TRIQS Summer School 2023

Ab initio description of strongly correlated materials: combining density functional theory plus and dynamical mean-field theory

Density Functional Theory + Dynamical Mean-Field Theory

Outline

1. Introduction

2. DFT+DMFT

- DMFT recap
- Ab initio electronic structure
- DFT+DMFT ingredients
- Impurity solvers
- Charge self-consistency
- Post-processing

3. Summary

Strongly correlated materials - next generation electronics?

REVIEW ARTICLES

NATURE PHYSICS DOI: 10.1038/NPHYS4274

Table 1 | Summary of various emergent functions discussed in this article.

Emergent functions	Key concept	Control parameter	Bottleneck/key experiment	Target industry			
Mottronics	Electron correlation	Band-filling Bandwidth	E-field switching at RT Above-RT superconductor	Low-energy-cost electronics Energy harvesting/saving			
Magnetoelectrics	Spin-orbit interaction	Broken symmetries both in space and time	E-field switching at RT Ultrafast photo-switching	Low-energy-cost electronics Information technology			
Topological electronics	Berry phase	Band structure design Spin texture	Zero-field edge current at RT Skyrmionic circuit	Information technology Energy harvesting			
Quantum computing	Quantum coherence	Nanomaterials design Topological protection	Qubit/photon interface Quantum simulator	Quantum computer Information security			

Y. Tokura, M. Kawasaki, and N. Nagaosa, Nat. Phys. 13, 1056 (2017)

Strongly correlated materials - next generation electronics?

REVIEW ARTICLES

NATURE PHYSICS DOI: 10.1038/NPHYS4274

Table 1 | Summary of various emergent functions discussed in this article.

	Emergent functions	Key concept	Control parameter	Bottleneck/key experiment	Target industry			
Γ	Mottronics	Electron correlation	Band-filling Bandwidth	E-field switching at RT Above-RT superconductor	Low-energy-cost electronics Energy harvesting/saving			
	Magnetoelectrics	Spin-orbit interaction	Broken symmetries both in space and time	E-field switching at RT Ultrafast photo-switching	Low-energy-cost electronics Information technology			
	Topological electronics	Berry phase	Band structure design Spin texture	Zero-field edge current at RT Skyrmionic circuit	Information technology Energy harvesting			
	Quantum computing	Quantum coherence	Nanomaterials design Topological protection	Qubit/photon interface Quantum simulator	Quantum computer Information security			

Y. Tokura, M. Kawasaki, and N. Nagaosa, Nat. Phys. 13, 1056 (2017)

Exotic phenomena

- sensitive to small changes in external parameters:
 - temperature
 - pressure
 - doping
 - • • •
- emerging phenomena:
 - high T_{C} superconductivity
 - colossal magnetoresistance
 - Mott physics
 - • • •

