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Abstract

Perspective functions arise explicitly or implicitly in various forms in applied mathematics and
in statistical data analysis. To date, no systematic strategy is available to solve the associated, typ-

ically nonsmooth, optimization problems. In this paper, we fill this gap by showing that proximal

methods provide an efficient framework to model and solve problems involving perspective func-
tions. We study the construction of the proximity operator of a perspective function under general

assumptions and present important instances in which the proximity operator can be computed ex-

plicitly or via straightforward numerical operations. These results constitute central building blocks
in the design of proximal optimization algorithms. We showcase the versatility of the framework by

designing novel proximal algorithms for state-of-the-art regression and variable selection schemes
in high-dimensional statistics.
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1 Introduction

Perspective functions appear, often implicitly, in various problems in areas as diverse as statistics,

control, computer vision, mechanics, game theory, information theory, signal recovery, transportation

theory, machine learning, disjunctive optimization, and physics (see the companion paper [7] for a

detailed account). In the setting of a real Hilbert space G, the most useful form of a perspective

function, first investigated in Euclidean spaces in [24], is the following.

Definition 1.1 Let ϕ : G → ]−∞,+∞] be a proper lower semicontinuous convex function and let recϕ
be its recession function. The perspective of ϕ is

ϕ̃ : R× G → ]−∞,+∞] : (η, y) 7→





ηϕ(y/η), if η > 0;

(recϕ)(y), if η = 0;

+∞, if η < 0.

(1.1)

Many scientific problems result in minimization problems that involve perspective functions. In

statistics, a prominent instance is the modeling of data via “maximum likelihood-type” estimation (or

M-estimation) with a so-called concomitant parameter [17]. In this context, ϕ is a likelihood function,

η takes the role of the concomitant parameter, e.g., an unknown scale or location of the assumed

parametric distribution, and y comprises unknown regression coefficients. The statistical problem

is then to simultaneously estimate the concomitant variable and the regression vector from data via

optimization. Another important example in statistics [15], signal recovery [5], and physics [16] is

the Fisher information of a function x : RN → ]0,+∞[, namely

∫

RN

‖∇x(t)‖22
x(t)

dt, (1.2)

which hinges on the perspective function of the squared Euclidean norm (see [7] for further discus-

sion).

In the literature, problems involving perspective functions are typically solved with a wide range of

ad-hoc methods. Despite the ubiquity of perspective functions, no systematic structuring framework

has been available to approach these problems. The goal of this paper is to fill this gap by showing

that they are amenable to solution by proximal methods, which offer a broad array of splitting algo-

rithms to solve complex nonsmooth problems with attractive convergence guarantees [1, 8, 11, 14].

The central element in the successful implementation of a proximal algorithm is the ability to compute

the proximity operator of the functions present in the optimization problem. We therefore propose

a systematic investigation of proximity operators for perspective functions and show that the proxi-

mal framework can efficiently solve perspective-function based problems, unveiling in particular new

applications in high-dimensional statistics.

In Section 2, we introduce basic concepts from convex analysis and review essential properties of

perspective function. We then study the proximity operator of perspective functions in Sections 3. We

establish a characterization of the proximity operator and then provide examples of computation for

concrete instances. Section 4 unveils new applications of perspective functions in high-dimensional

statistics and demonstrates the flexibility and potency of the proposed framework to both model and

solve complex problems in statistical data analysis.
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2 Notation and background

2.1 Notation and elements of convex analysis

Throughout, H, G, and K are real Hilbert spaces and H ⊕ G denotes their Hilbert direct sum. The

symbol ‖ · ‖ denotes the norm of a Hilbert space and 〈· | ·〉 the associated scalar product. The closed

ball with center x ∈ K and radius ρ ∈ ]0,+∞[ is denoted by B(x; ρ).

A function f : K → ]−∞,+∞] is proper if dom f =
{
x ∈ K

∣∣ f(x) < +∞
}

6= ∅, coercive if

lim‖x‖→+∞ f(x) = +∞, and supercoercive if lim‖x‖→+∞ f(x)/‖x‖ = +∞. Denote by Γ0(K) the class

of proper lower semicontinuous convex functions from K to ]−∞,+∞], and let f ∈ Γ0(K). The

conjugate of f is the function

f∗ : K → [−∞,+∞] : u 7→
(
sup
x∈K

〈x | u〉 − f(x)

)
. (2.1)

It also belongs to Γ0(K) and f∗∗ = f . The subdifferential of f is the set-valued operator

∂f : K → 2K : x 7→
{
u ∈ K

∣∣ (∀y ∈ dom f) 〈y − x | u〉+ f(x) 6 f(y)
}
. (2.2)

We have

(∀x ∈ K)(∀u ∈ K) u ∈ ∂f(x) ⇔ x ∈ ∂f∗(u). (2.3)

Moreover,

(∀x ∈ K)(∀u ∈ K) f(x) + f∗(u) > 〈x | u〉 (2.4)

and

(∀x ∈ K)(∀u ∈ K) u ∈ ∂f(x) ⇔ f(x) + f∗(u) = 〈x | u〉. (2.5)

If f is Gâteaux differentiable at x ∈ dom f with gradient ∇f(x), then

∂f(x) = {∇f(x)}. (2.6)

Let z ∈ dom f . The recession function of f is

(∀y ∈ K) (rec f)(y) = sup
x∈dom f

(
f(x+ y)− f(y)

)
= lim

α→+∞

f(z + αy)

α
. (2.7)

The infimal convolution operation is denoted by � . Now let C be a subset of K. Then

ιC : K → {0,+∞} : x 7→
{
0, if x ∈ C;

+∞, if x /∈ C
(2.8)

is the indicator function of C,

dC : K → [0,+∞] : x 7→ inf ‖C − x‖ (2.9)
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is the distance function to C, and

σC = ι∗C : K → [−∞,+∞] : u 7→ sup
x∈C

〈x | u〉 (2.10)

is the support function of C. If C is nonempty, closed, and convex then, for every x ∈ K, there exists

a unique point PCx ∈ C, called the projection of x onto C, such that ‖x− PCx‖ = dC(x). We have

(∀x ∈ K)(∀p ∈ K) p = PCx ⇔
[
p ∈ C and (∀y ∈ C) 〈y − p | x− p〉 6 0

]
. (2.11)

The normal cone to C is

NC = ∂ιC : K → 2K : x 7→
{{

u ∈ K
∣∣ sup 〈C − x | u〉 6 0

}
, if x ∈ C;

∅, otherwise.
(2.12)

For further background on convex analysis, see [1, 24].

2.2 Proximity operators

The proximity operator of f ∈ Γ0(K) is

proxf : K → K : x 7→ argmin
y∈K

(
f(y) +

1

2
‖x− y‖2

)
. (2.13)

This operator was introduced by Moreau in 1962 [20] to model problems in unilateral mechanics. In

[12], it was shown to play an important role in the investigation of various data processing problems,

and it has become increasingly prominent in the general area of data analysis [10, 25]. We review

basic properties and refer the reader to [1] for a more complete account.

Let f ∈ Γ0(K). Then

(∀x ∈ K)(∀p ∈ K) p = proxfx ⇔ x− p ∈ ∂f(p). (2.14)

If C is a nonempty closed convex subset of K, then

proxf = PC . (2.15)

Let γ ∈ ]0,+∞[. The Moreau decomposition of x ∈ K is

x = proxγfx+ γproxf∗/γ(x/γ). (2.16)

The following facts will also be needed.

Lemma 2.1 Let (Ω,F, µ) be a complete σ-finite measure space, let K be a separable real Hilbert space,

and let ψ ∈ Γ0(K). Suppose that K = L2((Ω,F, µ);K) and that µ(Ω) < +∞ or ψ > ψ(0) = 0. Set

Φ: K → ]−∞,+∞]

x 7→





∫

Ω
ψ
(
x(ω)

)
µ(dω), if ψ ◦ x ∈ L1

(
(Ω,F, µ);R

)
;

+∞, otherwise.

