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Highlights

• Recurrent Inference Machines iteratively reconstruct heterogeneous raw
MRI data

• Generalizes across scanners, contrasts, resolutions, organs and acceler-
ation rates

• Reconstruction quality rated superior to Compressed Sensing by a neu-
roradiologist

• Over 10 times more efficient than Compressed Sensing

• Prospectively undersampled 11.4x and 12.1x accelerated data accu-
rately reconstructed

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Recurrent Inference Machines

for Reconstructing Heterogeneous MRI Data

Kai Lønningc,a,b, Patrick Putzkyd,b, Jan-Jakob Sonkec, Liesbeth Renemane,
Matthan W. A. Caane,a, Max Wellingd,b

aSpinoza Centre for Neuroimaging, Amsterdam, 1105 BK, Netherlands
bInformatics Institute at the University of Amsterdam, Amsterdam, 1098 XH,

Netherlands
cNetherlands Cancer Institute, Amsterdam, 1066 CX, Netherlands

dAMLab, Amsterdam, 1098 XH, Netherlands
eAmsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, 1105

AZ Amsterdam, Netherlands

Abstract

Deep learning allows for accelerated magnetic resonance image (MRI) re-
construction, thereby shortening measurement times. Rather than using
sparsifying transforms, a prerequisite in Compressed Sensing (CS), suitable
MRI prior distributions are learned from data. In clinical practice, both the
underlying anatomy as well as image acquisition settings vary. For this rea-
son, deep neural networks must be able to reapply what they learn across
different measurement conditions. We propose to use Recurrent Inference
Machines (RIM) as a framework for accelerated MRI reconstruction. RIMs
solve inverse problems in an iterative and recurrent inference procedure by
repeatedly reassessing the state of their reconstruction, and subsequently
making incremental adjustments to it in accordance with the forward model
of accelerated MRI. RIMs learn the inferential process of reconstructing a
given signal, which, in combination with the use of internal states as part
of their recurrent architecture, makes them less dependent on learning the
features pertaining to the source of the signal itself. This gives RIMs a low
tendency to overfit, and a high capacity to generalize to unseen types of data.
We demonstrate this ability with respect to anatomy by reconstructing brain
and knee scans, as well as other MRI acquisition settings, by reconstructing
scans of different contrast and resolution, at different field strength, sub-
jected to varying acceleration levels. We show that RIMs outperform CS not
only with respect to quality metrics, but also according to a rating given by
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an experienced neuroradiologist in a double blinded experiment. Finally, we
show with qualitative results that our model can be applied to prospectively
under-sampled raw data, as acquired by pre-installed acquisition protocols.

Keywords: MRI, Reconstruction, Deep Learning, Inverse Problems

1. Introduction

Magnetic Resonance Imaging (MRI) is used in a wide variety of research
and clinical applications measuring soft tissue in the human body. Systems
at multiple field strengths deploy several measuring sequences to produce the
specific contrast for the intended purpose, including T1-, T2-, and T ∗2 -weighted
images. The scanner measures data in the space of proton net-precession
frequencies, known in MRI as k-space. Once enough samples in k-space are
acquired to meet the Nyquist-criterion, the MR-image of tissue density can be
computed through the inverse Fourier transform. However, there are physical
constraints to the data acquisition process, putting a lower bound on the time
it takes to fully sample k-space and produce an image (Haacke et al., 1999).
As such, aspirations to reducing MR scan times amount to acquiring k-
space samples below the Nyquist-criterion and reconstructing the MR-image
through a dealiasing algorithm. This entails solving an inverse problem: In
the context of accelerated MRI reconstruction, the forward model is a known
process that describes the transformation taking the true image signal to
the measured samples. What is not known, is the forward model’s inverse
transformation, taking the measured signal back to the true image, as this
information is lost when k-space is sparsely sampled.

The set of possible MR-images is huge, even when restricted to a particu-
lar anatomical region, contrast mechanism or resolution. Also consider that
each image spawns a large set of possible image corruptions, one for each
permitted set of k-space sub-samples. Using deep learning to find a function
that maps each corruption back to the original signal, for all possible original
signals, is a highly complex problem, requiring constraints on the solution
space to be made. Traditional methods do this by careful design of fea-
tures that exploit some known property inherent to the MR-images at hand.
For instance, in Parallel Imaging (PI) the variations in spatial sensitivity of
different signal receiver coils placed within the scanner provide redundant
information, which is exploited in order to unfold aliasing artifacts caused
by periodic under-sampling (Griswold et al., 2002; Pruessmann et al., 1999).
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Another well-established technique is Compressed Sensing (CS), which forces
the reconstruction to conform to a sparse transform known to compress MR-
images of a particular anatomical region (Lustig et al., 2007).

As the training of deep neural networks expands into ever more areas of
applications, including medical imaging (Litjens et al., 2017), research efforts
are turning away from hand-engineering features to the design of good net-
work architectures that allow the model to learn features on its own, often
leading to performance gains. We give examples of deep learning solutions
to accelerated MRI reconstruction in section 2. In this work, we apply Re-
current Inference Machines (RIM) for accelerated MRI reconstruction, which
were first proposed as general inverse problem solvers in Putzky and Welling
(2017). They constrain the solution space by learning an iterative process,
where step-wise reassessments of the maximum a posteriori estimate lead to
incremental updates that infer the inverse transform of the forward model.

Apart from breaking a complex problem into multiple sub-problems, we
conjecture that this iterative ”meta-learning”-approach prevents the model
from overfitting on the image statistics of the dataset, by shifting focus to-
ward learning the inversion procedure itself. This should result in a model
that is more invariant with respect to changes in the specific imaging settings.
In this paper, we show that RIMs can accurately and efficiently reconstruct
sparsely sampled MR-images at varying acceleration factors, and that their
solution is robust against perturbations in sub-sampling points, image reso-
lution levels, and to some extent the underlying anatomy being imaged, mak-
ing them suitable candidates for distribution across different MR-acquisition
set-ups.