Correlated d-/f-shells

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 Phictogens	16 Chalcogens	17 Halogens	18
1	1 H Hydrogen -1 1	2 He Helium	5	block 75 60 5f											Atomic Symbol ^{Name} Weight			
2	3 Li Lithium	4 Be Beryllium	K	bloc	block 55 47 11 11 1 1 1 5 44 11 11 11 1 1 5 45 12 14 11 11 30 11 11 11 11 B Boron									6 C Carbon	7 N Nitrogen	8 O Oxygen	9 F Fluorine	10 Ne Neon
3	1 Na Sodium	2 12 Mg Magnesium 2	1	1 block 33 39 100 100 13 6 block 15 10 10 13 13										-4 4 5i Silicon -4 4	-3 3 5 15 P Phosphorus -3 3 5	-2 16 S Sulfur -2 2 4 6	-1 17 Cl Chlorine -11357	18 Ar Argon
4	19 K Potassium 1	20 Ca Calcium	21 Sc Scandium 3	22 Ti ^{Titanium} 4	23 V Vanadium 5	24 Cr Chromium 3 6	25 Mn Manganese 2 4 7	26 Fe Iron 2 3	27 Co Cobalt 2 3	28 Ni Nickel 2	29 Cu Copper 2	30 Zn Zinc 2	1 5a iallium	32 Ge Germanium -4 2 4	33 As Arsenic -3 3 5	34 Se Selenium -2 2 4 6	35 Br Bromine -1135	36 Kr Krypton 2
5	37 Rb Rubidium 1	38 Sr Strontium 2	39 Y Yttrium 3	40 Zr Zirconium 4	41 Nb Niobium 5	42 Mo Molybdenum 4 6	43 Tc Technetium 4 7	44 Ru Ruthenium 3 4	45 Rh Rhodium 3	46 Pd Palladium 2 4	47 Ag Silver 1	48 Cd Cadmium 2	.9 n ndium	50 Sn Tin -4 2 4	51 Sb Antimony -3 3 5	52 Te Tellurium -2 2 4 6	53 I Iodine -11357	54 Xe Xenon 2 4 6
6	55 Cs Caesium	56 Ba Barium 2	57-71	72 Hf Hafnium 4	73 Ta Tantalum 5	74 W Tungsten 46	75 Re Rhenium 4	76 Os Osmium 4	77 Ir Iridium 3 4	78 Pt Platinum 2 4	79 Au Gold 3	80 Hg Mercury 1 2	1 1 hallium 3	82 Pb Lead 2 4	83 Bi Bismuth 3	84 Po Polonium -2 2 4	85 At Astatine -1.1	86 Rn Radon 2
7	87 Fr Francium 1	88 Ra Radium 2	89-103	104 Rf Rutherfordium 4	105 Db Dubnium 5	106 Sg Seaborgium 6	107 Bh Bohrium 7	108 Hs Hassium 8	109 Mt Meitnerium	110 Ds Darmstadtium	111 Rg Roentgenium	112 Cn Copernidum	13 Nh Iihonium	114 Fl Flerovium	115 Mc Moscovium	116 LV Uvermorium	117 Ts Tennessine	118 Og Oganesson
				Oxidat	ion state	s are the	number	of electro	ons adde	d to or re	moved fr	om an el	ement w	hen it for	ms a che	mical cor	npound.	
			6	57 La Lanthanum 3	58 Ce Cerium 3 4	59 Pr Praseodymium 3	60 Nd Neodymium 3	61 Pm Promethium 3	62 Sm Samarium	63 Eu Europium 2 3	64 Gd Gadolinium 3	65 Tb Terbium	66 Dy Dysprosium	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium
			7	89 Ac Actinium	90 Th Thorium 4	91 Pa Protactinium 5	92 U Uranium 6	93 Np Neptunium 5	94 Pu Plutonium 4	95 Am Ameridium 3	96 Cm ^{Curium} 3	97 Bk Berkelium 3	98 Cf Californium 3	99 Es Einsteinium 3	100 Fm Fermium 3	101 Md Mendelevium 3	102 No Nobelium 2	103 Lr Lawrendum 3

https://ptable.com

sbeck@flatironinstitute.org

TRIQS summer school 2023

Weak versus strong correlation

effective single-particle picture

- weakly correlated systems
- density functional theory
- Fermi liquid theory

$$egin{aligned} \Psi(\mathbf{x}_1,\mathbf{x}_2) &= rac{1}{\sqrt{2}} \{\chi_1(\mathbf{x}_1)\chi_2(\mathbf{x}_2) - \chi_1(\mathbf{x}_2)\chi_2(\mathbf{x}_1)\} \ &= rac{1}{\sqrt{2}} igg| \chi_1(\mathbf{x}_1) & \chi_2(\mathbf{x}_1) \ \chi_1(\mathbf{x}_2) & \chi_2(\mathbf{x}_2) igg|, \end{aligned}$$

Weak versus strong correlation

effective single-particle picture

- weakly correlated systems
- density functional theory
- Fermi liquid theory

strongly correlated systems

- breakdown of single-particle picture
- strong local Coulomb interaction \boldsymbol{U}
- between ionic localization and itinerant behavior

$$egin{aligned} \Psi(\mathbf{x}_1,\mathbf{x}_2) &= rac{1}{\sqrt{2}} \{\chi_1(\mathbf{x}_1)\chi_2(\mathbf{x}_2) - \chi_1(\mathbf{x}_2)\chi_2(\mathbf{x}_1)\} \ &= rac{1}{\sqrt{2}} igg| egin{aligned} \chi_1(\mathbf{x}_1) & \chi_2(\mathbf{x}_1) \ \chi_1(\mathbf{x}_2) & \chi_2(\mathbf{x}_2) \ \end{aligned}
ight|, \end{aligned}$$

Case study: Fermi surface of Sr_2RuO_4

- strong correlations (U = 2.3 eV)
- Hund physics (J = 0.4 eV)

- Fermi liquid ($T_{\rm FL} \approx 25~{\rm K}$)
- superconductivity ($T_{\mathsf{C}} \approx 1.5 \text{ K}$)
- = spin-orbit coupling ($\lambda = 0.1 0.2$ eV) = Van Hove singularity close to E_{F}

A. Georges, lecture notes (2017)

Where DFT may be insufficient

Fermi surface

M. W. Haverkort et al., Phys. Rev. Lett. 101, 026406 (2008)

Seebeck

- also: mass enhancement, orbital occupations, optics, SOC, ...
- more obvious: local-moment paramagnet (Mott insulator) versus (anti-)ferromagnet or non-magnetic metal in DFT