(2.17)

Let x ∈ K and define, for µ-almost every ω ∈ Ω, p(ω) = proxψx(ω). Then p = proxΦx.
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Proof. By [1, Proposition 9.32], Φ ∈ Γ0(K). Now take x and p in K. Then it follows from (2.14) and [1,

Proposition 16.50] that p(ω) = proxΦx(ω) µ-a.e. ⇔ x(ω) − p(ω) ∈ ∂ψ(p(ω)) µ-a.e. ⇔ x− p ∈ ∂Φ(p).
⇔ p = proxΦx.

Lemma 2.2 Let D 6= {0} be a nonempty closed convex subset of K, let x ∈ K, and let γ ∈ ]0,+∞[. Set

f = ‖ · ‖+ σD and C = γD. Then

proxγfx =




0, if dC(x) 6 γ;(
1− γ

dC(x)

)(
x− PCx

)
, if dC(x) > γ.

(2.18)

If, in addition, D is a cone and K denotes its polar cone, then f = ‖ · ‖+ ιK and

proxγfx =




0, if ‖PKx‖ 6 γ;(
1− γ

‖PKx‖

)
PKx, if ‖PKx‖ > γ.

(2.19)

Proof. Using elementary convex analysis, we obtain

f = ι∗B(0;1) + ι∗D =
(
ιB(0;1) � ιD

)∗
= ι∗B(0;1)+D = σB(0;1)+D . (2.20)

Hence, it follows from (2.16) and (2.15) that

proxγfx = x− γproxf∗/γ(x/γ) = x− γPB(0;1)+D(x/γ). (2.21)

However by [1, Propositions 28.1(ii) and 28.10],

γPB(0;1)+D(x/γ) = PB(0;γ)+C x =




x, if dC(x) 6 γ;

PCx+ γ
x− PC
dC(x)

, if dC(x) > γ.
(2.22)

Upon combining (2.21) and (2.22), we arrive at (2.18). Now suppose that, in addition, D is a cone.

Then C = D, σD = ιK , and (2.16) yields Id −PD = PK . Altogether, (2.18) reduces to (2.19).

2.3 Perspective functions

We review here some essential properties of perspective functions.

Lemma 2.3 [7] Let ϕ ∈ Γ0(G). Then the following hold:

(i) ϕ̃ is a positively homogeneous function in Γ0(R⊕ G).

(ii) Let C =
{
(µ, u) ∈ R× G

∣∣ µ+ ϕ∗(u) 6 0
}

. Then (ϕ̃)∗ = ιC and ϕ̃ = σC .

(iii) Let η ∈ R and y ∈ G. Then

∂ϕ̃(η, y) =





{(
ϕ(y/η) − 〈y | u〉/η, u

) ∣∣ u ∈ ∂ϕ(y/η)
}
, if η > 0;{

(µ, u) ∈ C
∣∣ σdomϕ∗(y) = 〈u | y〉

}
, if η = 0 and y 6= 0;

C, if η = 0 and y = 0;

∅, if η < 0.

(2.23)
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(iv) Suppose that domϕ∗ is open or that ϕ is supercoercive, let η ∈ R, and let y ∈ G. Then

∂ϕ̃(η, y) =





{(
ϕ(y/η) − 〈y | u〉/η, u

) ∣∣ u ∈ ∂ϕ(y/η)
}
, if η > 0;

C, if η = 0 and y = 0;

∅, otherwise.

(2.24)

We refer to the companion paper [7] for further properties of perspective functions as well as

examples. Here are two important instances of (composite) perspective functions that will play a

central role in Section 4.

Lemma 2.4 Let L : H → G be linear and bounded, let r ∈ G, let u ∈ H, let α ∈ ]0,+∞[, let ρ ∈ R, and

let q ∈ ]1,+∞[. Set

f : H → ]−∞,+∞] : x 7→





‖Lx− r‖q
α|〈x | u〉 − ρ|q−1

, if 〈x | u〉 > ρ;

0, if Lx = r and 〈x | u〉 = ρ;

+∞, otherwise

(2.25)

and A : H → R⊕ G : x 7→ (〈x | u〉 − ρ, Lx− r). Then f = [ ‖ · ‖q/α]∼ ◦ A ∈ Γ0(H).

Proof. This is a special case of [7, Example 4.2].

Lemma 2.5 [7, Example 3.6] Let φ ∈ Γ0(R) be an even function, let v ∈ G, let δ ∈ R, and set

g : R⊕ G → ]−∞,+∞] : (η, y) 7→





ηφ(‖y‖/η) + 〈y | v〉+ δη, if η > 0;

(recφ)(‖y‖) + 〈y | v〉, if η = 0;

+∞, if η < 0.

(2.26)

Then g = [φ ◦ ‖ · ‖+ δ〈· | v〉]∼ ∈ Γ0(R⊕ G).

3 Proximity operator of a perspective function

3.1 Main result

We start with a characterization of the proximity operator of a perspective function when domϕ∗ is

open.

Theorem 3.1 Let ϕ ∈ Γ0(G), let γ ∈ ]0,+∞[, let η ∈ R, and let y ∈ G. Then the following hold:

(i) Suppose that η + γϕ∗(y/γ) 6 0. Then proxγϕ̃(η, y) = (0, 0).

(ii) Suppose that domϕ∗ is open and that η + γϕ∗(y/γ) > 0. Then

proxγϕ̃(η, y) =
(
η + γϕ∗(p), y − γp

)
, (3.1)
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where p is the unique solution to the inclusion

y ∈ γp+
(
η + γϕ∗(p)

)
∂ϕ∗(p). (3.2)

If ϕ∗ is differentiable at p, then p is characterized by y = γp+ (η + γϕ∗(p))∇ϕ∗(p).

Proof. It follows from Lemma 2.3(ii) that

ϕ̃ = σC , where C =
{
(µ, u) ∈ R⊕ G

∣∣ µ+ ϕ∗(u) 6 0
}
. (3.3)

Since ϕ ∈ Γ0(G), we have ϕ∗ ∈ Γ0(G). Therefore, C is a nonempty closed convex set. In turn, we

derive from [9, Proposition 3.2] that proxγϕ̃ = proxσγC is a proximal thresholder on γC in the sense

that

(∀η ∈ R)(∀y ∈ G) proxγϕ̃(η, y) = (0, 0) ⇔ (η, y) ∈ γC. (3.4)

(i): By (3.3) and (3.4), (∀η ∈ R)(∀y ∈ G) proxγϕ̃(η, y) = (0, 0) ⇔ η + γϕ∗(y/γ) 6 0.

(ii): Set (χ, q) = proxγϕ̃(η, y) and p = (y − q)/γ. It follows from (2.14) that (χ, q) ∈ dom (γ∂ϕ̃)
and from (3.4) that (χ, q) 6= (0, 0). Hence, we deduce from Lemma 2.3(iv) that χ > 0. Furthermore,

we derive from (2.14) and Lemma 2.3(iii) that (χ, q) is characterized by

η − χ = γϕ(q/χ) − 〈q/χ | y − q〉 and y − q ∈ γ∂ϕ(q/χ), (3.5)

i.e.,

(η − χ)/γ = ϕ(q/χ) − 〈q/χ | p〉 and p ∈ ∂ϕ(q/χ). (3.6)

However, (2.5) asserts that

p ∈ ∂ϕ(q/χ) ⇔ ϕ(q/χ) + ϕ∗(p) = 〈q/χ | p〉. (3.7)

Hence, we derive from (3.6) that ϕ∗(p) = (χ− η)/γ, i.e.,

χ = η + γϕ∗(p). (3.8)

Hence, by (2.3),

p ∈ ∂ϕ(q/χ) ⇔ q ∈ χ∂ϕ∗(p) ⇔ y ∈ γp+
(
η + γϕ∗(p)

)
∂ϕ∗(p). (3.9)

Altogether, we have established the characterization (3.1)–(3.2), while the assertion concerning the

differentiable case follows from (2.6).

