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Outline

e Introducing the problem
* ML methods for function prediction:
* Sequence-based methods
— Alignment-free methods: Convolutional Neural Networks (CNNs)
e Structure-based methods
— Graph-CNNs for mapping structure-to-function
— Graph-CNN variants
* Network-based methods
— Deep network fusion (deepNF)
e Conclusions and future work
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What do we mean by Function?

Ancestor chart for GO:0000976

* Gene Ontology (GO):

molecular

— hierarchical classification scheme for o

organizing and describing protein functions

heterocyclic
compound
binding

* Consist of 3 independent DAGs:
— Molecular Function (MF)
— Biological Process (BP)
— Cellular Component (CC)

o
compound
binding

* Goal: Narrow down the search space (of ~40,000
possible GO terms) for experimentalists

double-strand
ed DNA

binding

sequence-spec transcription
ific regulato
egion

QuickGO: https://www.ebi.ac.uk/QuickGO



Experimental annotations by species
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GO
prediction:

challenges

Large numbers of yet to be discovered
labels

No real negative examples
Class imbalance (implied by hierarchy)

Cell context and need for integration of
very diverse data types

Evolutionary relationships make
evaluation challenging

Protein-level annotations
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We can use different data for function prediction

DNA sequence Protein sequence Protein structure Protein interaction
l l networks l
Cheap and easy X-ray crystallography; Y2H system, AP-MS
thanks to sequencing NMR; Rosetta experimental
technology. predictions. methods.




Deep learning is well-suited for function prediction

e Traditional methods

—Sequence alignment methods (e.g., BLAST) - fail on non-homologous sequences

—Machine Iearning methods - predict one function at a time
(e.g., SVM, Logistic regression, etc_) -> require feature engineering

 Benefits of using Neural Networks (NN)
— multiple functions
— high-level features

protein features

=

—do not require feature engineering (e.g., CNNs)

Input layer
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CNN for sequence-to-function mapping
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Convolution Neural Networks

Convolution Pooling Convolution Pooling Fully-connected

hy; = o((W" % 2);; + by)
where W¥ are filters learnable through gradient descent

* Reduce number of parameters to be learned

* Localize and share weights (conv filters) = self-similarity
* Translation invariance

e Computationally efficient
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Filter 2

see ConvlayerL  Glob Max Pooling Dense layer Output layer

Convlayer1l Conv layer 2

Filter 1

GO0:0003700

DNA binding TF activity
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We evaluate performance on new functional
annotations over time
Temporal holdout (based on CAFA)

GO terms
2015 GOA 2017 GOA
Proteins
v

* Data: UniProt GOA
_ W' FLATIRON
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CNN outperforms baselines on Swiss-Prot
manually annotated and reviewed sequences

Method Performances (Swiss Prot Exp. Annotated Proteins-MF)
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GCN for structure-to-function mapping
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Example: 1U8R-B




A new encoding scheme is needed for
structural features

INFUT Comv Layerl Conv Layerd Conv Layer 0 Pooling Layer Flatten Loyer  Dense layer  Outpat
Lxds 10x(Lx2) Welx2y 7 10xLx2) 0= 0% e (1xSo0)  (1x1195)

.

Regular CNN:
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Protein contact map .

Hou, J. et al. "DeepSF: deep convolutional neural network for mapping protein sequences to folds." Bioinformatics (2017)



We use Graph Convolutions for processing
contact maps

CNN Graph CNN

Image Graph

= FLATIRON




Graph Convolutional Networks

e Types of GCNs: e Applications:

* Spectral formulation * Node classification
* Spatial formulation * Graph classification



An example of a Graph CNN...

4 Dense Iayer\

Max (sigmoid)
Pooling
ﬁ

RelU

-—— = []>

RelLU

g mdma }

CYS pRg LEU

Graph CNN Graph CNN Output
\_ Layer 1 ) \ Layer N ) N Layer D

Graph CNN Layer:

HED = 0[1/5 1A D -1 (I)W(I)] A — adjacency matrix representing contact map
- N - D —diagonal degree matrix
&3 5 gé s, H© — input feature matrix (H©=l, 1-hot encoding W- ﬂ'—"f‘I H BHQL\'E
iz 3| 2°% S3¢ if features not available) IN oo campaions e
N o B W()- weight matrix for layer |

ing. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).