J. Mravlje, A. Georges, Phys. Rev. Lett. 117, 036401 (2016)

Spectral function $A(\mathbf{k}, \omega)$

A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

Spectral function $A({\bf k},\omega)$ - non-interacting

$$G(\mathbf{k},\omega) = \frac{1}{\omega - \epsilon_{\mathbf{k}} + \mathrm{i}\eta}$$

$$A(\mathbf{k},\omega) = -\frac{1}{\pi}\delta(\omega - \epsilon_{\mathbf{k}})$$

A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

Spectral function $A({\bf k},\omega)$ - interacting

$$G(\mathbf{k},\omega) = \frac{1}{\omega - \epsilon_{\mathbf{k}} - \Sigma(\omega)}$$

$$\Sigma(\omega) = \Sigma'(\omega) + i\Sigma''(\omega)$$

$$A(\mathbf{k},\omega) = -\frac{1}{\pi} \frac{\Sigma''(\omega)}{(\omega - \epsilon_{\mathbf{k}} - \Sigma'(\omega))^2 + \Sigma''(\omega)^2}$$

A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

-1

$$G(\mathbf{k},\omega) = \frac{1}{\omega - \epsilon_{\mathbf{k}} - \Sigma(\omega)}$$

with
$$\Sigma(\omega) = \Sigma'(\omega) + i\Sigma''(\omega)$$

sbeck@flatironinstitute.org

$$G(\mathbf{k},\omega) = \frac{Z(\epsilon_{\mathbf{k}}^*)}{\omega - \epsilon_{\mathbf{k}}^* - \mathrm{i}\Gamma(\epsilon_{\mathbf{k}}^*)} + G_{\mathrm{incoh}}$$

if
$$\Sigma''(\omega)$$
 not too large: quasiparticles

- $\epsilon^*_{\mathbf{k}}$ quasiparticle dispersion
- Z quasiparticle renormalization
- Γ scattering rate/inverse lifetime

$$\begin{aligned} \epsilon_{\mathbf{k}}^{*} &= \epsilon_{\mathbf{k}} + \Sigma'(\epsilon_{\mathbf{k}}^{*}) \\ Z(\omega) &= [1 - \frac{\partial \Sigma'(\omega)}{\partial \omega}]^{-1} \\ \Gamma(\omega) &= -Z(\omega) \Sigma''(\omega) \end{aligned}$$

$$G(\mathbf{k},\omega) = \frac{Z}{\omega - \epsilon^*_{\mathbf{k}} - \mathrm{i}\Gamma} + G_{\mathrm{incoh}}$$

if
$$\Sigma^{\prime\prime}(\omega)$$
 not too large and near $\omega=0$

- $\epsilon^*_{\mathbf{k}}$ quasiparticle dispersion
- Z quasiparticle renormalization
- Γ scattering rate/inverse lifetime

$$\begin{aligned} \epsilon_{\mathbf{k}}^* &= Z(\epsilon_{\mathbf{k}} + \Sigma'(0)) \\ Z &= [1 - \frac{\partial \Sigma'(\omega)}{\partial \omega}|_{\omega=0}]^{-1} = \frac{m}{m^*} \\ \Gamma &= -Z\Sigma''(0) \end{aligned}$$

$$G(\mathbf{k},\omega) = \frac{Z}{\omega - \epsilon^*_{\mathbf{k}} - \mathrm{i}\Gamma} + G_{\mathrm{incoh}}$$

if
$$\Sigma''(\omega)$$
 not too large and near $\omega = 0$

- $\epsilon^*_{\mathbf{k}}$ quasiparticle dispersion
- Z quasiparticle renormalization
- Γ scattering rate/inverse lifetime

$$\begin{aligned} \epsilon_{\mathbf{k}}^* &= \epsilon_{\mathbf{k}} + \Sigma'(0) \\ Z &= [1 - \frac{\partial \Sigma'(0)}{\partial \omega}]^{-1} = 1 \\ \Gamma &\to 0 \end{aligned}$$

DFT+DMFT

- situation: complex physics arising from strong local Coulomb interaction in partially filled orbitals in strongly correlated materials
- **goal:** ab-initio, material-realistic description
- challenge: combining localized, atomic-like and itinerant electronic behavior
- ansatz: DFT+DMFT, downfolding & embedding
- ingredients: hoppings t and Coulomb repulsion U for downfolded model, projector functions P to transform from/to full system
- example: Fermi surface of Sr₂RuO₄

recap: Dynamical Mean Field Theory

- map lattice to effective impurity model (AIM) embedded in bath
- impurity-bath coupling $\Delta(\omega)$ determined self-consistently
- basic ingredients: t, U

W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 3 (1989)