Remark 3.2 Here is an alternative proof of Theorem 3.1. It follows from Lemma 2.3(ii) that

(
ϕ̃
)∗

= ιC , where C =
{
(µ, u) ∈ R⊕ G

∣∣ µ+ ϕ∗(u) 6 0
}

(3.10)

is a nonempty closed convex set. Hence, using (2.16) and (2.15), we obtain

proxγϕ̃(η, y) = (η, y)−γproxγ−1ϕ̃∗

(
η/γ, y/γ

)
= (η, y)−γPC

(
η/γ, y/γ

)
= (η, y)−PγC

(
η, y

)
. (3.11)
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Now set (π, p) = PC(η/γ, y/γ). We deduce from (2.15), (2.16), and (2.12) that (π, p) is characterized

by

(
η/γ − π, y/γ − p

)
∈ NC(π, p). (3.12)

(i): We have (η/γ, y/γ) ∈ C. Hence, (π, p) = (η/γ, y/γ) and (3.11) yields proxγϕ̃(η, y) = (0, 0).

(ii): Set h : R⊕ G → ]−∞,+∞] : (µ, u) 7→ µ + ϕ∗(u). Then C = lev60 h and domh = R × domϕ∗

is open. It therefore follows from [1, Proposition 6.43(ii)] that

Ndomh(π, p) = {(0, 0)}. (3.13)

Now let z ∈ domϕ∗ and let ζ ∈ ]−∞,−ϕ∗(z)[. Then h(ζ, z) < 0. Therefore, we derive from [1,

Lemma 26.17 and Proposition 16.8] and (3.13) that

NC(π, p) =

{
Ndomh(π, p) ∪ cone ∂h(π, p), if π + ϕ∗(p) = 0;

Ndomh(π, p), if π + ϕ∗(p) < 0
(3.14)

=

{
cone ∂h(π, p), if π + ϕ∗(p) = 0;

{(0, 0)}, if π + ϕ∗(p) < 0

=

{
cone

(
{1} × ∂ϕ∗(p)

)
, if π = −ϕ∗(p);

{(0, 0)}, if π < −ϕ∗(p).
(3.15)

Hence, if π < −ϕ∗(p), then (3.12) yields (η/γ−π, y/γ−p) = (0, 0) and therefore (η/γ, y/γ) = (π, p) ∈
C, which is impossible since (η/γ, y/γ) /∈ C. Thus, the characterization (3.12) becomes

π = −ϕ∗(p) and (∃ ν ∈ ]0,+∞[)(∃w ∈ ∂ϕ∗(p))
(
η/γ + ϕ∗(p), y/γ − p

)
= ν(1, w) (3.16)

that is, y ∈ γp+ (η + γϕ∗(p))∂ϕ∗(p).

Remark 3.3 Let ϕ ∈ Γ0(G) be such that domϕ∗ is open, let γ ∈ ]0,+∞[, let η ∈ R, and let y ∈ G
be such that η + γϕ∗(y/γ) > 0. We derive from (3.5) that y/χ − q/χ ∈ ∂(γϕ/χ)(q/χ) and then from

(2.14) that q = χproxγϕ/χ(y/χ). Using (2.16), we can also write q = y − proxχγϕ∗(·/γ)y. Hence, we

deduce from Theorem 3.1 the implicit relation

proxγϕ̃(η, y) = χ
(
1,proxγϕ/χ(y/χ)

)
, where χ = η + γϕ∗

(
proxχγϕ∗(·/γ)y

γ

)
. (3.17)

The next example is based on distance functions.

Example 3.4 Let ϕ = φ ◦ dD, where D = B(0; 1) ⊂ G and φ ∈ Γ0(R) is an even function such

that φ(0) = 0 and φ∗ is differentiable on R. It follows from [1, Examples 13.3(iv) and 13.23] that

ϕ∗ = ‖ · ‖+ φ∗ ◦ ‖ · ‖. Note that, since ϕ and φ are even and satisfy ϕ(0) = 0 and φ(0) = 0, ϕ∗ and φ∗

are even and satisfy ϕ∗(0) = 0 and φ∗(0) = 0 as well by [1, Propositions 13.18 and 13.19]. In turn,

φ∗
′

(0) = 0 and we therefore derive from [1, Corollary 16.38(iii) and Example 16.25] that

(∀u ∈ G) ∂ϕ∗(u) =





{
1 + φ∗

′

(‖u‖)
‖u‖ u

}
, if u 6= 0;

B(0; 1), if u = 0.

(3.18)
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We have domϕ∗ = G and, in view of Theorem 3.1(ii), we need only assume that η + γϕ∗(y/γ) > 0,

i.e.,

η + ‖y‖+ γφ∗(‖y‖/γ) > 0. (3.19)

Then (3.2) and (3.18) yield




y = γp+

(
η + γ

(
‖p‖+ φ∗(‖p‖)

))1 + φ∗
′

(‖p‖)
‖p‖ p, if p 6= 0;

‖y‖ 6 η, if p = 0.

(3.20)

In view of Remark 3.2, the normal cone to the set C of (3.10) at (0, 0) is

K =
{
(η, y) ∈ [0,+∞[× G

∣∣ ‖y‖ 6 η
}
. (3.21)

So, for every (η, y) ∈ K, PC(η/γ, y/γ) = (0, 0) and proxγϕ̃(η, y) = (η, y). Now suppose that (η, y) /∈ K.

Then p 6= 0 and, taking the norm in the upper line of (3.20), we obtain

γ‖p‖+
(
η + γ

(
‖p‖+ φ∗(‖p‖)

))(
1 + φ∗

′

(‖p‖)
)
= ‖y‖. (3.22)

Set

ψ : s 7→ s+

(
η

γ
+ s+ φ∗(s)

)(
1 + φ∗

′

(s)
)
− ‖y‖

γ
(3.23)

and define

θ : s 7→ 1

2

((
η

γ
+ s+ φ∗(s)

)2

+ s2
)
− ‖y‖s

γ
. (3.24)

Since φ∗ is convex, θ is strongly convex and it therefore admits a unique minimizer t. Therefore

ψ(t) = θ′(t) = 0 and ‖p‖ = t = ψ−1(‖y‖/γ) is the unique solution to (3.22). In turn, (3.20) yields

p =
t

‖y‖+ γψ(t)
y, (3.25)

and we obtain proxγϕ̃(η, y) via (3.1).

Next, we compute the proximity operator of a special case of the perspective function introduced

in Lemma 2.5.

Corollary 3.5 Let v ∈ G, let δ ∈ R, and let φ ∈ Γ0(R) be an even function such that φ(0) = 0 and φ∗ is

differentiable on R. Define

g : R⊕ G → ]−∞,+∞] : (η, y) 7→





ηφ(‖y‖/η) + δη + 〈y | v〉, if η > 0;

0, if y = 0 and η = 0;

+∞, otherwise.

(3.26)

Let γ ∈ ]0,+∞[, let η ∈ R, let y ∈ G, and set

ψ : s 7→
(
φ∗(s) +

η

γ
− δ

)
φ∗

′

(s) + s. (3.27)
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Then ψ is invertible. Moreover, if η + γφ∗(‖y/γ − v‖) > γδ, set

t = ψ−1
(
‖y/γ − v‖

)
and p =




v +

t

‖y − γv‖(y − γv), if y 6= γv;

v, if y = γv.
(3.28)

Then

proxγg(η, y) =

{(
η + γ(φ∗(t)− δ), y − γp

)
, if η + γφ∗(‖y/γ − v‖) > γδ;

(0, 0), if η + γφ∗(‖y/γ − v‖) 6 γδ.
(3.29)

Proof. This is a special case of Theorem 3.1 with ϕ = φ ◦ ‖ · ‖ + δ + 〈· | v〉. Indeed, as shown in [7,

Example 3.6], (3.26) is a special case of (2.26). Hence, we derive from Lemma 2.5 that g = ϕ̃ ∈
Γ0(R ⊕ G). Next, we obtain from [1, Example 13.7 and Proposition 13.20(iii)] that

ϕ∗ = φ∗ ◦ ‖ · −v‖ − δ (3.30)

and therefore that

∇ϕ∗ : G → G : z 7→





φ∗
′

(‖z − v‖)
‖z − v‖ (z − v), if z 6= v;

0, if z = v.