Brief intro to Graph Theory

e Undirected graph: G = (V, &), with vertices V = {1,...,n}
and edges £ CV x V

e Represented by adjacency matrix, A € R"*", with a;; =
1if (4,7) € € and a;; = 0, otherwise

e Functions over graph vertices: L?(V) = {f : V — R} repre-
sented as vectors: f = (f1,..., f,) € R”

e Inner product operation: < f,g >r20vy=> oy figi = fi'g
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Laplace operator

Euclidean

QA:L2—>L2

e In R: Af = lim&n_}O f(w+6x)_%§1(;)x2)+f(x_5$)

e Discrete Laplace operator:

Af o [f(z) = flz + Ax)] + [f(z) — f(z — Ax)]

® ® ®
fe—d0)  fx)  flee+x)

Non-Euclidean

o A:L2(V) — L%(V)
e On graphs: (Af); = Zj:(i’j)eg aij(fi — f;)

e Matrix representation:
A=D— A, where D = dz’ag(zj#i ai;)

®
@ f; .
@
@
f [



Spectrum of the Laplacian

Euclidean

e Eigendecomposition: —Ae?™6% = (27¢)2e =27tz
e Fourier transform: f(£) = (f, €27 = Jo f(z)e 22 dy
e Inverse transform: f(z) = (f,e 27%x) = Je f(&)e2mie e

e Fourier basis = Laplacian eigenfunctions

Non-Euclidean

Normalized Laplacian: A=D:AD: = I,—-D~ :AD 2
Figendecomposition: Agbz- = \i®;;

— Non-negative eigenvalues: 0 < A\ < A\y--- < )\, < 2;
Matrix form: A = diag(A1,...,A\n)

— Corresponding orthogonal eigenvectors: (¢;,®;) =
di;; Matrix form: ® = (¢,,...,¢,,)

Eigendecomposition in matrix form: A = dABT

Fourier transform: f(\) = (f,d1) = Y20, fib55;
Matrix-vector form: f = ®Tf

Inverse transform: f; = (f, ¢}) = Zlnzl f(/\l)qSli;
Matrix-vector form: f = ®f



Convolution operation

e Classically, for two signals f, g € L*(R) the convolution is

defined as: f * g(x) = [ f(u)g(x — u)du
e No clear analogue for graphs (in spatial domain) = com- J
pute convolution in the Fourier domain
e Convolution theorem: (f*¢)(€) = f(€) 0 §(§) = take
inverse
e Convolution of signals on a graph (in matrix-vector nota-
tion): f+xg = ®(®Tg) o (®Tf) = ®diag(gy,...,G,) P f
]~ FLATIRON
Filter coefficients depend on Laplacian eigenvectors! N



Spectral graph CNN

Convolution in spectral domain:

h=dWoIf

where W is n x n diagonal (learnable) matrix of spectral
filter coefficients

* Filters are basis-dependent = does not generalize
across graphs &

e Learning complexity O(n) ®

« Computational complexity O(n2) @

* Filters are not localized in space & ﬁ' i

Henaff, M., Bruna, J., & LeCun, Y. (2015). Deep convolutional networks on graph-structured data. arXiv:1506.05163.



Example: CoRA citation network
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Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P. (2017) Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine.



Chebyshev CNN

e Parametrize the filter using a smooth spectral function g(\)
e Application of the filter: h = g(A)f = ®g(A)DTf

e Spectral filters represented by K!* order polynomials,
gw(A) = Z,If:o wiAF, are exactly K-localized, where
w = (w1,...,wg) is the vector of filter parameters

e Number of parameters K (fixed) is independent of graph
size n (same learning complexity as regular CNNs)

e No explicit computation of ®, ®7 because h = g, (A)f

—> O(K|&|) computational complexity q- FLATIRON
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Defferrad M, Bresson, X, Vandergheynst P. (2016) Convolutional neural networks on graphs with fast localized spectral filtering, NIPS



Graph Convolutional Networks

e First-order approximation (K = 1) of spectral graph convo-
lution

e h = gw(A)x = lec=0 wy, AFx = w(I, + D :AD™ )x for
signal x € R"

o Renormalization trick (numerical stability):
I +D 2AD": - D 2AD"%, with A = A + Iy and
1,7, - Z]

e Generalization to signals with C' input channels, X €
and F filters: H=D"2AD 2XW
where W € RE*F is a matrix of filter parameters, and H €