In section 2, a more detailed description of accelerated MRI reconstruc-
tion is given, along with an overview of previously proposed solutions. Section
3 then describes the RIM model and its implementation. Our experiments
are set up to demonstrate the generalizability of RIMs and are described in
section 4, before results are presented in section 5. Finally, we conclude with
a discussion of our findings in section 6.

2. Background and Related Work

2.1. The forward model

We begin by introducing the forward model of accelerated MRI recon-
struction. Let x ∈ Cn be the true image signal and let yι ∈ Cm, m� n, be
the set of sparsely sampled frequency signals measured in k-space by one of
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Figure 1: The goal in MRI is to retrieve a high resolution image (top left). Measurements
are done in k-space (bottom left), which is related to image space through a coil sensitivity
weighted map, followed by a Fourier transform. In order to accelerate the measurement
process, k-space is sparsely sampled (bottom right). Reconstructing the sparsely sampled
k-space measurements will lead to an aliased image (top right). The goal of this work is to
find a function that maps from an incomplete k-space (bottom right) to a high resolution
image (top left).
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the scanner’s c receiver coils. The measurements can then be described in
terms of the true image,

yι = PFSιx + nι, ι = 1, . . . , c. (1)

Here, the MR-image is decomposed into a partial coil image through the
sensitivity map Sι, a diagonal matrix that scales every pixel by a complex
number according to the spatial sensitivity of the ι-th coil. This partial image
is then projected onto its frequency domain through the Fourier transform
F , followed by a sub-sampling mask P , which reduces the dimensionality
by discarding some fraction of values in k-space, thereby facilitating the
acceleration in scan times. Measurements are assumed to be subjected to
additive, normally distributed noise, nι ∼ N (0, Iσ2) + iN (0, Iσ2), i2 = −1,
stemming from measurement errors accumulated by the scanner. Although
it is common to use a covariance matrix for the receiver coils in the forward
model (Pruessmann et al., 1999), here we assume that the noise can be
modeled as independent and identically distributed across coils, pixels and
complex components.

The forward model is illustrated in Fig. 1, going from the true image
in the top left corner, to the acquired measurements in the bottom right
corner. Applying the SENSE reconstruction (Pruessmann et al., 1999) to the
under-sampled k-space measurements, by taking a conjugated coil sensitivity
weighted sum over the inverse Fourier transforms of the coil samples, creates
the corrupted image

∑c
ι=1 S

H
ι F−1P Tyι seen in the top right corner. This

is used as a starting point in several reconstruction algorithms (Pruessmann
et al., 1999; Hammernik et al., 2018; Yang et al., 2017; Hyun et al., 2018).

2.2. The Maximum A Posteriori Solution

The goal in accelerated MRI reconstruction is to find an inverse transform
of the forward model in (1), thereby mapping incomplete measurements y :=
{yι}cι=1 to a high resolution image x. A common strategy with this aim is
to optimize for the maximum a posteriori (MAP) estimator from statistics,
given by

xMAP = argmax
x
{log p (y|x) + log p (x)} , (2)

which is the maximization of the sum of the log-likelihood and log-prior
distributions of y and x. This is commonly reformulated as optimizing the
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regularized problem

argmin
x

{
c∑

ι=1

d (yι, PFSιx) + λR (x)

}
, (3)

where d evaluates the data consistency between the reconstruction and mea-
surements, and R is a regularizer, with regularization factor λ, that further
constrains the solution space and prevents overfitting to the data by incor-
porating prior knowledge about the solution.

Under the assumption of independent, identically and normally distributed
measurement errors as in (1), the log-likelihood in (2), corresponding to the
data consistency in (3), is given by

log p (y|x) =
1

σ2

c∑

ι=1

‖PFSιx− yι‖22 (4)

when ignoring the normalization constant.
Whereas (4) follows explicitly from the forward model in (1), the regular-

izer R is a matter of model design. In CS, one takes advantage of the fact that
MR-images are known to have sparse representations under a given transfor-
mation Ψ. The wavelet transform is commonly used for brain imaging, but
other anatomical regions are more compressible under other transformations
(Lustig et al., 2007). This leads to the regularizer R (x) = ‖Ψx‖1, where
the l1-norm is utilized for its bias toward sparse solutions when used as a
regularizer. A solution to (3) is then found through some iterative scheme.
The regularization factor λ determines how much the reconstruction should
prioritize constraining the solution space to signals that are sparse in Ψ’s co-
domain versus reconstructing an image that is consistent with the acquired
data points. Setting λ too high will lead to regularization artifacts, whereas
setting it too low will favor a solution too close to the sparsely sampled
corrupted image.

2.3. Deep Learning Approaches

Deep neural networks offer the ability to learn features that capture the
look and feel of a typical MR-image, thereby eliminating the need to pick a
prior with some suitable sparse transformation beforehand. Another benefit
is that the tuning of λ, whether explicitly included in the model or not, can
be moved away from inference and into the training procedure.
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Recently, there have been several deep learning proposals for accelerated
MRI reconstruction. Some of these are, like CS, based on learning an it-
erative scheme to find (3), using the corrupted image as a starting point.
Examples include the Deep ADMM-Net and the Variational Network (Yang
et al., 2017; Hammernik et al., 2018). The first method uses a neural network
to parametrize the alternating direction method of multipliers (ADMM), a
method that uses dummy variables to solve (3) in a series of partial up-
dates. The second method formulates (3) as a reaction-diffusion process, as
described in Chen et al. (2015). Another iterative approach, the Deep Cas-
cade of CNNs (Schlemper et al., 2018), stacks convolutional neural networks
together for reconstruction, separated by k-space correction layers designed
to maintain data consistency.