A. Georges and G. Kotliar, Phys. Rev. B 45, 12 (1992)

DMFT self-consistency - example: Bethe lattice

μ

DMFT self-consistency

• basic ingredients: t, U, and P

From many-body to effective one-body problem

electronic Schrödinger equation:

$$\hat{H}\Psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=\epsilon\Psi(\mathbf{r}_1,...,\mathbf{r}_N)$$

with

$$\hat{H} = -\sum_{i} \frac{\hbar^2 \nabla_i^2}{2m} + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{i}^N v_{\text{ext}}(\mathbf{r}_i) = T + \mathbf{U} + V_{\text{ext}}$$

in second quantization:

$$\hat{H} = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_l c_k$$

From many-body to effective one-body problem

electronic Schrödinger equation:

$$\hat{H}\Psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=\epsilon\Psi(\mathbf{r}_1,...,\mathbf{r}_N)$$

with

$$\hat{H} = -\sum_{i} \frac{\hbar^2 \nabla_i^2}{2m} + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{i}^N v_{\text{ext}}(\mathbf{r}_i) = T + \mathbf{U} + V_{\text{ext}}$$

in second quantization:

$$\hat{H} = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_l c_k \rightarrow \hat{H}_{\rm DFT} = \sum_{ij} \tilde{t}_{ij} c_i^{\dagger} c_j$$

Density Functional Theory

1. Hohenberg-Kohn theorem: the external potential (and total energy) is a unique functional of the electron density: $\Psi(\mathbf{r}_1, ..., \mathbf{r}_N) \rightarrow \rho(\mathbf{r})$

$$ho(\mathbf{r}) = N \int \mathrm{d}^3 \mathbf{r}_2 \cdots \int \mathrm{d}^3 \mathbf{r}_N |\Psi(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)|^2$$

2. Hohenberg-Kohn theorem: the ground-state charge density ρ_0 minimises the energy functional, i.e. yielding the ground-state energy E_0

$$E[\rho_0] \le E[\rho] = \min_{\Psi \to \rho_0} \langle \Psi | T + \frac{U}{U} + V_{\text{ext}} | \Psi \rangle$$

Effective single-particle picture

Recast full system into a ficticious, auxiliary system of separable Kohn-Sham orbitals $\{\psi_n\}$, that generates the same density as the original one

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + v_{\text{eff}}(\mathbf{r})\right]\psi_n(\mathbf{r}) = \epsilon_n\psi_n(\mathbf{r})$$

$$v_{ ext{eff}}(\mathbf{r}) = v_{ ext{H}}[
ho](\mathbf{r}) + rac{\delta E_{ ext{XC}}[
ho]}{\delta
ho(\mathbf{r})} + v_{ ext{ext}}(\mathbf{r})$$

- solution is found self-consistently
- exchange-correlation potential is the only unknown
- Kohn-Sham orbital energies have little physical meaning

$$\rightarrow \hat{H}_{\rm KS} = \sum_{ij} \tilde{t}_{ij} c_i^{\dagger} c_j$$

DFT+DMFT ingredients: target bands t

- partitioning of the system
- maximally localized Wannier functions $|\mathbf{R}j\rangle$ from Kohn-Sham states $|\psi_{n\mathbf{k}}\rangle$:

$$\begin{aligned} \left| \psi_{j\mathbf{k}}^{\mathrm{W}} \right\rangle &= \sum_{n} U_{\mathbf{k},nj} \left| \psi_{n\mathbf{k}} \right\rangle \\ \left| \mathbf{R} j \right\rangle &= \frac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d\mathbf{k} \,\mathrm{e}^{-\mathrm{i}\mathbf{k}\mathbf{R}} \left| \psi_{j\mathbf{k}}^{\mathrm{W}} \right\rangle \end{aligned}$$

hopping elements:

$$t_{ij}(\mathbf{R}) = \left\langle 0i \right| \hat{H}^{\mathrm{KS}} \left| \mathbf{R}j \right\rangle$$

N. Marzari, and D. Vanderbilt, Phys. Rev. B 56, 20 (1997)

DFT+DMFT ingredients: projector functions P

lattice Green's function:

$$\hat{G}(\mathbf{k}, \mathrm{i}\omega_n) = \sum_{mn} \left[\mathrm{i}\omega_n + \mu - \hat{\epsilon}(\mathbf{k}) - \Delta \hat{\Sigma}(\mathbf{k}, \mathrm{i}\omega_n) \right]_{mn}^{-1} |\psi_{m\mathbf{k}}\rangle \left\langle \psi_{n\mathbf{k}} \right|$$

downfolding:

$$G_{ij,\mathcal{R}}^{\text{loc}}(\mathrm{i}\omega_n) = \sum_{\mathbf{k},mn} P_{im}^{\mathcal{R}}(\mathbf{k}) G_{mn}(\mathbf{k},\mathrm{i}\omega_n) P_{nj}^{\mathcal{R}*}(\mathbf{k})$$

with projector onto orbital j at atomic site \mathcal{R} :

$$P_{jn}^{\mathcal{R}}(\mathbf{k}) = \left\langle \psi_{\mathcal{R}_j \mathbf{k}}^{\mathrm{W}} \middle| \psi_{n \mathbf{k}} \right\rangle$$

upfolding:

$$\Delta \Sigma_{mn}(\mathbf{k}, \mathrm{i}\omega_n) = \sum_{\mathcal{R}, ij} P_{mi}^{\mathcal{R}*}(\mathbf{k}) \Delta \Sigma_{ij}^{\mathcal{R}}(\mathrm{i}\omega_n) P_{jn}^{\mathcal{R}}(\mathbf{k})$$

- basis transformation
- entanglement
- local symmetries

FLATIRON INSTITUTE Center for Computational Quantum Physics

Double counting

- E_U is a functional of the orbital occupations, but $E_{\rm XC}$ is a non-linear functional of the total electron density
- ill-posed problem due to the formally incompatible footing: diagrammatic vs. non-perturbative
- different analytic, *phenomenological* expressions have been proposed: FLL, AMF, ANI, Kunes, nominal...
- remedy: GW+DMFT

$$\Delta \Sigma_{ij}^{\mathcal{R}}(\mathrm{i}\omega_n) = \Sigma_{ij}^{\mathcal{R}}(\mathrm{i}\omega_n) - \Sigma_{\mathrm{DC}}$$

$$E_{\text{DFT}+U}[\rho] = E_{\text{DFT}}[\rho] + E_U[n_{ij}^{\sigma}] - E_{\text{DC}}$$

$$E_{\rm XC} \approx E_{\rm XC}^{\rm LDA}[\rho] = \int d\mathbf{r} \, \epsilon_{\rm XC}^{\rm hom}[\rho(\mathbf{r})]\rho(\mathbf{r})$$

 $E_{\mathrm{XC}}[n_{ij}^{\sigma}]$?

DFT+DMFT ingredients: interaction Hamiltonian U

$$\hat{H}_{\text{int}} = \frac{1}{2} \sum_{ijkl}^{\text{at} \mathcal{R}} \frac{U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_l c_k}{\sum_{ijkl}^{\text{at}} c_i^{\dagger} c_j^{\dagger} c_l c_k}$$

$$V_{ijkl} = \int \mathrm{d}^3 \mathbf{r} \, \mathrm{d}^3 \mathbf{r}' w_i^*(\mathbf{r}) w_j^*(\mathbf{r}') \frac{e^2}{|\mathbf{r} - \mathbf{r}'|} w_l(\mathbf{r}') w_k(\mathbf{r})$$

- complicated 4-rank tensor
- use symmetries to reduce complexity
- for cubic systems: Hubbard-Kanamori parametrization
- for spherical systems: Slater parametrization

J. Kanamori, Prog. Theor. Exp. Phys. 30 (1963)

DFT+DMFT ingredients: interaction Hamiltonian U

$$\begin{split} \hat{H}_{U} &= U \sum_{i} n_{i\uparrow} n_{i\downarrow} + U' \sum_{i \neq j} n_{i\uparrow} n_{j\downarrow} + (U' - J) \sum_{i < j,\sigma} n_{i\sigma} n_{j\sigma} \\ &- J \sum_{i \neq j} c^{\dagger}_{i\uparrow} c_{i\downarrow} c^{\dagger}_{j\downarrow} c_{j\uparrow} + J \sum_{i \neq j} c^{\dagger}_{i\uparrow} c^{\dagger}_{i\downarrow} c_{j\downarrow} c_{j\uparrow} \end{split}$$

J. Kanamori, Prog. Theor. Exp. Phys. 30 (1963)

sbeck@flatironinstitute.org

TRIQS summer school 2023

DFT+DMFT ingredients: energy window

pros:

- no DC
- nominal occupations
- less work for impurity solver

cons:

- smaller U, more frequency-dependent
- larger spread $\Omega,$ oxygen tails \rightarrow less localized
- no information on e_g states...
DFT+DMFT ingredients: energy window dp model

pros:

- more localized, DMFT more valid
- larger U and more atomic-like, less frequency-dependent
- renormalizes all states

cons:

- DC, in principle U_{dp} , U_p
- fractional occupations
- heavy for impurity solver