(3.31)

In view of Theorem 3.1, it remains to assume that η+ γϕ∗(y/γ) > 0, i.e., η+ φ∗(‖y/γ − v‖) > γδ, and

to show that the point (t, p) provided by (3.28) satisfies

t = ‖p − v‖ and y = γp +
(
η + γϕ∗(p)

)
∇ϕ∗(p). (3.32)

We consider two cases:

• y = γv: Since φ is an even convex function such that φ(0) = 0, φ∗ has the same properties by [1,

Propositions 13.18 and 13.19]. Hence, going back to Remark 3.2, since φ∗ is differentiable, the

points that have (π, p) = (δ, v) as a projection onto C =
{
(µ, u) ∈ R⊕ G

∣∣ µ+ φ∗(‖u− v‖) 6 δ
}

are the points on the ray
{
(δ + λ, v)

∣∣ λ ∈ [0,+∞[
}

. Thus, we derive from (3.11) that

y = γv ⇔ PC(η/γ, y/γ) = (π, p) = (δ, v) ⇔ p = v ⇔ t = 0 ⇔
proxγϕ̃(η, y) = (η, y) − γ(δ, v) = (η − γδ, y − γp). (3.33)

Since φ∗(0) = 0, we recover (3.29).

• y 6= γv: As seen in (3.33), p 6= v. Using (3.30) and (3.31), (3.32) can be rewritten as

t = ‖p− v‖ and y− γv = γ(p− v)+

(
η + γφ∗(‖p− v‖) − γδ

)
φ∗

′

(‖p − v‖)
‖p− v‖ (p− v), (3.34)

that is,

t = ‖p− v‖ and y/γ− v =
‖p− v‖+

(
η/γ − δ + φ∗(‖p− v‖)

)
φ∗

′

(‖p − v‖)
‖p− v‖ (p− v). (3.35)
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In view of (3.27), this is equivalent to

t = ‖p− v‖ and y/γ − v =
ψ(‖p − v‖)
‖p − v‖ (p− v). (3.36)

Upon taking the norm on both sides of the second equality, we obtain

ψ(t) = ψ(‖p − v‖) = ‖y/γ − v‖. (3.37)

We note that, since φ∗ is convex, ψ is the derivative of the strongly convex function

θ : s 7→ 1

2

(
φ∗2(s) + s2

)
+

(
η

γ
− δ

)
φ∗(s). (3.38)

Consequently, ψ is strictly increasing [1, Proposition 17.13], hence invertible. It follows that

t = ψ−1(‖y/γ − v‖). In turn, (3.36) yields (3.28).

Example 3.6 Define

g : R⊕ G → ]−∞,+∞] : (η, y) 7→





−
√
η2 − ‖y‖2, if η > 0 and ‖y‖ 6 η;

0, if y = 0 and η = 0;

+∞, otherwise,

(3.39)

let γ ∈ ]0,+∞[, let η ∈ R, let y ∈ G, and define

ψ : s 7→
(
2 +

η

γ
√
1 + s2

)
s. (3.40)

If η +
√
γ2 + ‖y‖2 > 0, set

p =





t

‖y‖y, if y 6= 0;

0, if y = 0,
where t = ψ−1

(‖y‖
γ

)
. (3.41)

Then

proxγg(η, y) =

{(
η + γ

√
1 + t2, y − γp

)
, if η +

√
γ2 + ‖y‖2 > 0;

(0, 0), if η +
√
γ2 + ‖y‖2 6 0.

(3.42)

Proof. This is a special case of Corollary 3.5 with with δ = 0, v = 0, and

φ : s 7→
{
−
√
1− s2, if |s| 6 1;

+∞, otherwise.
(3.43)

It follows from [1, Example 13.2(vi) and Corollary 13.33] that φ∗ : s 7→
√
1 + s2. Hence, φ∗

′

: s 7→
s/
√
1 + s2 and we derive (3.42) from (3.29).
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Example 3.7 Let v ∈ G, let δ ∈ R, let α ∈ ]0,+∞[, let q ∈ ]1,+∞[, and consider the function

g : R⊕ G → ]−∞,+∞] : (η, y) 7→





‖y‖q
αηq−1

+ δη + 〈y | v〉, if η > 0;

0, if y = 0 and η = 0;

+∞, otherwise.

(3.44)

Let γ ∈ ]0,+∞[, set q∗ = q/(q − 1), set ̺ = (α(1 − 1/q∗))q
∗−1, and take η ∈ R and y ∈ G. If

q∗γq
∗−1η + ̺‖y‖q∗ > γδ and y 6= γv, let t be the unique solution in ]0,+∞[ to the equation

s2q
∗−1 +

q∗(η − γδ)

γ̺
sq

∗−1 +
q∗

̺2
s− q∗‖y − γv‖

γ̺2
= 0 (3.45)

and set

p =




v +

t

‖y − γv‖(y − γv), if y 6= γv;

v, if y = γv.
(3.46)

Then

proxγg(η, y) =

{(
η + γ(̺tq

∗ − δ)/q∗, y − γp
)
, if q∗γq

∗−1η + ̺‖y‖q∗ > γδ;(
0, 0

)
, if q∗γq

∗−1η + ̺‖y‖q∗ 6 γδ.
(3.47)

Proof. This is a special case of Corollary 3.5 with φ = | · |q/α. Indeed, we derive from [1, Exam-

ple 13.2(i) and Proposition 13.20(i)] that φ∗ = ̺| · |q∗/q∗, which implies that (3.46)–(3.47) follow

from (3.29).

Example 3.8 Let v ∈ G, let α ∈ ]0,+∞[, let δ ∈ R, and consider the function

g : R⊕ G → ]−∞,+∞] : (η, y) 7→





‖y‖2
αη

+ δη + 〈y | v〉, if η > 0;

0, if y = 0 and η = 0;

+∞, otherwise.

(3.48)

We obtain a special case of Example 3.7 with q = q∗ = 2. Now let γ ∈ ]0,+∞[, and take η ∈ R and

y ∈ G. If 4γη + α‖y‖2 6 2γδ, then proxγg(η, y) = (0, 0). Suppose that 4γη + α‖y‖2 > 2γδ. First, if

y = γv, then proxγg(η, y) = (η − γδ/2, 0). Next, suppose that y 6= γv and let t be the unique solution

in ]0,+∞[ to the depressed cubic equation

s3 +
4α(η − γδ) + 8γ

α2γ
s− 8‖y − γv‖

α2γ
= 0. (3.49)

Then we derive from (3.46)–(3.47) that

proxγg(η, y) =

(
η +

γ

2

(
αt2

2
− δ

)
,

(
1− γt

‖y − γv‖

)
(y − γv)

)
. (3.50)

Note that (3.49) can be solved explicitly via Cardano’s formula [4, Chapter 4] to obtain t.
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We conclude this subsection by investigating integral functions constructed from integrands that

are perspective functions.

Proposition 3.9 Let (Ω,F, µ) be a measure space, let G be a separable real Hilbert space, and let ϕ ∈
Γ0(G). Set H = L2((Ω,F, µ);R) and G = L2((Ω,F, µ);G), and suppose that µ(Ω) < +∞ or ϕ > ϕ(0) =
0. For every x ∈ H, set Ω0(x) =

{
ω ∈ Ω

∣∣ x(ω) = 0
}

and Ω+(x) =
{
ω ∈ Ω

∣∣ x(ω) > 0
}

. Define

Φ: H⊕ G → ]−∞,+∞] : (x, y) 7→




∫

Ω0(x)

(
recϕ

)(
y(ω)

)
µ(dω) +

∫

Ω+(x)
x(ω)ϕ

(
y(ω)

x(ω)

)
µ(dω),

if




x > 0 µ-a.e.

(recϕ)(y)1Ω0(x) + xϕ(y/x)1Ω+(x) ∈ L1
(
(Ω,F , µ);R

)
;

+∞, otherwise.

