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Motivation

o Deep neural networks can learn invariances (e.g., translation, scale,
rotations) given enough data.

® In unconstrained architectures this can be achieved through data
augmentation.

o Parameter sharing can be used to constrain neural architectures to exhibit
certain symmetries (e.g., translation invariances with convolutions and

pooling).

o This can lead to faster training, better generalization, and requires less
training data.




Problem Statement
We focus on symmetries under permutations.

Let fo(-) : XN = YM a function parametrized by 6, and G be the permutation
group (G = Sy).

o If M =1, fy is permutation-invariant if
fo(g - x) = fo(x), Vgegxe xN
o If M= N, fy is permutation-equivariant if

fo(g-x) =g fo(x), Vgeg,xe xN

More general definitions are available (Ravanbakhsh et al., ICML 2017).

o What is the structure of f?
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Output is image-permutation invariant.



Potential applications - Batch denoising in cryo-EM

Output is image-permutation equivariant.
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Potential applications - Spike sorting

Output is channel-permutation invariant.

= FLATIRON
\ INSTITUTE




Permutation Invariance |

fo : [0,1]V = R is a permutation invariant continuous function if and only if it
has the representation

N
f(xl,...,xN)zp Z¢(Xn) )
n=1

for continuous functions p : RK*1 i R and ¢ : R — R+ with K < N.

f(x1, %) = x1xa(x1 + x2 + 3) can be represented with ¢(x) = [x, x?, x°] and
o([u, v, w]) = uv — w + 3(v? — v)/2.
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Permutation Invariance I

y

iOptional

i conditioning
Ebased on meta-
#information

Figure 1: Neural network architecture for permutation invariant functions
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Permutation Equivariance

Let fp : [0,1]"V — RN, with fo(x) = [f3(x),..., fa'(x)]. fo is permutation

equivariant if _
f'(x) = h(g(xi), p(x)),

with h, g appropriate functions and ¢ a permutation invariant function.

o If fo is a standard neural network layer with one input and one output
channel

fo(x) = 0(©x), © € RV*N,
then © = My + y1n1p.

o If fp is a standard neural network layer with D input and D’ output
channels then
fo(x) = o(xA + 1y15xT),

with A, T € RP*D",
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Equivariant Architectures

i Optional

i conditioning

i based on meta-
finfomation

Figure 2: Neural network architecture for permutation equivariant functions
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Extensions - modeling interactions

Janossy Pooling

f(h],h;69)
y(x:6”.67.6")

o Instead of pooling over all individual variables, pool over interaction terms
over all subsets of fixed cardinality.

e Can be done in a computationally tractable way (Murphy et al., ICLR
2019). ﬁ— FLATIRON

\ INSTITUTE

........




Extensions to matrices/tensors (Hartford et al., ICML 2018)

Figure 3: Parameter sharing for equivariant NN layers between tensors

Similar architectures can be defined for NN models over matrices (or higher
order tensors) with invariance/equivariance properties:

fo(P1XP2) =fg(X) (invariance)
fo(P1XP2) =P1fg(X)P, (equivariance)
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Exchangeability of random variables

If X = (X1, Xz,...,Xn) is an exchangeable sequence of random variables then
it can be represented as

N
p(Xla) = [ | T] 1) | p(0la) do
0
‘Example: exponential families

p(X|9)0<exp(¢(X)0 —g(0))
p(Blor, mo) xexp (8, ) — mog(6) — h(cr, mo))

xeX

p(X|a) ocexp | h (a + Z o(x), mo + m) — h(a, mg)




Probabilistic symmetry (Bloem-Reddy and Teh, arXiv 2019)

Let X, Y random variables and G an appropriate group.

* Py|x is conditionally G-invariant if and only if (X, Y) 4 (g-X,Y),vVgeg.
* Py|x is conditionally G-equivariant if and only if
(Xa Y) g (gXag Y)7Vg €g.

A statistic M is maximally invariant if

M(x1) = M(x2) = g - x1 = xo for some g € G.

q_ FLATIRON

TUTE




Modeling invariant distributions

Py|x is G-invariant if and only if there exists f : [0,1] x X = Y such that

(X, Y) £ (X, f(n, M(X))), with 5 ~ U[0,1]

Invariant module, ¥ Equivariant module, ¥ Invariant function
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Predict output with variable cardinality
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Figure 4: Rezatofighi et al., ICCV 2017
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