In the aforementioned methods, x is retrieved through an iterative pro-
cess, where each iteration is parametrized by a separate set of network param-
eters. RIMs also learn an iterative process, but with a recurrent architecture
where parameters are shared across iterations, using internal and external
states to distinguish the task of one iterative pass from the next. We do not
use the same input, but this approach bears some resemblance to the model
in Andrychowicz et al. (2016), where recurrent neural networks are trained to
learn gradient descent schemes by using the gradient of the objective function
as the network’s input for each time-step.

Not all deep learning methods for accelerated MRI reconstruction are
iterative, such as the U-net architecture. Originally designed for image seg-
mentation tasks (Ronneberger et al., 2015), the U-net has been repurposed
for solving inverse problems in both CT- and MRI-settings (Jin et al., 2017;
Hyun et al., 2018). Taking the corrupted image as input, U-nets consist of
two parts. The first part extracts features from local patches in the input
image through the standard CNN architecture of combined convolutions and
max pooling layers, while steadily increasing the number of feature maps.
This enables the network to extract a large number of features, but at the
cost of losing global context needed for reconstruction. The second part of
the U-net seeks to remedy this by using unpooling layers in order to upscale
the extracted feature maps back to the original size of the input image. After
each unpooling layer, previous feature maps at that resolution level are con-
catenated with the unpooling output, enabling the network to combine the
extracted features with the spatial context that was lost due to max pooling.
The U-net’s non-iterative solution is great for fast reconstruction, but may
come at the cost of more easily overfitting on the training data. In this paper,
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we will illustrate this effect as compared to the RIM.
Finally, not all methods use

∑c
ι=1 S

H
ι F−1P Tyι as a starting point. In-

stead of confining reconstruction to the image space, another non-iterative
approach described in Zhu et al. (2018) learns a mapping from the sparsely
sampled k-space measurements to the fully sampled image directly. A down-
side to this approach is that, due to the inverse Fourier transform mapping
each point in k-space to all points in image space, it requires the use of fully
connected layers.

3. Recurrent Inference Machines

3.1. The RIM Update Equations

When applied to accelerated MRI reconstruction, RIMs aim to optimize
(3) by learning an iterative scheme over t recurrent time-steps. Each time-
step receives information on the current state of the reconstruction process as
an input, yielding an incremental step ∆xτ to take in image space as output.
One of these inputs is the gradient of the log-likelihood in (4), given by

∇y|xτ :=
1

σ2

c∑

ι=1

SHι F−1P T (PFSιxτ − yι) (5)

at time-step τ . As for the problem of evaluating the gradient of the log-
prior distribution in (2), this is solved by passing the current estimate, or
external state, xτ as an input to the network, so that any function that would
implicitly approximate the log-prior gradient can be evaluated at xτ .

Let the RIM network be denoted by h, such that each pass through h
produces the next incremental update ∆xτ . The RIM update equations are
then given by

s0 = 0, x0 =
c∑

ι=1

SHι F−1P Tyι,

sτ+1 = g
(
∇y|xτ ,xτ , sτ

)
, xτ+1 = xτ + h

(
∇y|xτ ,xτ , sτ+1

)
,

(6)

for 0 ≤ τ < t. g is simply the part of the network responsible for producing
the next internal state sτ+1, which the RIM needs in order to keep track of
iterations and modify its behaviour based on the progression of the inference
procedure.
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Figure 2: The Recurrent Inference Machine (RIM) update function h as implemented in
this work. All images show magnitudes scaled individually. Magnitudes of intermedi-
ate internal states s1 and s2 were averaged over features. Bold lines depict connections
within a single time-step, whereas dotted lines represent recurrent connections that pass
information to the next time-step.

3.2. Update Function

The update function h was implemented using a sequence of alternating
convolutional layers and gated recurrent unit (GRU) cells. The first two
convolutional layers are followed by ReLU activation functions before the
feature maps are passed to the GRUs. The GRU cells work as described in
Cho et al. (2014). They are assigned the task of maintaining the internal
state, meaning that in practice there are two internal states s = {s1, s2}
represented by s in (6). Fig. 2 illustrates the way in which all these layers
were assembled.

To produce the input of the first convolutional layer, the external state xτ
is simply concatenated with the current log-likelihood gradient ∇y|xτ along
the channel dimension, resulting in 4 input channels due to the complex com-
ponents also being given separate channels. This first layer is implemented
with a kernel size of 5×5, whereas the next two convolutions have kernel sizes
3×3. All convolutions are padded to retain the same image size through-out
the network.
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a) c)b)

Figure 3: Sample images from the test sets of the three different types of data used in this
work, reconstructed from fully sampled raw k-space data. (a): T1-weighted brain images
acquired from a 3 T scanner at 1.0 mm resolution. (b): T ∗

2 -weighted brain images acquired
from a 7 T scanner at 0.7 mm resolution. (c): T2-weighted knee images acquired from a
3 T scanner at an anisotropic resolution of 0.5-0.6 mm. (a) and (b) are of the same subject,
but were made in separate MR-scanners under different acquisition protocols.

We will take f to mean the number of features in the GRU cells’ internal
states and the number of feature maps produced by the convolutional layers.
This hyper-parameter is kept the same through-out all internal layers, before
the final convolutional layer outputs the complex-valued image update ∆xτ .
Note that the GRU cells’ weights are shared across image pixels, but differ
across the feature maps produced by the convolutional layers, allowing the
network to process images of any given size.

3.3. Loss Function

We use the mean square error (MSE) as a loss function, where the es-
timate xτ is evaluated against the true image x for each time-step. The
total loss to minimize is then given by the weighted sum of MSE over all
time-steps.

L (xt) =
1

nt

t∑

τ=1

wτ ‖xτ − x‖22 . (7)

As before, n is the number of image pixels, and t is the number of time-steps
trained on. wτ determines the image quality emphasis to put on reconstruc-
tion τ relative to the other t− 1 estimates.
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4. Experiments

4.1. Dataset

For training, validation, and testing purposes, three different types of raw
complex-valued multi-coil data were used. A sample of reconstructed fully
sampled images from the test set is shown in Fig. 3.