(3.51)

Now let x ∈ H and y ∈ G, and set, for µ-almost every ω ∈ Ω, (p(ω), q(ω)) = proxϕ̃(x(ω), y(ω)). Then

proxΦ(x, y) = (p, q).

Proof. Set z = (x, y). It follows from Lemma 2.3(i) that ϕ̃ ∈ Γ0(R⊕G), and [7, Proposition 5.1] asserts

that Φ is a well-defined function in Γ0(R ⊕ G) with

Φ(z) =

∫

Ω
ϕ̃
(
z(ω)

)
µ(dω). (3.52)

Therefore, the result is obtained by applying Lemma 2.1 with K = R⊕ G and K = H⊕ G.

Remark 3.10 Proposition 3.9 provides a general setting for computing the proximity operators of

abstract integral functionals by reducing it to the computation of the proximity operator of the inte-

grand. In particular, by suitably choosing the underlying measure space and the integrand, it provides

a framework for computing the proximity operators of the integral function based on perspective

functions discussed in [7], which include general divergences. For instance, discrete N -dimensional

divergences are obtained by setting Ω = {1, . . . , N} and F = 2Ω, and letting µ be the counting

measure (hence H = G = R
N) and G = R. While completing the present paper, it has come to our at-

tention that the computation of the proximity operators of discrete divergences has also been recently

addressed in [13].

3.2 Further results

A convenient assumption in Theorem 3.1(ii) is that domϕ∗ is open, as it allowed us to rule out the

case when

proxγϕ̃(η, y) = (0, q) and q 6= 0, (3.53)

and to reduce (3.14) to (3.15) using (3.13). In general, (3.13) has the form Ndomh(π, p) = {0} ×
Ndomϕ∗p and, if domϕ∗ is simple enough, explicit expressions can still be obtained. To shed more light
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on the case (3.53), consider the scenario in which q 6= 0 and domϕ∗ is closed, and set p = (y − q)/γ.

Then, in view of (2.14), (3.53) yields (η/γ, p) ∈ ∂ϕ̃(0, q). In turn, we derive from (2.23) that

ϕ∗(p) 6 −η/γ and σdomϕ∗(q) = 〈p | q〉. (3.54)

Thus,

p ∈ domϕ∗ and (∀z ∈ domϕ∗) 〈z − p | y/γ − p〉 6 0, (3.55)

and we infer from (2.11) that p = Pdomϕ∗(y/η). Therefore,

proxγϕ̃(η, y) =
(
0, y − γPdomϕ∗(y/η)

)
=

(
0, y − Pγdomϕ∗y

)
(3.56)

and we note that the condition q 6= 0 means that y /∈ γ domϕ∗. We provide below examples in which

domϕ∗ is a simple proper closed subset of G and the proximity operator of the perspective function of

ϕ can be computed explicitly.

Example 3.11 Suppose that D 6= {0} is a nonempty closed convex cone in G and define

ϕ = ϑ+ ιD, where ϑ =
√

1 + ‖ · ‖2G . (3.57)

Since dom ϑ = G, we have ϕ∗ = (ϑ+ ιD)
∗ = ϑ∗� ιD⊖ , where D⊖ is the polar cone of D and (combine

[1, Examples 13.2(vi) and 13.7])

ϑ∗ : G → ]−∞,+∞] : u 7→
{
−
√
1− ‖u‖2G , if ‖u‖G 6 1;

+∞, if ‖u‖G > 1.
(3.58)

Thus, domϕ∗ = dom (ϑ∗� ιD⊖) = domϑ∗ + dom ιD⊖ = B(0; 1) + D⊖ is closed as the sum of two

closed convex sets, one of which is bounded. As a result, since D⊖ 6= G,

domϕ∗ is a proper closed subset of G. (3.59)

Now set K = R ⊕ G and K = [0,+∞[ ×D, and let γ ∈ ]0,+∞[, η ∈ R, and y ∈ G. Then ‖(η, y)‖K =√
|η|2 + ‖y‖2G and, as shown in [7, Example 3.5],

ϕ̃ = ‖ · ‖K + ιK . (3.60)

Hence, we derive from (2.19) that

proxγϕ̃(η, y) =





(0, 0), if ‖PK(η, y)‖K 6 γ;

(
1− γ

‖PK(η, y)‖K

)
PK(η, y), if ‖PK(η, y)‖K > γ.

(3.61)

We thus obtain an explicit expression as soon as PK is explicit although domϕ∗ is not open. As an

illustration, let N > 2 be an integer, set G = R
N−1, let D = [0,+∞[N−1, and denote by ‖ ·‖N the usual

N -dimensional Euclidean norm. Then ϕ =
√

1 + ‖ · ‖2N−1 + ιD, K = [0,+∞[N , and (3.61) becomes

proxγϕ̃(η, y) =





(0, 0), if ‖(η+, y+)‖N 6 γ;

(
1− γ

‖(η+, y+)‖N

)
(η+, y+), if ‖(η+, y+)‖N > γ,

(3.62)

where η+ = max{0, η} and y+ is defined likewise componentwise.
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The second example provides the proximity operator of the perspective function of the Huber

function.

Example 3.12 (perspective of the Huber function) Following [7, Example 3.2], let ρ ∈ ]0,+∞[ and

consider the perspective function

ϕ̃ : R2 → ]−∞,+∞] : (η, y) 7→





ρ|y| − ηρ2

2
, if |y| > ηρ and η > 0;

|y|2
2η

, if |y| 6 ηρ and η > 0;

ρ|y|, if η = 0;

+∞, if η < 0

(3.63)

of the Huber function

ϕ : R → ]−∞,+∞] : y 7→





ρ|y| − ρ2

2
, if |y| > ρ;

|y|2
2
, if |y| 6 ρ.

(3.64)

Then ϕ∗ = | · |2/2 + ι[−ρ,ρ] and domϕ∗ is therefore a proper closed subset of R. In addition, (3.10)

yields

C =
{
(µ, u) ∈ ]−∞, 0]× [−ρ, ρ]

∣∣ µ+ |u|2/2 6 0
}
. (3.65)

Now let η ∈ R, let y ∈ R, and set (χ, q) = proxγϕ̃(η, y). Then the following hold:

(i) If η + |y|2/(2γ) 6 0 and |y| 6 γρ, then Theorem 3.1(i) yields (χ, q) = (0, 0).

(ii) We have χ = 0 ⇔ η/γ 6 −ρ2/2. Hence, if η 6 −γρ2/2 and |y| > γρ, (3.56) yields (χ, q) =
(0, y − P[−γρ,γρ]y) = (0, y − γρ sign(y)).

(iii) If η > −γρ2/2 and |y| > ρη + γρ(1 + ρ2/2), then (η/γ, y/γ) ∈ (−ρ2/2, ρ sign(y)) +
NC(−ρ2/2, ρ sign(y)) and therefore PC(η/γ, y/γ) = (−ρ2/2, ρ sign(y)). Hence, (3.11) yields

(χ, q) = (η + γρ2/2, y − γρ sign(y)).

(iv) If η > −γρ2/2 and |y| 6 ρη+ γρ(1+ ρ2/2), then (χ, q) = proxγ[|·|2/2]∼(η, y) is obtained by setting

v = 0, δ = 0, and α = 2 in Example 3.8.

The last example concerns the Vapnik loss function.

Example 3.13 (perspective of the Vapnik function) Following [7, Example 3.4], let ε ∈ ]0,+∞[ and

consider the perspective function

ϕ̃ : R2 → ]−∞,+∞] : (η, y) 7→
{
d[−εη,εη](y), if η > 0;

+∞, if η < 0
(3.66)

of the Vapnik ε-insensitive loss function [28]

ϕ = max{| · | − ε, 0}. (3.67)

15



We have ϕ = d[−ε,ε] = ι[−ε,ε]� | · | and therefore ϕ∗ = ε| · |+ ι[−1,1]. Furthermore, (3.10) becomes

C =
{
(µ, u) ∈ ]−∞, 0]× [−1, 1]

∣∣ µ+ ε|u| 6 0
}
. (3.68)

Now let η ∈ R, let y ∈ R, and set (χ, q) = proxγϕ̃(η, y). Then the following hold:

(i) If η + ε|y| 6 0 and |y| 6 γ, then Theorem 3.1(i) yields (χ, q) = (0, 0).