RNV*F {5 the output activation matrix X~ FLATIRON
\\ INSTITUTE
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GCN variants

o o\ = AGGREGATE® ({h&k_l) LU € N(’U)})
o ") = COMBINE® (h,&""”, aﬁf“’)

o ho = READOUT({hS,K>|v S G}>

e In GCN (Kipf & Welling, 2017):
o) = MEAN({ReLU(WhS‘"”),vu eN (v)})
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‘The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

An End-to-End Deep Learning
Architecture for Graph Classification

Muhan Zhang, Zhicheng Cui, Marion Neumann, Yixin Chen
Department of Computer Science and Engineering, Washington University in St. Louis
‘muhan, z.cui, m.neumann } @wustl.edu, chen@cse.wustl.edu

Abstract

Neural networks are typically designed to deal with data in
tensor forms. In this paper, we propose a novel neural network
architecture accepting graphs of arbitrary structure. Given a
dataset containing graphs in the form of (G, y) where G is a
graph and y is its class, we aim to develop neural networks
that read the graphs directly and learn a classification function.
‘There are two main challenges: 1) how to extract useful fea-
tures characterizing the rich information encoded in a graph
for classification purpose, and 2) how to sequentially read a
‘graph in a meaningful and consistent order. To address the first
challenge, we design a localized graph convolution model and
show its connection with two graph kemnels. To address the
second challenge, we design a novel SortPooling layer which
sorts graph vertices in a consistent order so that traditional
neural networks can be trained on the graphs. Experiments
on benchmark graph classification datasets demonstrate that
the proposed architecture achieves highly competitive per-
formance with state-of-the-art graph kernels and other graph
neural network methods. Moreover, the architecture allows
end-to-end gradient-based training with original graphs, with-
out the need to first transform graphs into vectors.

1 Introduction

The past few years have seen the growing prevalence of
neural networks on application domains such as image classi-
fication (Alex, Sutskever, and Hinton 2012), natural language
processing (Mikolov et al. 2013), reinforcement learning
(Mnih et al. 2013), and time series analysis (Cui, Chen, and
Chen 2016). The connection structure between layers makes
neural networks suitable for processing signals in tensor
forms where the tensor elements are arranged in a mean-
ingful order. This fixed input order is a cornerstone for neural
networks to extract higher-level features. For example, if we
randomly shuffle the pixels of an image shown in Figure 1,
then state-of-the-art convolutional neural networks (CNN)
fail to recognize it as an eagle.

Although images and many other types of data are natu-
rally presented with order, there is another major category of
structured data, namely graphs, which usually lack a tensor
representation with fixed ordering. Examples include molecu-
lar structures, knowledge graphs, biological networks, social

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Orginal image Shuffed image

Figure 1: A consistent input ordering is crucial

networks, and text documents with dependencic
of ordered tensor representations limits the app
neural networks on graphs. In this paper, we aim
novel neural network structures that can accept
learn predictive functions.

Recently, there is a growing interest in general
networks to graphs. (Bruna et al. 2013) genera
lutional networks to graphs in the spectral dor
filters are applied on a graph’s frequency mode
by graph Fourier transform. This transformati
expensive multiplications with the eigenvector n
graph Laplacian. To reduce the computation bt
ferrard, Bresson, and Vandergheynst 2016) pa
the spectral filters as Chebyshev polynomials of
and achieved efficient and localized filters. One |
the above spectral formulations is that they rely
spectrum of the graph Laplacian, and thus are s
for graphs with a single structure (and varying sij
tices). Spatial formulations, on the contrary, are n
to a fixed graph structure. To extract local featu
works independently proposed to propagate featu
neighboring vertices. (Duvenaud et al. 2015) pro
entiable Neural Graph Fingerprints, which propag
between 1-hop neighbors to simulate the traditic
fingerprint. (Atwood and Towsley 2016) propose
CNN, which propagates neighbors with differeni
center using different weights. Later, (Kipf and W
developed a fist-order approximation of the spec
tion in (Defferrard, Bresson, and

Published as a paper at ICLR 2019

How POWERFUL ARE GRAPH NEURAL NETWORKS?
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ABSTRACT