On a 3.0 T Philips Ingenia scanner (Philips Healthcare, Best, The Nether-
lands) equipped with a 32-channel head coil, T1-weighted three-dimensional
(3D) magnetization prepared rapid gradient echo (MPRAGE) data of the
human brain was acquired with an isotropic resolution of 1.0 mm3 and FOV
256× 240 mm2, matrix size 256× 240, 225 slices with sagittal slice encoding
direction, TFE factor 150, shot interval 2500 ms, inversion delay 900 ms, flip
angle 9◦, and first order shimming. The data were fully sampled with an
elliptical shutter, such that the total scanning time was 10.8 min.

On a 7.0 T Philips Achieva scanner (Achieva, Philips Healthcare, Cleve-
land, USA) equipped with a 32-channel Nova head coil, 3D T ∗2 -weighted
multi-echo FLASH data of the human brain was acquired with an isotropic
resolution of 0.7 mm3 and Field-of-View (FOV) 224× 224× 126 mm3, ma-
trix size 320 × 180, 320 slices with transverse slice encoding direction, 6
echoes with echo times (TEs) ranging from 3 ms to 21 ms, repetition time
(TR) 23.4 ms, flip angle 12◦, and second order imagebased B0-shimming.
The data were fully sampled with an elliptical shutter, such that the total
scanning time was 22.5 min.

On both scanners, raw data were exported and stored for offline recon-
struction experiments. 12 healthy subjects were included, from whom written
informed consent (under an institutionally approved protocol) was obtained
beforehand. Two scans were made of each subject, once on both scan-
ners. The subjects were then divided the same way for both scanners into
training, validation, and test sets, such that no subject in the validation
or test set of one scanner appeared in the training set of the other.
The training sets consisted of 10 subjects, whereas one subject was used for
model selection, and another for final evaluation on the test sets.

Finally, we use the dataset described in Sawyer et al. (2013), which con-
tains knee scans of 20 subjects.1 On a 3 T GE scanner, equipped with an
8-channel knee coil, T2-weighted data were acquired using a fast spin-echo

1The fully sampled knee dataset can be found here: http://mridata.org/

fullysampled/knees
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protocol at a FOV of 160× 160 mm2, with a matrix size 320× 320, and 256
slices with slice thickness 0.6 mm, creating a dataset with anisotropic image
resolution of 0.5-0.6 mm. The scans took around 15.3 min per subject. The
10th subject was discarded due to motion artifacts, and subjects 19 and 18
were used for model selection and evaluation, respectively. The remaining 17
subjects were used for training.

Coil sensitivities were estimated from the data using auto-calibration
(Uecker et al., 2014), and for each subject, the full image volume was normal-
ized with respect to the maximum magnitude after the partial coil images
had been combined. For data augmentation purposes, models were trained
on randomly cropped patches, which were randomly rotated, flipped and mir-
rored. At this stage, under-sampled data were acquired retrospectively by
applying the forward model in (1) for randomly generated P s, to be further
detailed in section 4.2.

This concludes the description of the data used for training, validation
and testing. We made additional scans, of a single separate subject on
the 3 T Philips Ingenia scanner described above, in order to verify
that our algorithm also works on prospectively under-sampled data. For
these scans, we acquired brain scans using two sequences: a T1-
weighted MPRAGE protocol, and T2-weighted TSE protocol, both
with cartesian 3D-acquisitions and a resolution of 1.0 mm. For the
MPRAGE protocol, six scans were made sequentially, one fully
sampled scan and 5 prospectively under-sampled scans, with ac-
celeration factors 3.6x, 4.6x, 7.0x, 9.2x, and 11.4x. For the TSE
protocol, 2 scans were made in sequence, one fully sampled and one
12.1x prospectively under-sampled scan. The sampling schemes
used came pre-installed on the scanner for CS acquisitions and are
pseudorandom patterns with increasing sampling density toward
the lower frequencies.

4.2. Acceleration Method Used for Training and Testing

Through-out our experiments, low frequencies near the origin in k-space
were always fully sampled within an ellipse with half-axes set to 2% of the
image axes. Outside this central region, data points were sampled from a
Gaussian distribution with a full width at half maximum of 0.7, favoring low
frequencies that contain more information about the general shape of the
image content, while also creating incoherent noise due to randomness. We
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Figure 4: Examples of 4x, 6x, 8x, and 10x accelerated cartesian sub-sampling masks, with
sampled k-lines denoted in white.

thereby adhere to the requirement of processing incoherent aliasing artifacts,
as established in CS literature (Lustig et al., 2007).

To reduce the problem complexity, our model was initially developed for
use on synthetic data, where coil images had been combined to a single image
before discarding measurements. This method was described in Lønning
et al. (2018), and amounts to setting c = 1 and S1 = I. Integrating the
use of PI with our model, in the way outlined through-out section 3, enables
the reconstruction of more highly accelerated images. As such, much of
our results were obtained on models without the use of PI, but these are
distinguishable for the reader by the acceleration factors used: We test on
acceleration factors 2x, 3x, 4x, and 5x for the models not using PI, and on
acceleration factors 4x, 6x, 8x, and 10x for the models with PI integrated.
Furthermore, in all plots we assign green colors to RIMs without PI and blue
colors to RIMs with PI.

In previous papers on accelerated MRI reconstruction with deep learning,
models are trained on the same acceleration factor used for testing (Ham-
mernik et al., 2018; Yang et al., 2017; Hyun et al., 2018; Schlemper et al.,
2018). Whether this is an empirically known requirement or a working as-
sumption is unclear. Either way, our hypothesis is that RIMs are capable of
dealing with a range of acceleration factors during training. We verify this by
comparing the performance of models trained on a single acceleration factor
with models trained on a range of randomly sampled acceleration factors. In
all other experiments, the models were trained on acceleration factors that
were randomly sampled from a uniform distribution covering the acceleration
factors used for testing. All models were trained using the ADAM optimizer
(Kingma and Ba, 2014).