(ii) We have χ = 0 ⇔ η/γ 6 −ε. Hence, if η 6 −γε and |y| > γ, (3.56) yields (χ, q) = (0, y −
P[−γ,γ]y) = (0, y − γ sign(y)).

(iii) If η > −γε and |y| > εη + γ(1 + ε2), then (η/γ, y/γ) ∈ (−ε, sign(y)) + NC(−ε, sign(y)) and

therefore PC(η/γ, y/γ) = (−ε, sign(y)). Hence, (3.11) yields (χ, q) = (η + γε, y − γ sign(y)).

(iv) If |y| > −η/ε and εη 6 |y| 6 εη + γ(1 + ε2), then PC(η/γ, y/γ) coincides with the projection of

(η/γ, y/γ) onto the half-space with outer normal vector (1, ε sign(y)) and which has the origin

on its boundary. As a result, (3.11) yields (χ, q) = ((η+ε|y|)/(1+ε2), ε(η+ε|y|)sign(y)/(1+ε2)).

(v) If η > 0 and |y| 6 εη, then PC(η/γ, y/γ) = (0, 0) and (3.11) yields (χ, q) = (η, y).

4 Applications in high-dimensional statistics

Sections 2 and 3 provide a unifying framework to model a variety of problems around the notion of a

perspective function. By applying the results of Section 3 in existing proximal algorithms, we obtain

efficient methods to solve complex problems. To illustrate this point, we focus on a specific application

area: high-dimensional regression in the statistical linear model.

4.1 Penalized linear regression

We consider the standard statistical linear model

z = Xb+ σe, (4.1)

where z = (ζi)16i6n ∈ R
n is the response, X ∈ R

n×p a design (or feature) matrix, b = (βj)16j6p ∈ R
p

a vector of regression coefficients, σ ∈ ]0,+∞[, and e = (εi)16i6n the noise vector; each εi is the

realization of a random variable with mean zero and variance 1. Henceforth, we denote by Xi: the

ith row of X and by X:j the jth column of X. In the high-dimensional setting where p > n, a typical

assumption about the regression vector b is sparsity. In this scenario, the Lasso [27] has become a

fundamental tool for variable selection and predictive modeling. It is based on solving the penalized

least-squares problem

minimize
b∈Rp

1

2n
‖Xb− z‖22 + λ‖b‖1, (4.2)

where λ ∈ [0,+∞[ is a regularization parameter that aims at controlling the sparsity of the solution.

The Lasso has strong performance guarantees in terms of support recovery, estimation, and predictive

performance if one takes λ ∝ σ‖X⊤e‖∞. In the high-dimensional setting, two shortcomings of the
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Lasso are the introduction of bias in the final estimates due to the ℓ1 norm and lack of knowledge about

the quantity σ which necessitates proper tuning of λ via model selection strategies that is dependent

on σ. Bias reduction can be achieved by using a properly weighted ℓ1 norm, resulting in the adaptive

Lasso [30] formulation

minimize
b∈Rp

1

2n
‖Xb− z‖22 + λ

p∑

j=1

wj |βj |, (4.3)

where the fixed weights wj ∈ ]0,+∞[ are estimated from data. In [30], it was shown that, for suitable

choices of wj, the adaptive Lasso produces (asymptotically) unbiased estimates of b. One of the first

methods to alleviate the σ-dependency of the Lasso has been the Sqrt-Lasso [2]. The Sqrt-Lasso

problem is based on the formulation

minimize
b∈Rp

1

2
‖Xb− z‖2 + λ‖b‖1. (4.4)

This optimization problem can be cast as second order cone program (SOCP) [2]. The modification of

the objective function can be interpreted as an (implicit) scaling of the Lasso objective function by an

estimate ‖Xb− z‖2/
√
n of σ [19], leading to

minimize
b∈Rp

1

2
√
n

‖Xb− z‖22
1√
n
‖Xb− z‖2

+ λ‖b‖1. (4.5)

In [2], it was shown that the tuning parameter λ does not depend on σ in Sqrt-Lasso.

Alternative approaches rely on the idea of simultaneously and explicitly estimating b and σ from

the data. The scaled Lasso [26], a robust hybrid of ridge and Lasso regression [23], and the TREX [19]

are important instances. In the following, we will show that these estimators are based on perspective

functions under the unifying statistical framework of concomitant estimation. We will introduce a

novel family of estimators and show how the corresponding optimization problems can be solved

using proximal algorithms. In particular, we will derive novel proximal algorithms for solving both the

standard TREX and a novel generalized version of the TREX which includes the Sqrt-Lasso as special

case.

4.2 Penalized concomitant M-estimators

In statistics, the task of simultaneously estimating a regression vector b and an additional model

parameter is referred to as concomitant estimation. In [17], Huber introduced a generic method for

formulating “maximum likelihood-type” estimators (or M-estimators) with a concomitant parameter

from a convex criterion. Using our perspective function framework, we can extend this framework and

introduce the class of penalized concomitant M-estimators defined through the convex optimization

problem

minimize
σ∈R, τ∈R, b∈Rp

n∑

i=1

ϕ̃i
(
σ,Xi:b− ζi

)
+

p∑

j=1

ψ̃j
(
τ, a⊤j b

)
, (4.6)
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with concomitant variables σ and τ under the assumptions outlined in Theorem 3.1 and in Section 3.2.

Here, ϕi ∈ Γ0(R), ψj ∈ Γ0(R), and aj ∈ R
p. The terms ϕ̃i are data fitting terms and ψ̃j are penalty

terms. A prominent instance of this family of estimators is the scaled Lasso [26] formulation

minimize
b∈Rp, σ∈]0,+∞[

1

2n

‖Xb− z‖22
σ

+
σ

2
+ λ‖b‖1, (4.7)

which yields estimates equivalent to the Sqrt-Lasso. Here, setting ϕi = | · |2/(2n) + 1/2 and ψj = λ| · |
leads to the scaled (or concomitant) Lasso formulation (see Lemma 2.5, Corollary 3.5, and [21]).

Other function choices result in well-known estimators. For instance, taking each ϕi to be the Huber

function (see Example 3.12) and each ψj to be the Berhu (reversed Huber) function recovers the ro-

bust Lasso variant, introduced and discussed in [23]. Setting each ψj = λ|wj · | to be a weighted ℓ1

component results in the “Huber + adaptive Lasso” estimator, analyzed theoretically in [18]. Note

that for the latter two approaches, no dedicated optimization algorithms exist that can solve the cor-

responding optimization problem with provable convergence guarantees. Combining the proximity

operators introduced here with proximal algorithms enables us to design such algorithms. To ex-

emplify this powerful framework we focus next on a particular instance of a penalized concomitant

M-estimator, the TREX estimator, and derive proximity operators and proximal algorithms.

4.3 Proximal algorithms for the TREX

The TREX [19] extends Sqrt-Lasso and scaled Lasso by taking into account the unknown noise distri-

bution of e. Recalling that a theoretically desirable tuning parameter for the Lasso is λ ∝ σ‖X⊤e‖∞,

the TREX scales the Lasso objective by an estimate of this quantity, namely,

minimize
b∈Rp

‖Xb− z‖22
‖X⊤(Xb− z)‖∞

+ α‖b‖1. (4.8)

The parameter α > 0 can be set to a constant value (α = 1/2 being the default choice). In [19],

promising statistical results were reported where an approximate version of the TREX, with no tuning

of α, has been shown to be a valid alternative to the Lasso. A major technical challenge in the TREX

formulation is the non-convexity of the optimization problem. In [3], this difficulty is overcome by

showing that the TREX problem, although non-convex, can be solved by observing that problem (4.8)

can be equivalently expressed as finding the best solution to 2p convex problems of the form

minimize
b∈Rp

x⊤j (Xb−z)>0

‖Xb− z‖22
αx⊤j (Xb− z)

+ ‖b‖1, where xj = sX:j , with s ∈ {−1, 1}. (4.9)

Each subproblem can be reformulated as a standard SOCP and numerically solved using generic SOCP

solvers [3]. Next we show how our perspective function approach allows us to derive proximal algo-

rithms for not only the TREX subproblems and but also for novel generalized versions of the TREX.