Graph Neural Networks (GNNs) are an effective framework for representation
learning of graphs. GNNs follow a nelghborhood aggreganon scheme, where the

representation vector of a node is and trans-
forming vectors of its neighb: nodes. Many GNN variants have
been proposed and have achieved state-of-the-art results on both node and graph
classification tasks. However, despite GNNs graph

learning, there is limited of their properties. and
limitations. Here, we present a framework for yzing the

power of GNNs to capture different graph structures. Our results charactenzc
the discriminative power of popular GNN variants, such as Graph Convolutional
Networks and GraphSAGE, and show that they cannot learn to distinguish certain
simple graph structures. We then develop a simple architecture that is provably
the most expressive among the class of GNNs and is as powerful as the Weisfeiler-
Lehman graph 1somorphlsm test. We empmcally va.hdate our theoretical findings
on a number of graph that our model
achieves state-of-the-art performance.

1 INTRODUCTION

Learning with graph structured data, such as social, and financial

requires effective representation of their graph structure (Hamilton et al., 2017b). Recently, there
has been a surge of interest in Graph Neural Network (GNN) approaches for representation learning
of graphs (Li et al., 2016; Hamilton et al., 2017a; Kipf & Welling, 2017; Velickovic et al., 2018;
Xu et al., 2018). GNNs broadly follow a recursive neighborhood aggregation (or message passing)
scheme, where each node aggregates feature vectors of i its nelghboxs to compute its new featul‘e
vector (Xu et al., 2018; Gilmer et al., 2017). After k i anode is

hy its transformed feature vector, Wthh captures the structural mformauon within the node s k-hop

also resulted in propagation between nelg,hbor
(Niepert, Ahmed, and Kutzkov 2016) proposed :
of spatial graph convolution by extracting fixed
patches from nodes’ neighborhoods and linea:

The of an entire graph can then be obtained lhrough poo]mg (Ying
et al., 2018), for example, by summing the representation vectors of all nodes in the graph.

Many GNN variants with different neighborhood aggregation and graph-level pooling schemes have
been proposed (Scarselli et al., 2009b; Battaglia et al., 2016; Defferrard et al., 2016; Duvenaud et al.,

Neural Message Passing for Quantum Chemistry

Justin Gilmer! Samuel S. Schoenholz' Patrick F. Riley? Oriol Vinyals® George E. Dahl '

Abstract

Supervised learning on molecules has incredi-
ble potential to be useful in chemistry, drug dis-
covery, and materials science. Luckily, sev-
eral promising and closely related neural network
models invariant to molecular symmetries have
already been described in the literature. These
models learn a message passing algorithm and
aggregation procedure to compute a function of
their entire input graph. At this point, the next
step is to find a particularly effective variant of
this general approach and apply it to chemical
prediction benchmarks until we either solve them
or reach the limits of the approach. In this pa-
per, we reformulate existing models into a sin-
gle common framework we call Message Pass-
ing Neural Networks (MPNNs) and explore ad-
ditional novel variations within this framework.
Using MPNNs we demonstrate state of the art re-
sults on an important molecular property predic-
tion benchmark; these results are strong enough
that we believe future work should focus on
datasets with larger molecules or more accurate
ground truth labels.

1. Introduction

The past decade has seen remarkable success in the use
of deep neural networks to understand and translate nat-
ural language (Wu et al., 2016), generate and decode com-
plex audio signals (Hinton et al., 2012), and infer fea-
tures from real-world images and videos (Krizhevsky et al.,
2012). Although chemists have applied machine learn-
ing to many over the years, the prop-
erties of molecules and materials using machine learning
(and especially deep learning) is still in its infancy. To
date, most research applying machine learning to chemistry
tasks (Hansen et al., 2015; Huang & von Lilienfeld, 2016;

2015; Hamilton et al., 2017a; Kearnes et al., 2016; Kipf & Welling, 2017; Li et al., 2016;
etal., 2018; Santoro et al., 2017; Xu et al., 2018 Santoro et al., 2018; Verma & Zhang, 2018; Ying
etal., 2018; Zhang et al., 2018). Empmcally. lhese GNNs have achieved slale-of the-an performance
in many tasks such as node and graph cl However, the
design of new GNNs is mos(ly based on emplncal mtuluon, hcunsucs and experimental trial-and-
error. There is little th of the and li ions of GNN, and formal
analysis of GNNs’ representational capacity is limited.