After selecting proper hyper-parameters for the training procedure, the
model with the best average MSE on three sub-sampling patterns (P kept
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constant within each acceleration category) was selected for final evaluation.
As mentioned in section 4.1, the subjects used for model selection and in final
test comparisons were kept separate, not only within the same type of data
but also between the two brain scan protocols used. Final results acquired on
the test sets were made on 3-6 sub-sampling patterns (these were also kept
constant within each acceleration factor). Examples of acceleration patterns
used for evaluation can be seen in Fig. 4.

4.3. Research Focus

Since CS is widely used as part of scanner software today, we will use this
as a benchmark for final performance evaluation. For this, we use the BART
toolbox in Lustig et al. (2007), with the `1-norm of the wavelet transform
as a regularizer. A regularization factor of 0.005 is used for the T1-weighted
brain data, whereas on the T ∗2 -weighted brain and T2-weighted knee data we
set λ = 0.008. For all data types we use 80 iterations, and all results for CS
was generated in combination with PI (PICS).

We report the Structural Similarity (SSIM) (Wang et al., 2004), Nor-
malized Root Mean Square Error (NRMSE) and Peak Signal-to-Noise Ratio
(PSNR) reconstruction scores on the magnitude images as performance met-
rics. Since magnitudes are never negative, and because each subject in our
data was normalized by the maximum magnitude value, we used a dynamic
range of 1 for the SSIM. This lowers the score somewhat when comparing
against the use of 2, which is the default dynamic range value in many SSIM
implementations. Similarly, we use a peak signal of 1 for the PSNR.

These metrics are good performance indicators, but it is difficult to cap-
ture the features corresponding to high quality reconstructions as perceived
by human researchers or clinicians through mathematical estimates. For this
reason, we supplement our results by including a randomized test given to
an experienced neuroradiologist. Considering that knee images are outside
this person’s area of expertise, we only include the two brain datasets in this
experiment. For each of the two contrasts we included 15 samples, of which
5 were randomly selected from one of the three anatomical orientations, for
each of the 5 following categories: 4x and 8x accelerated RIM reconstruc-
tions, 4x and 8x accelerated CS reconstructions, and ground truth images.
The samples were randomized within their respective contrast category, and
the test was set up to be double blinded. The radiologist was asked to assign
each image with a score from a five level Likert-scale, in which the categories
were ’Excellent’, ’Very Good’, ’Good’, ’Fair’, or ’Poor’. The former three
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and latter two categories were to be considered acceptable and unacceptable
for clinical use, respectively.

Beyond evaluating the best achievable quality obtained with our method,
we also wish to illustrate the RIM’s ability to generalize to unseen types
of data, and its robustness against overfitting. We believe that the RIM’s
iterative structure and its internal and external states, all leveraged to include
information about the image statistics and the forward model, helps the
RIM to generalize well. As such, we report scores for models evaluated
on a different data type than that used for training. To illustrate this, we
compare against the U-net. The U-net is a well-known architecture for the
somewhat related task of image segmentation, but has also been suggested for
reconstruction. We implemented nearly the same architecture as Hyun et al.
(2018), however, a major difference is that we use the acceleration method
described in section 4.2, rather than a one-dimensional periodic sub-sampling
scheme that remains constant throughout training. We also achieved better
results using max-pooling instead of average-pooling when downscaling the
image, and the post-processing step described in Hyun et al. (2018) was not
used.

Note that, whereas RIMs and CS reconstruct the complex-valued signal,
thereby yielding both phase and magnitude images, the U-net reconstructs
the magnitude image only. It was also not implemented with PI. Therefore,
we compare this method against the RIM without PI.

A common concern regarding data-driven approaches like artificial neu-
ral networks, is the question of how much data is needed to train a well-
performing model. For this reason, we evaluate the performance impact
of using a different number of subjects when training networks on the T1-
weighted brain dataset.

Before getting to the aforementioned experiments, we begin by optimiz-
ing for a few hyper-parameters. We try varying the number of time-steps t
and the number of features f . We also compare two ways of weighting the
loss function in Eq. (7); using equal weights, wτ = 1, and emphasizing the

latter time-steps with wτ = 10−
t−τ
t−1 . Our hypothesis is that, since the final

reconstruction is what matters, priority should be given to the latter time-
steps. Another hyper-parameter is the size of the cropped patches used for
training, and we compare patches of 30× 30 pixels against 200× 200 pixels.
Patches were cropped in image space and corruptions were gener-
ated by applying the forward model in Eq. (1). Hyper-parameters
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(a) Number of time-steps.
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(b) Number of features.

2x 3x 4x 5x
Acceleration

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

NR
M

SE

Features
32
64
128

(c) Loss weights per time-step
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(d) Training patch size.
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Figure 5: Boxplots of NRMSE-values for the final time-step reconstructions on the datasets
used for model selection and hyper-parameter tuning. The RIMs on the first and sec-
ond row were trained and evaluated on 0.7 mm T ∗

2 -weighted brain images and 1.0 mm
T1-weighted brain images, respectively. Results are shown for each acceleration factor
category. (a): The effect of varying the number of time-steps trained on. (b): The effect
of varying the number of features trained on. (c) The effect of weighting the loss equally

per time-step, or setting wτ = 10−
t−τ
t−1 , thereby favoring the final reconstructions. (d):

The impact of training the network on smaller patches of 30× 30 pixels, or larger patches
of 200× 200 pixels.
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were selected based on the RIM’s performance on the validation sets used for
model selection, whereas all other experiments were conducted on the test
sets.

