8,9,10

Total $=4+6$

Example of the problem

Look at the green gene

> We can call SNPs
> $11,12,13,14,15,16$

However SNPs 17－22 are from a
recombination event and are densely clustered． No reads map．So we cannot detect them．

แั	\checkmark	${ }^{*}$
ะั		\％
แّ	¢	ゃゃき
凹．	＊	ゃぇ

Total $=4+6+6$

Example of the problem

Look at the red gene

We can call SNPs 23,24,25,26,27,28

Total $=4+6+6+6$

Example of the problem

Look at the purple gene

We can call SNPs 29,30,31,32,33

$$
\text { Total }=4+6+6+6+5
$$

Example of the problem

We cannot detect SNPs on grey, orange brown, light blue or dark green genes

Total $=4+6+6+6+5$

Example of the problem

| 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Example of the problem

The key problem

There is a lack of correlation between:

- detailed (core SNP/tree) distance
- coarse (repertoire) distance.

At present for diverse genomes:

- We cannot get SNP calls outside the core genome with reference-based variant calling
- Multiple sequence alignments do not scale to many whole genomes (plus is nightmare to determine if a SNP in one place on one genome, is "the same" as another SNP at a different place in another)

Bacterial Inheritance

Vertically inherited variation:

- Errors during replication -> SNPs
- Strand slippage during replication ->small indels
- Errors due to DNA damage and repair -> SNPs and indels

Bacterial Inheritance

Vertically inherited variation:

- Errors during replication -> SNPs
- Strand slippage during replication ->small indels
- Errors due to DNA damage and repair -> SNPs and indels

Bacterial Inheritance

Horizontally acquired variation:
a Bacterial transformation

b Bacterial transduction
resistance gene
Recipient cell

c Bacterial conjugation

Copyright © 2006 Nature Publishing Group

[^0]
Bacterial Inheritance

Horizontally acquired variation:

Homologous recombination

Allelic recombination and HGT

Bacterial Inheritance

Horizontally acquired variation:

Homologous recombination

Allelic recombination and HGT

Locally (within genes) sequences look like mosaics of those seen before those seen before

Goals

- Detect SNP variation between genomes in any gene/intergenic region shared between them
- Detect gene/allele presence in variety of contexts
- Compatible with long Nanopore or short Illumina reads
- Allow analysis of genome organization
- Flexible enough to cope with plasmid/phage/MGE
- Extensible to mixed read datasets

A Pangenome Reference Graph (PanRG)

A Pangenome Reference Graph (PanRG)

A Pangenome Reference Graph (PanRG)

Comparison with Pandora

Comparison with Pandora

Comparison with Pandora

Comparison with Pandora

We choose the best reference path for each gene!

Pandora workflow

Pandora workflow

Pandora workflow

Pandora workflow

Mosaic sequence inference

Pick the path with maximum likelihood

Pandora workflow

Pandora workflow

Experiment: Compare 4 diverse E. coli

- Take 4 E.coli strains:
- 2 from a cardiothoracic unit (human) outbreak (ST216)
- 1 reference strain (ST73)
- 1 from cattle faeces (ST3858)
- Both Nanopore and Illumina data (300X) and high quality Illumina-polished PacBio assemblies ("truth")

Experiment: Compare 4 diverse E. coli

- Build a PanRG for E. coli
- Construct graphs for 23052 genes built from 350 RefSeq genomes using the PanX tool from Neher lab (Ding et al)
- Construct graphs for 14374 intergenic regions from 228 E. coli from ST131 using the Piggy tool from Harry Thorpe (Ed Feil's lab).
- 58.9% of gene graphs and 43.8% of intergenic regions consist of just a single sequence, no variation

Comparators

Nanopolish

- Only published variant caller on Nanopore data.
- Used in Ebola outbreak

Snippy (bwa+freebayes)

- Standard tool. Illumina-only. Gives us an illumina baseline.