How to determine Coulomb interaction

FLATIRON INSTITUT Center for Computational Quantum Physics

- V of the order of 11 eV for $\rm t_{2g}$, i.e. \gg bandwidth $\,\approx 3.4$ eV
- effective Coulomb interaction screened by surrounding electrons
- screened interaction $U({\bf r},{\bf r}')$ in practice:
 - cRPA: screening channels, frequency dependence, Hund *J*
 - cLDA: only full d shell, static, no Hund J

•
$$d - dp$$
: $F^0 = 3.23 \text{ eV}$, $\bar{U}_{mm} = 4.1 \text{ eV}$,
 $t_{2g} - t_{2g}$: $\mathcal{U} = 2.56 \text{ eV}$

L. Vaugier, H. Jiang, S. Biermann, Phys. Rev. B 86, 165105 (2012)

Multi-site DMFT

Multi-site DMFT

self-energy approximated as block-diagonal in orbital basis

Multi-site DMFT

- self-energy approximated as block-diagonal in orbital basis
- map self-energy to symmetry-equivalent sites
- use spin channel for AFM solutions

Impurity solvers

 $G_{\sigma}^{\mathsf{imp}}(\tau) = \left\langle Tc_{\sigma}(\tau)c_{\sigma}^{\dagger}(0) \right\rangle_{\mathcal{G}_{0}}$

approximate solvers:

- Hartree(-Fock)
- Hubbard-I

....

- Iterated perturbation theory (IPT)
- Slave boson technique

numerically exact solvers:

- Quantum Monte Carlo (QMC)
- exact diagonalization (ED)
- numerical renormalization group (NRG)
- density matrix renormalization group (DMRG)
- tensor-network based approaches (MPS/TTN)

overview: see lecture by O. Parcollet, Arnold Sommerfeld School (2017)

Method	Physical quantity	Constraining field
Baym-Kadanoff	$G_{\alpha\beta}(\mathbf{k},i\omega)$	$\Sigma_{\mathrm{int},\alpha\beta}(\mathbf{k},i\omega)$
DMFT (BL)	$G_{\mathrm{loc},\alpha\beta}(i\omega)$	$\mathcal{M}_{\mathrm{int},lphaeta}(i\omega)$
DMFT (AL)	$G_{\mathrm{loc},lphaeta}(i\omega)$	$\Delta_{lphaeta}(i\omega)$
LDA+DMFT (BL)	$\rho(r), G_{\mathrm{loc},ab}(i\omega)$	$V_{\rm int}(r), \ \mathcal{M}_{{\rm int},ab}(i\omega)$
LDA+DMFT (AL)	$\rho(r), \ G_{\mathrm{loc},ab}(i\omega)$	$V_{\rm int}(r), \ \Delta_{ab}(i\omega)$
LDA + U	$\rho(r), n_{ab}$	$V_{\rm int}(r), \ \lambda_{ab}$
LDA	ho(r)	$V_{\rm int}(r)$

G. Kotliar et al., Rev. Mod. Phys. 78, 865 (2006)

FLATIRON INSTITUTE Center for Computational Quantum Physics

Occupation updates for DFT

interacting charge density

$$\rho(\mathbf{r}) = \frac{1}{\beta} \sum_{n, \mathbf{k}} \langle \mathbf{r} | \hat{G}(\mathbf{k}, i\omega_n) | \mathbf{r} \rangle \equiv \rho^{\text{KS}}(\mathbf{r}) + \Delta \rho(\mathbf{r})$$

KS charge density:

$$\rho^{\mathrm{KS}}(\mathbf{r}) = \sum_{\mathbf{k}} \sum_{n=1}^{N_{\mathcal{B}}} f_{\nu \mathbf{k}}^{\mathrm{KS}} \left\langle \mathbf{r} | \psi_{n \mathbf{k}} \right\rangle \left\langle \psi_{n \mathbf{k}} | \mathbf{r} \right\rangle$$

 \rightarrow compute $\Delta \rho(\mathbf{r})$, feed it back to DFT, compute updated KS charge density $\rho^{\mathrm{KS}}(\mathbf{r})$

$$\begin{split} \Delta \rho(\mathbf{r}) &= \frac{1}{\beta} \sum_{n,\mathbf{k}} \left\langle \mathbf{r} \right| \hat{G}(\mathbf{k}, \mathrm{i}\omega_n) - \hat{G}^{\mathrm{KS}}(\mathbf{k}, \mathrm{i}\omega_n) \left| \mathbf{r} \right\rangle \\ &\equiv \sum_{\mathbf{k}} \left\langle \mathbf{r} \right| \Delta \hat{N}(\mathbf{k}) \left| \mathbf{r} \right\rangle \end{split}$$

M. Schüler et al., J. Phys. Condens. Matter 30, 475901 (2018)

sbeck@flatironinstitute.org

TRIQS summer school 2023

F. Lechermann et al., Phys. Rev. B 74, 125120 (2006)

Quasiparticle mass renormalization in Sr_2RuO_4

- CT-HYB solver, $\beta = 232 \text{ eV}^{-1}$
- minimal effect of charge self-consistency