As for the variance in measurement error σ in (5), we assume it to be
somewhat similar between subjects. This allows us to set σ = 1 through-out
all experiments, letting the RIM learn the scaling factor implicitly, without
need for further fine-tuning. There is one exception to this setting, which we
point out later.

5. Results

5.1. The Number of Time-Steps
Fig. 5a shows the NRMSE-scores of the final reconstructions for RIMs

trained on 0.7 mm T ∗2 -weighted brain images, using a different number of
time-steps: t = 4, 6, 8, 10, and 12. These models were all trained with f = 64
features, on patches of size 30× 30 and with weights in (7) set to wτ = 1.

As can be seen, the higher the acceleration factor, the more there is to be
gained by increasing the number of time-steps. It should also be mentioned
that training is somewhat unstable for 4 and 6 time-steps. At 8 time-steps,
this is no longer and issue, and the improvement from adding more iterations
becomes relatively insignificant, but is more expensive in terms of memory
and computation time, hence we proceed with models trained on 8 time-steps
going forward.

5.2. The Number of Features
Next, we ask what the effect is of varying the number of features. NRMSE-

scores for models trained on f = 32, 64, and 128 are shown in Fig. 5b. The
same settings and dataset was used for these results as in section 5.1. There
is a substantial improvement when going from 32 to 64 features, and using
128 features also seems somewhat better. However, once more for the sake
of saving memory and computation time, we deem the performance at 64
features as acceptable and proceed with this setting.

5.3. Loss-Function Weights
Fig. 5c shows NRMSE-scores for training with equally weighted loss

terms, versus emphasizing good performance on the latter time-steps by set-

ting wτ = 10−
t−τ
t−1 . This model was trained and evaluated on 1.0 mm T1-

weighted brains. There is a slight improvement when the latter time-steps
are emphasized, and so we continue with this setting.
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Table 1: Deep Learning Models Used in Experiments

Model
Training Data

Res. (mm) Weighting Anatomy # Subjects

RIM T1 1.0 T1 Brain 10

RIM T2* 0.7 T ∗2 Brain 10

RIM T2 0.5-0.6 T2 Knee 17

U-net T1 1.0 T1 Brain 10

U-net T2* 0.7 T ∗2 Brain 10

U-net T2 0.5-0.6 T2 Knee 17

5.4. Training Patch Size

Until now, we have used image patches of size 30× 30 in the training set.
This leads to larger mini-batches, but with a lower range of frequencies
in k-space and less global information contained in each data point. We
now try using larger patches of 200 × 200 pixels with smaller mini-batch
sizes, resulting in approximately 180 instead of 6 samples per mini-batch.
Our results, shown for 1.0 mm T1-weighted brains in Fig. 5d, indicate that
RIMs benefit from having access to more global information about the object
to be reconstructed during training, and so we proceed training on patch sizes
of 200× 200 pixels.

Having selected hyper-parameters, we will henceforth report
results on the test sets using models referred to and trained on
data as listed in Table 1.

5.5. Comparing RIMs and U-nets

Fig. 6 shows NRMSE-scores for RIMs and U-nets. Results are plotted
across acceleration factors for models trained and cross-evaluated on all three
types of data. The third column of Fig. 6 is illustrated qualitatively in
the second and third rows of Fig. 7, showing reconstructions of a 5x
accelerated sample from the 0.5-0.6 mm T2-weighted knee dataset.

A further comparison between RIMs and U-nets is given in Fig.
8a, showing the NRMSE-scores when trained and evaluated on
1.0 mm T1-weighted brains, using two different acceleration schemes
during training: For each model, one network is trained using only
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Figure 6: Boxplots of NRMSE-values for the final time-step reconstructions of RIMs and
U-nets (both without PI) trained on all three types of data: 1.0 mm T1-weighted brains,
0.7 mm T ∗

2 -weighted brains, and 0.5-0.6 mm T2-weighted knees. Hues indicate the model
and the type of data trained on, and columns indicate the type of data evaluated on.

a single acceleration factor of 4x, and another network is trained
on acceleration factors sampled from a uniform distribution U (2, 5)
covering the factors tested on.

5.6. The Number of Subjects Required to Train a RIM

Fig. 8b shows NRMSE-scores for RIMs trained on a different number of
subjects. Training and testing was done on 1.0 mm T1-weighted brain images.

5.7. PI-RIM

Until now, results were shown for models trained and evaluated on syn-
thetic data using only a single coil. We now present results showing the
benefit of including PI in our model. For the RIM T2*-model trained
with PI, it was necessary to increase the noise parameter σ in (5)
in order for reconstruction to work for all T2-weighted knee images
on acceleration factors 4x and 6x. We therefore set it to σ =

√
5/2

when using RIM T2* to reconstruct knees. For all other cases, it
was kept at σ = 1. Fig. 9 shows median NRMSE-scores for the final
time-steps on all three RIM models from Table 1, trained with and
without integrated PI. To illustrate the improved convergence rate
when using PI, median NRMSE-scores are plotted for the recon-
struction of each recurrent time-step of the RIM T1-model in Fig.
10. Since the overall performance is quite different for the same
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Figure 7: Reconstructions of a 5x accelerated sample image from the test set of the
T2-weighted knee data. Top row shows, from left to right, the fully sampled
ground truth, its 5x accelerated linear reconstruction, and a CS (without PI)
reconstruction. Middle and bottom rows are RIM and U-net reconstructions
(both without PI), respectively, where the models used across columns were trained
on three different types of data, from left to right: 1.0 mm T1-weighted brains, 0.7 mm
T ∗
2 -weighted brains, and 0.5-0.6 mm T2-weighted knees.
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Figure 8: Boxplots of NRMSE-scores on 1.0 mm T1-weighted brains, showing (a): The
effect of using a single acceleration factor during training, or sampling the acceleration
factor from a uniform distribution covering the range 2x-5x, and (b): The impact of using
a different number of subjects in the training set.
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Figure 9: Median point plot, with whiskers denoting the standard deviation, showing the
NRMSE-scores of the final time-step reconstruction for RIMs with and without integrated
PI.

acceleration factor, the model using PI is reconstructing 10x accel-
erated images, whereas an acceleration factor of 5x was used for
the model without PI.