The proximal algorithms construct a sequence (bk)k∈N that is guaranteed to converge to a solution to

(4.9).

4.3.1 Proximal operators for the TREX subproblem

We first note that the data fitting term of the TREX subproblem (4.9) is the special case of (2.25)

where H = R
p, G = R

n, q = 2, L = X, r = z, u = X⊤xj , and ρ = x⊤j z. Given α ∈ ]0,+∞[, the data
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fitting term of the TREX subproblem thus assumes the form

fj : R
p → ]−∞,+∞] : b 7→





‖Xb− z‖22
αx⊤j (Xb− z)

, if x⊤j (Xb− z) > 0;

0, if Xb = z;

+∞, otherwise,

(4.10)

and the corresponding TREX subproblem is to

minimize
b∈Rp

fj(b) + ‖b‖1 . (4.11)

Now consider the linear transformation

Mj : R
p → R× R

n : b 7→
(
x⊤j Xb,Xb

)
(4.12)

and introduce

gj : R× R
n → ]−∞,+∞] : (η, y) 7→





‖y − z‖22
α
(
η − x⊤j z

) , if η > x⊤j z;

0, if y = z and η = x⊤j z;

+∞, otherwise.

(4.13)

Then fj = gj ◦Mj . Upon setting h = ‖ · ‖1, we see that (4.11) is of the form

minimize
b∈Rp

gj(Mjb) + h(b). (4.14)

Next, we determine the proximity operators proxgj and proxh, as only those are needed in modern

proximal splitting methods [8, 11] to solve (4.14). The proximity operator proxh is the standard soft

thresholding operator. A formula for proxgj is provided by Example 3.8 up to a shift by (x⊤j z, z). Let

γ ∈ ]0,+∞[ and let g be as in (3.48). Combining Example 3.8 and [1, Proposition 23.29(ii)], we

obtain, for every η ∈ R and every y ∈ R
n,

proxγgj(η, y) = (x⊤j z, z) + proxγgj
(
η − x⊤j z, y − z

)

=

{(
η + αγ‖p‖22/4, y − γp

)
, if 4γ(η − x⊤j z) + α‖y − z‖22 > 0;(

x⊤j z, z
)
, if 4γ(η − x⊤j z) + α‖y − z‖22 6 0,

(4.15)

where

p =





t

‖y − z‖(y − z), if y 6= z;

0, if y = z,
(4.16)

and where t is the unique solution in ]0,+∞[ to the depressed cubic equation

s3 +
4α(η − x⊤j z) + 8γ

α2γ
s− 8‖y − z‖

α2γ
= 0. (4.17)
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4.3.2 Proximal operators for generalized TREX estimators

Thus far, we have shown that the data-fitting function in the TREX subproblem (4.9) is a special case

of (2.25). However, the full potential of (2.25) is revealed by taking a general q ∈ ]1,+∞[, leading to

the composite perspective function

fj,q : R
p → ]−∞,+∞] : b 7→





‖Xb− z‖q2
α
∣∣x⊤j (Xb− z)

∣∣q−1 , if x⊤j (Xb− z) > 0;

0, if Xb = z;

+∞, otherwise.

(4.18)

This function is the data fitting term of a generalized TREX subproblem for the corresponding global

generalized TREX objective

minimize
b∈Rp

‖Xb− z‖q2
α‖X⊤(Xb− z)‖q−1

∞

+ ‖b‖1. (4.19)

This objective function provides a novel family of generalized TREX estimators, parameterized by q.
The first important observation is that, in the limiting case q → 1, the generalized TREX estimator

collapses to the Sqrt-Lasso (4.4). Secondly, particular choices of q allow very efficient computation

of proximity operators for the generalized TREX subproblems. Considering the linear transformation

Mj : R
p → R× R

n : b 7→
(
x⊤j Xb,Xb

)
and introducing

gj,q : R× R
n → ]−∞,+∞] : (η, y) 7→





‖y − z‖q2
α
∣∣η − x⊤j z

∣∣q−1 , if η > x⊤j z;

0, if y = z and η = x⊤j z;

+∞, otherwise

(4.20)

we arrive at fj,q = gj,q ◦Mj . Setting h = ‖ · ‖1 the corresponding problem is to

minimize
b∈Rp

gj,q(Mjb) + h(b). (4.21)

The proximity operator proxgj,q is provided by Example 3.7, where δ = 0 and v = 0, up to a shift

by (x⊤j z, z). Let g be the function in (3.44) and let γ ∈ ]0,+∞[. Set q∗ = q/(q − 1), set ̺ =

(α(1 − 1/q∗))q
∗−1, and take (η, y) ∈ R × G. If q∗γq

∗−1(η − x⊤j z) + ̺‖y − z‖q∗2 > 0 and y 6= z, let

t ∈ ]0,+∞[ be the unique solution to the polynomial equation

s2q
∗−1 +

q∗(η − x⊤j z)

γ̺
sq

∗−1 +
q∗

̺2
s− q∗‖y − z‖

γ̺2
= 0. (4.22)

Set

p =





t

‖y − z‖(y − z), if y 6= z;

0, if y = z.
(4.23)

Then we derive from Example 3.7 that

proxγgj,q(η, y) =

{(
η + γ̺tq

∗

/q∗, y − γp
)
, if q∗γq

∗−1(η − x⊤j z) + ̺‖y − z‖q∗2 > 0;(
x⊤j z, z

)
, if q∗γq

∗−1(η − x⊤j z) + ̺‖y − z‖q∗2 6 0.
(4.24)
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The key step in the calculation of the proximity operator is to solve (4.22) efficiently. The solution is

explicit for q = 2, as discussed in Example 3.8. For q = 3, we obtain a quartic equation that can also be

solved explicitly. For q ∈
{
(i+ 1)/i

∣∣ i ∈ N, i > 2
}

(4.22) is a polynomial with integer exponents and

is thus amenable to efficient root finding algorithms. For a general q, a one-dimensional line search

for convex functions on a bounded interval needs to be performed.

4.3.3 Douglas-Rachford for generalized TREX subproblems

Problem (4.14) is a standard composite problem and can be solved via several proximal splitting

methods that require only the ability to compute proxgj and proxh; see [6] and references therein.

For large scale problems, one could also employ recent algorithms that benefit from block-coordinate

[11] or asynchronous block-iterative implementations [8], while still guaranteeing the convergence

of their sequence (bk)k∈N of iterates to a solution to the problem. In this section, we focus on a simple

implementation based on the Douglas-Rachford splitting method [1] in the context of the generalized

TREX estimation to illustrate the applicability and versatility of the tools presented in Sections 2 and 3.

Define F : (b, c) 7→ h(b) + gj,q(c) and G = ιV , where V is the graph of Mj , i.e., V ={
(b, c) ∈ R

p × R
n+1

∣∣Mjb = c
}

. Then we can rewrite (4.14) as

minimize
x=(b,c)∈Rp×Rn+1

F (x) +G(x) (4.25)

Let γ ∈ ]0,+∞[, let y0 ∈ R
p+n+1, and let (µk)k∈N be a sequence in ]0, 2[ such that infk∈N µk > 0 and

supk∈N µk < 2. The Douglas-Rachford algorithm is

for k = 0, 1, . . .
xk = proxγGyk
zk = proxγF (2xk − yk)

yk+1 = yk + µk(zk − xk).