Orbital polarization in CaVO₃ (tensile strain)

- CT-HYB solver, $\beta = 40~{\rm eV^{-1}}$
- charge self-consistency strongly reduces the orbital polarization found in one-shot calculations

A. Hampel, SB, and C. Ederer, Phys. Rev. Res. 2, 033088 (2020)

Post-processing

What we can compute:

- spectral properties
- optical and thermal conductivity
- Hall and Seebeck coefficient
- two-particle correlation function (susceptibilities)
- • • •

- electronic Raman spectroscopy
- x-ray photoemission and absorption spectroscopy
- resonant inelastic x-ray scattering
- phonon spectra

Back to the experiment

M. W. Haverkort et al., Phys. Rev. Lett. 101, 026406 (2008)

A. Tamai et al., Phys. Rev. X 9, 021048 (2019)

X. Cao et al., Phys. Rev. B 104, 115119 (2021)

sbeck@flatironinstitute.org

TRIQS summer school 2023

Spin-orbit coupling in Sr_2RuO_4

$$\hat{H}_{\lambda}^{\text{SOC}} = \frac{\gamma}{2} \sum_{ij} \sum_{\sigma\sigma'} c_{i\sigma}^{\dagger} (\mathbf{l}_{ij} \cdot \boldsymbol{\sigma}_{\sigma\sigma'}) c_{j\sigma'}$$

- correlation-induced enhancement of crystal-field splitting
- correlation-induced enhancement of effective spin-orbit coupling

Tensor network real-frequency impurity solver

D. Bauernfeind et al., Phys. Rev. X 7, 031013 (2017)

${\rm Sr}_2{\rm RuO}_4$ under uniaxial pressure

A. Steppke et al., Science 355, eaaf9398 (2017)

M. E. Barber et al., Phys. Rev. Lett. 120, 076602 (2018)

sbeck@flatironinstitute.org

TRIQS summer school 2023

Uniaxial strain experiments

Uniaxial strain experiments

- Lifshitz transition with uniaxial strain
- novel FTPS impurity solver, including spin-orbit coupling
- critical strain $\epsilon_{xx}\approx -0.4$ consistent with experiment

 $k_x a/\pi$

- V. Sunko et al., npj Quantum Mater. 4, 46 (2019)
- M. E. Barber et al., Phys. Rev. B 100, 245139 (2019)

D. Bauernfeind *et al.*, Phys. Rev. X 7, 031013 (2017)
 X. Cao *et al.*, Phys. Rev. B 104, 115119 (2021)

- Lifshitz transition with uniaxial strain
- novel FTPS impurity solver, including spin-orbit coupling
- critical strain $\epsilon_{xx}\approx -0.4$ consistent with experiment

M. E. Barber et al., Phys. Rev. B 100, 245139 (2019)

D. Bauernfeind *et al.*, Phys. Rev. X 7, 031013 (2017)
X. Cao *et al.*, Phys. Rev. B 104, 115119 (2021)

V. Sunko et al., npj Quantum Mater. 4, 46 (2019)

- Lifshitz transition with uniaxial strain
- novel FTPS impurity solver, including spin-orbit coupling
- critical strain $\epsilon_{xx}\approx -0.4$ consistent with experiment

V. Sunko et al., npj Quantum Mater. 4, 46 (2019)

M. E. Barber et al., Phys. Rev. B 100, 245139 (2019)

D. Bauernfeind *et al.*, Phys. Rev. X 7, 031013 (2017)
 X. Cao *et al.*, Phys. Rev. B 104, 115119 (2021)

- Lifshitz transition with uniaxial strain
- novel FTPS impurity solver, including spin-orbit coupling
- critical strain $\epsilon_{xx}\approx -0.4$ consistent with experiment

V. Sunko et al., npj Quantum Mater. 4, 46 (2019)

M. E. Barber et al., Phys. Rev. B 100, 245139 (2019)

D. Bauernfeind *et al.*, Phys. Rev. X 7, 031013 (2017)
 X. Cao *et al.*, Phys. Rev. B 104, 115119 (2021)

sbeck@flatironinstitute.org

40

- Lifshitz transition with uniaxial strain
- novel FTPS impurity solver, including spin-orbit coupling
- critical strain $\epsilon_{xx}\approx -0.4$ consistent with experiment

V. Sunko et al., npj Quantum Mater. 4, 46 (2019)

M. E. Barber et al., Phys. Rev. B 100, 245139 (2019)

D. Bauernfeind *et al.*, Phys. Rev. X 7, 031013 (2017)
 X. Cao *et al.*, Phys. Rev. B 104, 115119 (2021)

 $k_x a/\pi$

Streamlined, robust and efficient screening of materials

solid dmft

A versatile python wrapper to perform DFT + DMFT calculations utilizing the TRIOS software library.