5.8. Comparing RIMs and CS

Fig. 11 shows SSIM- and PSNR-scores for the three RIM models
from Table 1, along with CS under the same settings detailed in section
4.2. The first and second columns of Fig. 11 are illustrated qualitatively
in Fig. 12 and Fig. 13. The first shows reconstructions of a 8x accelerated
sample from the 1.0 mm T1-weighted brain dataset, whereas the second shows
both magnitude and phase reconstructions of a 10x accelerated sample from
the 0.7 mm T ∗2 -weighted brain dataset. We report results from our double
blinded Likert-scale reconstruction quality assessment test in Fig. 14. Ad-
ditionally, we also included a reconstruction sample for CS when
applied without PI to a 5x accelerated knee image in Fig. 7.

5.9. Prospective Under-Sampling

Shown in Fig. 15 are the RIM reconstructions generated from prospec-
tively under-sampled raw data for the MPRAGE sequence described
in 4.1. For this task, we use the RIM T1 model in 1. Reconstruc-
tions are shown for acceleration factors 3.6x, 4.6x, 7.0x, 9.2x, and
11.4x. In Fig. 16, 12.1x prospectively under-sampled TSE data is
reconstructed using CS and all three RIM models from Table 1.
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Figure 10: Median point plot, with whiskers denoting the standard deviation, showing
the NRMSE-scores of the individual time-steps for 10x accelerated RIM with PI recon-
structions, and 5x accelerated RIM without PI reconstructions. The plot shows scores
evaluated on T1-weighted brains.
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Figure 11: Boxplots of SSIM- and PSNR-values for CS and the final time-step recon-
structions of RIMs (both with PI) trained on all three types of data: 1.0 mm T1-weighted
brains, 0.7 mm T ∗

2 -weighted brains, and 0.5-0.6 mm T2-weighted knees. Hues indicate the
model and, in the case of the RIM, the type of data trained on, whereas columns indicate
the type of data evaluated on.
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Figure 12: Image shows reconstructions of a 8x accelerated 1.0 mm T1-weighted brain seen
in the sagittal plane. From left to right, the bottom row reconstructions were produced
by RIMs trained on the 1.0 mm T1-weighted brain dataset, the 0.7 mm T ∗

2 -weighted brain
dataset, and the 0.5-0.6 mm T2-weighted knee dataset. The top row shows the fully sam-
pled reconstruction, the zero-filled reconstruction, used as the RIM’s starting point, and
finally a CS reconstruction on the right.

6. Discussion

We presented Recurrent Inference Machines (RIMs) for accelerated MRI
reconstruction, with results demonstrating an ability to reconstruct high-
quality images under varying measurement conditions. RIMs are robust
against perturbations in the sub-sampling pattern used for data-
acquisition, and can be exposed to a large range of acceleration
factors in the same training session without loss of reconstruction qual-
ity. Further, we have shown that RIMs generalize well, not only in terms
of the small amount of training data needed, but also with respect
to unseen types of data, acquired at different field strengths and varying
resolution levels, and even to other types of anatomical scans. This demon-
strates the RIM’s potential to perform well across measurement conditions
that are present in clinical practice. A neuroradiologist rated the RIM re-
constructions higher than those reconstructed with CS, the current standard
for acceleration in the clinic. Finally, RIMs were shown to successfully re-
construct prospectively accelerated data, as shown for an MPRAGE
sequence in Fig. 15, and even for a segmentation scheme, as shown
for the TSE sequence in Fig. 16.
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Figure 13: Image shows reconstructions of a 10x accelerated 0.7 mm T ∗
2 -weighted brain

seen in the transverse plane. Top two rows show the reconstructed magnitude, whereas
the bottom two rows show the phase of the reconstructions (we use a cyclic color map
from Kovesi (2015)). From left to right, the second and fourth row reconstructions were
produced by RIMs trained on the 1.0 mm T1-weighted brain dataset, the 0.7 mm T ∗

2 -
weighted brain dataset, and the 0.5-0.6 mm T2-weighted knee dataset. The first and second
row shows the fully sampled reconstruction, the zero-filled reconstruction, used as the
RIM’s starting point, and finally a CS reconstruction on the right.
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Figure 14: The bars show the average Likert-score, as assigned by a neuro-radiologist in
our quality assessment test. Black lines indicate the standard deviation.

Figure 15: RIM reconstructions of prospectively under-sampled raw T1-weighted data, for
differing acceleration factors, using the T1-model. The highest acceleration factor seen
during training was 10x.
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Figure 16: CS and RIM reconstructions using the T1-model of 12.1x prospectively under-
sampled raw T2-weighted brain data without a fully sampled center. The highest acceler-
ation factor seen during training was 10x.
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From the results, we conclude that RIMs have a low tendency to overfit,
and a high capacity to generalize. We think this is owed to knowledge about
the forward model in Eq. (1) being used to assess the state of the system
during the reconstruction process, enabling the RIM to learn the iterative
procedure necessary to reconstruct ”any” given signal. As a result, this makes
the RIM less dependent on learning the features that are specific to the signal
itself. The use of internal states in a recurrent architecture also assists in this
aim. Using the external state of the reconstruction, the RIM is implicitly
learning from the data to evaluate the gradient of the log-prior distribution in
Eq. (2), once again aiming to separate between the reconstruction procedure
and the underlying data statistics. To a large extent this holds true, since
reconstruction quality of images dissimilar to the training data approach
those achieved on data types from the same distribution, as evidenced
by Figs. 6 and 11.