(4.26)

The sequence (xk)k∈N is guaranteed to converge to a solution to (4.25) [1, Corollary 27.4]. Note that

proxF : (b, c) 7→ (proxhb,proxgj,qc) (4.27)

and, in view of (2.15),

proxG : (b, c) 7→ (v,Mjv), where v = b−M⊤
j

(
Id +MjM

⊤
j

)−1
(Mjb− c) (4.28)

is the projection operator onto V . Hence, upon setting Rj = M⊤
j (Id +MjM

⊤
j )−1, xk = (bk, ck) ∈

R
p × R

n+1, yk = (xk, yk) ∈ R
p × R

n+1, and zk = (zk, tk) ∈ R
p × R

n+1, we can rewrite (4.26) as

for k = 0, 1, . . .

qk =Mjxk − yk
bk = xk −Rjqk
ck =Mjbk
zk = proxγh(2bk − xk)

tk = proxγgj,q (2ck − yk)

xk+1 = xk + µk(zk − bk)
yk+1 = yk + µk(tk − ck).

(4.29)

Then (bk)k∈N converges to a solution b to (4.14) or (4.21). Note that the matrix Rj needs to be

precomputed only once by inverting a positive definite symmetric matrix.
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Figure 1: Left panel: Average wall-clock time (seconds) versus dimension p for solving the TREX

subproblems with Douglas-Rachford (DR), SCS, and DR-Sel (Douglas-Rachford with online sign se-

lection). Right panel: Both plots show the first 40 variables of a typical p = 2000 TREX solution

(top for s = +1). The m = 20 first indices are the non-zero indices in b∗. Insets show the TREX

subproblem objective function values for s = ±1 and X:1, reached by Douglas-Rachford and SCS.

DR-Sel selects the correct signed subproblem as verified a posteriori by the minimum function value

(f (DR)
s=1,j=1 = 20.1410 versus f (DR)

s=−1,j=1 = 22.0451).

4.4 Numerical illustrations

We illustrate the convergence behavior of the Douglas-Rachford algorithm for TREX problems and

the statistical performance of generalized TREX estimators using numerical experiments. All pre-

sented algorithms and experimental evaluations are implemented in MATLAB and are available at

http://github.com/muellsen/TREX. All algorithms are run in MATLAB 2015a on a MacBook Pro

with 2.8 GHz Intel Core i7 and 16 GB 1600 MHz DDR3 memory.

4.4.1 Evaluation of the Douglas-Rachford scheme on TREX subproblems

We first examine the scaling behavior of the Douglas-Rachford scheme for the TREX subproblem on

linear regression tasks. We simulate synthetic data according to the linear model (4.1) with m = 20
nonzero variables, regression vector b∗ = [−1, 1,−1, . . . , 0⊤p−m]

⊤, and feature vectors Xi: ∼ N(0,Σ)
with Σii = 1 and Σij = 0.3, and Gaussian noise εi ∼ N(0, σ2) with σ = 1. Each column X:j is

normalized to have norm
√
n. We fix the sample size n = 200 and consider the dimension p ∈

{20, 50, 100, 200, 500, 1000, 2000}. We solve one standard TREX subproblem (for s ∈ {−1, 1}, X:1,

α = 0.5) over d = 20 random realizations of X and e. For the TREX subproblem we consider the

proximal Douglas-Rachford algorithm 4.29 with parameters µk ≡ 1.95 and γ = 70. We declare that the

Douglas-Rachford algorithm has converged at iteration K if min{‖bK+1− bK‖, ‖yK+1−yK‖} 6 10−10,

resulting in the final estimate bK .

In practice, the Douglas-Rachford algorithm for the TREX subproblem can be enhanced by an
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online sign selection rule (DR-Sel). When a TREX subproblem for fixed X:j is considered, we can

solve the problem for s ∈ {−1, 1} concurrently for a small number k0 of iterations (standard setting

k0 = 50) and select the signed optimization problem with best progress in terms of objective function

value.

We compare the run time scaling and solution quality of Douglas-Rachford and DR-Sel with those

of the state-of-the-art Splitting Conic Solver (SCS). SCS is a general-purpose first-order proximal

method that provides numerical solutions to several standard classes of optimization problems, in-

cluding SOCPs and Semidefinite Programs (SDPs). We use SCS in indirect mode [22] to solve the

SOCP formulation of the TREX subproblem [3] with convergence tolerance 10−4.

The run time scaling results are shown in Figure 1. We emphasize that the scaling experiments

are not meant to measure absolute algorithmic performance but rather efficiency with respect to

optimization formulations that are subsequently solved by proximal algorithms. We observe that SCS

with the SOCP formulation of TREX compares favorably with Douglas-Rachford and DR-Sel in low

dimensions while, for p > 200, both Douglas-Rachford variants perform better. DR-Sel outperforms

Douglas-Rachford by a factor of 2 to 4 and always selects the correct signed subproblem (data not

shown). The TREX solutions found by SCS and Douglas-Rachford are close in terms of ‖b(DR)−b(SCS)‖,

with DR typically reaching slightly lower function values than SCS. Values for the first 40 dimensions

of a typical solution bK in p = 2000 dimensions are shown in Figure 1 (right panels).

4.4.2 Behavior of generalized TREX estimators

We next study the effect of the exponent q on the statistical behavior of the generalized TREX es-

timator. We use the synthetic setting outlined in [29] to study the phase transition behavior of

the different generalized TREX estimators. We generate data from the linear model (4.1) with

p = 64 and m = ⌈0.4p3/4⌉ nonzero variables, regression vector b∗ = [−1, 1,−1, . . . , 0⊤p−m]
⊤, and

feature vectors Xi: ∼ N(0,Σ) with Σii = 1 and Σij = 0 and Gaussian noise e with σ = 0.5.

Each column X:j is normalized to have norm
√
n. We define the rescaled sample size according

to θ(n, p,m) = n/(2m log (p −m)) and consider θ(n, p,m) ∈ {0.2, 0.4, . . . , 1.6}. At θ(n, p,m) = 1, the

probability of exact recovery of the support of b∗ is 0.5 for the (Sqrt)-Lasso with oracle regularization

parameter [29]. We consider the generalized TREX with different exponents q ∈ {9/8, 7/6, 3/2, 2} and

the Sqrt-Lasso as limiting case q = 1. For all generalized TREX estimators we consider regularization

parameters α ∈ {0.1, 0.15, . . . , 2}. For Sqrt-Lasso we consider the standard regularization path setting

outlined in [21]. We solve all generalized TREX problems with the Douglas-Rachford scheme using

the previously described parameter and convergence settings. We measure the probability of exact

support recovery and Hamming distance to the true support over d = 12 repetitions. We threshold all

“numerical zeros” in the generalized TREX solutions vectors at level 0.05. For all solutions closest to

the true support in terms of Hamming distance, we also calculate estimation error ‖bK − b∗‖22/n and

prediction error ‖XbK −Xb∗‖22/n. Figure 2 shows average performance results across all repetitions.

We observe several interesting phenomena for the family of generalized TREX estimators. In terms

of exact recovery, the performance is slightly better than predicted by theory (see gray dashed line in

Figure 2 top left panel), with decrease in performance for increasing q. This is also consistent with

average Hamming distance measurements (top right panel). We observe that generalized TREX oracle

solutions (according to the minimum Hamming distance criterion) show best performance in terms of

estimation and prediction error for exponents q ∈ {9/8, 7/6}, followed by q ∈ {3/2, 2}.
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Rescaled sample size θ(n,p,m) Rescaled sample size θ(n,p,m)

Figure 2: Top row: Probability (and standard error) of exact support recovery versus rescaled sample

size θ(n, p,m) for generalized TREX with q ∈ {1, 9/8, 7/6, 3/2, 2}; top right panel: Average Hamming

distance to true support. Bottom row: Mean estimation error ‖bK − b∗‖22/n (left panel) and mean

prediction error ‖XbK −Xb∗‖22/n (right panel).

The present numerical experiments highlight the usefulness of the family of generalized TREX

estimators for sparse linear regression problems. Further theoretical research is needed to derive

asymptotic properties of generalized TREX. A central prerequisite for establishing generalized TREX

as statistical estimator is to solve the underlying optimization problem with provable guarantees. We

have shown that our perspective function framework along with efficient computation of proximity

operators enables this important task in a seamless way.
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