Try 10 different reference assemblies for variant calling

Comparators

Namopolish
(Don't have signal level data for all samples)

- Only published variant caller on Nanopore-data.
- Usod in Ebola-outbreak

Snippy (bwa+freebayes)

- Standard tool. Illumina-only. Gives us an illumina baseline.

Try 10 different reference assemblies for variant calling

Metrics for evaluation

- Do all pairwise alignments between these 4, and use mummer/dnadiff to find a set of high quality SNPs between them.
- Proxy for "recall": what \% of all the pairwise dnadiff SNPs are found?

Note: If a SNP difference is found in 3 pairs, it is counted 3 times - weighted towards higher frequency variants.
Why do this? Hard to be sure if one SNP==another.

- Precision: what \% of all calls made are correct (map variant and flanks to truth assembly)

2 samples (1 human, 1 cattle)

2 samples (1 human, 1 cattle)

2 samples (1 human, 1 cattle)

3 samples (2 human, 1 cattle)

4 samples (2 human, 1 cattle, 1 reference)

Add a local de novo assembly step

A substrate for mixtures

A single genome

A single genome + plasmids

A single genome + plasmids

A single genome + plasmids

A single genome + plasmids

Mixed genomes

Mixed genomes

Mixed genomes

Mixed genomes

Metagenomes

Metagenomes

Thank you!

Iqbal Lab
Michael Hall
Martin Hunt
Robyn Ffrancon

Manchester
Andrew Dodgson
Ryan George

MMM Group
Nicole Stoesser Hang Phan
Sophie George
Louise Pankhurst

Biozentrum, University of Basel Richard Neher

Max Planck Institute for Developmental Biology Wei Ding

University of Bath Harry Thorpe Edward Feil

2 samples including nanopolish (2 human)

Indexing in with (w,k)-minimizers

$\mathrm{k}=5, \mathrm{w}=3$

AGGTGACACGT

Indexing in with (w,k)-minimizers

$\mathrm{k}=5, \mathrm{w}=3$
dictionary order
\[\begin{aligned} \& AGGTGACACGT
\& \hline AGGTG
\& GGTGA
\& GTGAC \end{aligned} \]

Indexing in with (w, k)-minimizers

$\mathrm{k}=5$, w=3
dictionary order
\[\begin{aligned} \& AGGTGACACGT
\& \hline AGGTG
\& GGTGA
\& GTGAC \end{aligned} \]

Indexing in with (w,k)-minimizers

$\mathrm{k}=5$, w=3
dictionary order
AGGTGACACGT
AGGTG
GGTGA
GTGAC
TGACA

Indexing in with (w, k)-minimizers

$\mathrm{k}=5, \mathrm{w}=3$
dictionary order
\title{ AGGTGACACGT }
AGGTG
GGTGA
GTGAC TGACA
GACAC ACACG
CACGT

AGGTG \longrightarrow GGTGA \longrightarrow GACAC \longrightarrow ACACG

Indexing in with (w,k)-minimizers

$\mathrm{k}=5$, w=3
dictionary order
AGGTGACA π_{π}^{C} GT

Indexing in with (w, k)-minimizers

$\mathrm{k}=5, \mathrm{w}=3$
dictionary order

Indexing in with (w, k)-minimizers

$\mathrm{k}=5$, w=3
dictionary order

Indexing in with (w, k)-minimizers

$\mathrm{k}=5, \mathrm{w}=3$
dictionary order

Indexing in with (w,k)-minimizers

$\mathrm{k}=5, \mathrm{w}=3$
dictionary order

Indexing in with (w,k)-minimizers

$\mathrm{k}=5, \mathrm{w}=3$
dictionary order

AGGTG
GGTGA
GTGAC
TGACA
GACAC, GACAG ACACG, ACAGG CACGT, CAGGT
AGGTG \longrightarrow GGTGA ${ }_{\mathrm{GACAC}}^{\mathrm{GACA}} \longrightarrow \mathrm{ACACG}>$

[^0]: Furuya \& Lowy, Nat Rev Micro (2006)