6.1. Dataset Size

The RIM’s robustness against overfitting has the benefit of requiring very
little data to train a good model. As Fig. 8b shows, the performance has
nearly saturated when using three subjects instead of one in the training
set. Related work on variational networks trained on data of 20 subjects
(Hammernik et al., 2018) also showed that for image reconstruction
purposes a limited training dataset should suffice.

6.2. Inference Time

An advantage of deep learning methods lies in the short infer-
ence times. RIMs take 208 ms to process a 230× 230-image with 32 coils.
Earlier work on a Variational Network reported a comparable inference time
of 193 ms for a 320× 256-image with 15 coils (Hammernik et al., 2018).
The time could be further reduced by lowering the number of features or
time-steps, which our results indicate could come at an acceptable cost in
quality. Judging from the convergence rates shown in in Fig. 10, reducing the
number of time-steps seems like a good option for the PI-RIM model in par-
ticular, where the inference time can be reduced to 130 ms using 5 time-steps.
Alternatively, using 32 features and 6 time-steps would lead to an inference
time of 87 ms on a single GPU per slice, while still maintaining an accept-
able quality depending on the application. As for CS, we have not measured
the inference time on the GPU. However, with a CPU time of 35.6 s, it is
substantially slower than the RIM, which spends 3.48 s processing an image
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on the CPU. Use cases requiring fast access to images may greatly
benefit from the fast inference. These include an optimized clinical
workflow, and real-time imaging applications such as radiotherapy
planning.

6.3. Comparison to the U-net

Considering the U-net (Hyun et al., 2018), which is ubiquitous in the
domain of image segmentation (Ronneberger et al., 2015; Long et al., 2014),
we see in Fig. 7 that it cannot accurately reconstruct the data, even within
the same data category used for training. Particularly, it suffers from is-
sues related to overfitting. The model trained on T1-weighted brain images
generates structural artifacts resembling gyri and sulci, whereas the finer
boundaries found in the high resolution T ∗2 -weighted brain images causes the
model to average out all but the sharpest of boundaries. We see from Fig.
8a that the U-net also overfits with respect to the acceleration factor. The
model produces the same or worse quality if it was never exposed to accel-
eration factors close to 2x during training, even though this should be the
easiest acceleration category to reconstruct. In contrast, RIMs trained on
other data do lead to good reconstruction results and the RIM is also largely
unaffected by the acceleration factor used during training. These compar-
isons illustrate the previously mentioned benefits of the RIM’s architecture.
What the RIM can extract from the log-likelihood gradient and its exter-
nal and internal states, the U-net must make up for using its parameters.
Indeed, at 1,328,833 and 94,336 parameters, the U-net has many more pa-
rameters than the RIM as well. This may be another contributing cause for
the discrepancy in overfitting between the two models.

6.4. Comparison to Compressed Sensing

Compared to Compressed Sensing (CS), the reconstruction qual-
ity is more stable for the RIM over multiple realizations of random
undersampling masks. Images produced by CS vary more with re-
spect to the input image, as evidenced by multiple adverse outliers
in Fig. 11. This plot also indicates a worse performance of CS on
average. Indeed, the RIM was the preferred model over CS in a
double blinded quality assessment test, as seen in Fig. 14. The
comparison to CS also highlights some limitations of the RIM and
the metrics used in our study.
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6.5. Limitations

When training on lower SNR data, the RIM is challenged to
avoid blurring during inference time. This was observed for the
model trained on T ∗2 -data included in this study, as can be seen
in Figs. 12, 13 and 16, where the qualitative results appear to
be perceptually in favor of CS. This modality is characterized by
limited magnitude contrast and a strong phase evolution, because
of the gradient echo readout with long echo times. The high spatial
resolution of 0.7 mm and low flip angle of 12◦ made this the model
having the lowest SNR included in this study. In one occasion this
model even experienced convergence difficulties; when inferring 4x,
and to a lesser extent 6x, accelerated knee data. For this case, it
was necessary to increase the noise value σ in Eq. (5), which had
otherwise been set to 1 through-out all experiments. The extent
to which σ was increased made very little difference to the final
reconstruction (tested in a range of 1.1 to 3.0, data not shown).
Thus, even though there is a threshold where the model breaks
down, there seems to be a large range of values for this hyper-
parameter in which performance is robust.

6.6. Future Work

Future work should study the ability to reconstruct pathologies
possibly unseen during training. We consider the substantial perfor-
mance invariance across the three datasets to be indicative of a model that
can reliably reconstruct statistical outliers, from naturally occurring struc-
tural differences in anatomy between individuals, to patient-specific patholo-
gies. This must be properly verified in future clinical studies. Initial work
shows the ability of neural networks to reconstruct white matter lesions (Tez-
can et al., 2017).

An important extension of our work would be to adapt the for-
ward model in Eq. (1) to include the correlation of noise between
the receiver coils. The data acquired from separate noise refer-
ence scans usually made as part of MR acquisition pipelines would
then be properly exploited in the RIM reconstruction. This should
lead to higher quality images, and perhaps even resolve such issues
as having to fine-tune σ in exceptional cases, as described in the
section 6.5.
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Future work should further look into learning different readout strategies
on heterogeneous data. Our current results are restricted to Euclidean read-
out strategies that sample each line in k-space individually. The AUTOMAP
approach (Zhu et al., 2018) shows that good performance on various sam-
pling patterns can be obtained. Extending this work to become applicable
in a wide variety of settings is an important next milestone to reach.

Finally, certain caution is warranted in interpreting the metrics
used in this study. Especially in the case of noisy data, NRMSE and
PSNR metrics favor blurred images over their noisy counterparts.
The SSIM was designed aiming for more robustness against these
effects. Still, it can be questioned how different types of artifacts
should be ranked relative to one another, and what kind of traits
constitute a good quality image.

In conclusion, our work shows that through RIMs, deep learning based
reconstruction of heterogeneous MRI data is feasible, bringing such an ap-
proach a step closer toward use in clinical practice.
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