!Google Brain Google *Google DeepMind. ~Correspon-
dence to: Justin Gilmer <gilmer@google.com>, George E. Dahl
<gdahl@google.com>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

Targets

~ 103 seconds |E,Wo, -

Message Passing Neural Net

~ 1072 seconds

Figure 1. A Message Passing Neural Network predicts quantum
properties of an organic molecule by modeling a computationally
expensive DFT calculation.

Rupp et al., 2012; Rogers & Hahn, 2010; Montavon et al.,
2012; Behler & Parrinello, 2007; Schoenholz et al., 2016)
has revolved around feature engineering. While neural net-
works have been applied in a variety of situations (Merk-
wirth & Lengauer, 2005; Micheli, 2009; Lusci et al., 2013;
Duvenaud et al., 2015), they have yet to become widely
adopted. This situation is reminiscent of the state of image
models before the broad adoption of convolutional neural
networks and is due, in part, to a dearth of empirical evi-
dence that neural architectures with the appropriate induc-
tive bias can be successful in this domain.

Recently, large scale quantum chemistry calculation and
molecular dynamics simulations coupled with advances in
high throughput experiments have begun to generate data
at an unprecedented rate. Most classical techniques do
not make effective use of the larger amounts of data that
are now available. The time is ripe to apply more power-
ful and flexible machine learning methods to these prob-
lems, assuming we can find models with suitable inductive
biases. The symmetries of atomic systems suggest neu-
ral networks that operate on graph structured data and are
invariant to graph i might also be appropri
for molecules. Sufficiently successful models could some-
day help automate challenging chemical search problems
in drug discovery or materials science.

In this paper, our goal is to demonstrate effective ma-
chine learning models for chemical prediction problems




For benchmarking we use the PDB

Experimental PDB structures:

annotations Chains PDB IDs

Experim?ntal 107451 40478
annotations

LEEE 179852 76675
annotations

-PDB chains with L >= 40 residues (40 <= L <= 500 are padded with zeros)

-PDB chains with GO terms (InterPro2GO) with evidence codes: EXP, IDA, IPI, IMP,
IGI, IEP, TAS and IC

-Distance between all atoms (d < 6.5A4)

-Experimental SEQRES sequences for training CNN

Train/Test (BLASTClust):

20 40 60 80 100 120 140 160
residues



Graph-CNN: implementation details...

Our model (schematic representation):

dense layers

@)
% 3 2 g z § ) O O | 60:0000991
27 %: fé; ) - 0 - O | 60:0001591
E S — — .
gz £ % g % ®) @) © | G0:0003700
@

A [None, 600, 600]

S [None, 600, 20]
Optimizer: Adam, Ir = 0.001
Loss: binary cross entropy
Batch size: 64

DNA binding TF
activity
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B CNN-sequences
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Area under the Precision-Recall curve (MF-GO)
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GCN autoencoder for protein fold discovery
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Protein secondary structure

Alpha-helices




CATH classification of structures

 Class refers to the secondary structure content (e.g. mainly-alpha, mainly-beta, mixed alpha/beta or ‘few secondary structures').
 Architecture refers to the general arrangement of the secondary structures irrespective of connectivity between them (e.g. alpha/beta
sandwich).

» Topology, also known as the 'fold' level, takes into account the connectivity of secondary structures in the chain.
» Homologous Superfamily refers to domains that are believed to be related by a common ancestor.

Each level has a CATH code associated with it. Have a look at the following:

CATH Classification

Level CATH Code Description

9 3 Alpha Beta

A 3.40 3-Layer(aba) Sandwich
(T 3.40.50 Rossmann fold

) 3.40.50.620 HUPs

\\|_ FLATIRON
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Autoencoders for reducing feature space for
representing different protein fold classes
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Autoencoders for reducing feature space for
representing different protein fold classes

Input: 2PQR-B
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Loss(A4,A) = ||A — A]|
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Galaxy of folds




GCNN on Rosetta-predicted structures
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Predicting Contacts

* Methods to predict contacts from sequence are
commonly used in protein folding

* Gremlin, MetaPSICOV
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Interaction Inference Covariation

* Problems
* Sparse

* Not necessarily give you the interactions that
discriminate functions

» Use protein structure prediction to generate
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Deep Learning Methods for Function
Prediction of Microbial Proteins

Microbiome Immunity Project

* 90,000 genomes

« 187 million sequences (12.8M
gene families)

« predicting functions of new
microbial protein families from
sequences and contact maps
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Precision

Function prediction: NATIVE vs LE structure

AUPR curve
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