M. Merkel (ETHZ)

A. Carta

(ETHZ)

S. Beck

A. Hampel

M. Merkel, A. Carta, SB and A. Hampel, J. Open Source Softw. 7(77), 4623 (2022)

Scattering rate and Brillouin zone integrals

- scattering rate finite but possibly extremely small
- frequency dependence requires adaptivity for momentum integration

Task: compute local single-particle Green's function (i.e. DOS)

$$G(\omega) = \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \Sigma(\mathbf{k}, \omega) \right)^{-1} \right]$$

Task: compute local single-particle Green's function (i.e. DOS)

$$G(\omega) = \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \Sigma(\mathbf{k}, \omega) \right)^{-1} \right]$$

• Applications: self-consistency loops in DMFT and post-processing

Task: compute local single-particle Green's function (i.e. DOS)

$$G(\omega) = \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \Sigma(\mathbf{k}, \omega) \right)^{-1} \right]$$

- Applications: self-consistency loops in DMFT and post-processing
- Setting: $H(\mathbf{k})$ obtained from a Wannier Hamiltonian $H(\mathbf{R})$, $\Sigma(\mathbf{k},\omega) = \mathrm{i}\eta$

Task: compute local single-particle Green's function (i.e. DOS)

$$G(\omega) = \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \Sigma(\mathbf{k}, \omega) \right)^{-1} \right]$$

- Applications: self-consistency loops in DMFT and post-processing
- Setting: $H(\mathbf{k})$ obtained from a Wannier Hamiltonian $H(\mathbf{R})$, $\Sigma(\mathbf{k},\omega) = \mathrm{i}\eta$
- Goal: fully automatic, high-order and adaptive algorithm

Wannier interpolation

 $\mathcal{O}_{nm}(\mathbf{q}) = \langle u_{n\mathbf{q}} | \hat{\mathcal{O}}(\mathbf{q}) | u_{m\mathbf{q}} \rangle$

$$\mathcal{O}_{nm}^{(W)}(\mathbf{R}) = \frac{1}{N_0} \sum_{\mathbf{q}} e^{-i\mathbf{q}\cdot\mathbf{R}} \mathcal{O}_{nm}^{(W)}(\mathbf{q})$$

$$\mathcal{O}_{nm}^{(W)}(\mathbf{k}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \mathcal{O}_{nm}^{(W)}(\mathbf{R})$$

J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B 75, 195121 (2007)

Integration schemes applied to BZ integrals and their scalings

- periodic trapezoidal rule (PTR):
- iterated adaptive integration (IAI)¹:

$$\int \int \mathrm{d}k_x \,\mathrm{d}k_y \,f(k_x,k_y) = \int \mathrm{d}k_x \,I_2(k_x), \qquad I_2(k_x) = \int \mathrm{d}k_y \,f(k_x,k_y)$$

 $\mathcal{O}(\eta^{-3})$ $\mathcal{O}(\log^3(\eta^{-1}))$

0

 k_r

π

¹J. Kaye, SB, A. Barnett, L. Van Muñoz, and O. Parcollet, arxiv:2211.12959 (2022)

TRIQS summer school 2023

Example: density of states

DOS of SrVO $_3$, three t_{2g} orbitals:

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} G(\omega) = -\frac{1}{\pi} \operatorname{Im} \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \mathrm{i}\eta \right)^{-1} \right]$$

Example: density of states

DOS of SrVO $_3$, three t_{2g} orbitals:

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} G(\omega) = -\frac{1}{\pi} \operatorname{Im} \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \mathrm{i}\eta \right)^{-1} \right]$$

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} G(\omega) = -\frac{1}{\pi} \operatorname{Im} \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \mathrm{i}\eta \right)^{-1} \right]$$

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} G(\omega) = -\frac{1}{\pi} \operatorname{Im} \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \mathrm{i}\eta \right)^{-1} \right]$$

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} G(\omega) = -\frac{1}{\pi} \operatorname{Im} \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \mathrm{i}\eta \right)^{-1} \right]$$

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} G(\omega) = -\frac{1}{\pi} \operatorname{Im} \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \mathrm{i}\eta \right)^{-1} \right]$$

Summary

More problems - more literature

- double counting
- more orbitals, more complex systems
- screening
- (real-frequency) impurity solvers and analytic continuation
- superconductivity
- out of equilibrium
- low-T, exotic states

Jülich, Autumn School on Correlated Electrons www.cond-mat.de/events/correl.html