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What is 
Dark Matter?

Our Universe as we know it ..

In case you’re wondering, dark matter and dark energy are not Star Trek concepts – they’re real forms of energy 
and matter; at least that’s what most astrophysicists claim. Dark matter is a kind of matter hypothesized in 
astronomy and cosmology to account for gravitational effects that appear to be the result of invisible mass. The 
problem with it is that it cannot be directly seen with telescopes, and it neither emits nor absorbs light or other 
electromagnetic radiation at any significant level.
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Dark Matter Dark Energy Baryons

What is 
Dark Matter?

Maybe WIMP?
 LHC is looking for this, but 

maybe best bet is in cosmology?
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Our Universe

Dark Matter Dark Energy Baryons

What is 
Dark Energy?

What is 
Dark Matter?

Responsible for accelerating the 
expansion of the Universe. 

Einstein’s cosmological constant? 
New Physics?

Meanwhile, dark energy is a hypothetical form of energy which permeates all of space and tends to accelerate 
the expansion of the universe. Basically, ever since the 1990s, observations have revealed that the Universe is 
expanding at an accelerating rate. This baffled researchers; ok, it’s clear  that it expands, but why is it 
expanding faster? If anything, it should expand slower, due to all the gravitational attraction. Well, dark energy 
is the most accepted hypothesis to explain the observations since the 1990s indicating that the universe is 
expanding at an accelerating rate. The evidence for dark energy is indirect, just like with dark matter. Dark 
energy is thought to be very homogeneous, not very dense and have a negative pressure (acting repulsively) 
in order to explain the observed acceleration of the expansion of the universe.
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Shirley Ho Planck Collaboration paper I 2018

Distribution of matter in the Universe
Summary Statistics of the matter field

Current Cosmology analysis

Constraints on Dark Energy
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Current Cosmology analysis

Giusarma,Vagnozzi et al. 2018

Distribution of matter in the Universe Summary Statistics of the matter field

Constraints on neutrino masses
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Can we do better than  
what we have done before? 
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Mastering the Game of Go without 
Human Knowledge

Five human joseki (common corner sequences)  
discovered by AlphaGo during training.  

Silver, Schrittwieser, Simonyan Nature 2016
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Machine learning in image recognition

ResNet’s object detection result on Common Object in Context
Kaimin He (Facebook Research, now Microsoft Research Asia) et al. 2016
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Can machine learning help us 
understand the Universe?
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Ravanbakhsh, Oliver, Price, Ho, Schendier & Poczos 
International Conference of Machine Learning 2016

Can we use Machine Learning to help us understand the Universe? 
Extracting more information from the astronomical dataset
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Ravanbakhsh, Oliver, Price, Ho, Schendier & Poczos ICML 2016

Can we use Machine Learning to help us understand the Universe? 
Introducing our machine learning network (Convolutional Neural Net)
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Training:  Input N-body simulations with known cosmological parameters to train the ConvNet 
Validation: Input next set of simulations with known cosmological parameters to  

fine tune the hidden parameters in ConvNet  (eg. Number of layers) 
Test: Input N-body simulations with unknown cosmological parameters and  predict with ConvNet

Ravanbakhsh, Oliver, Price, Ho, Schendier & Poczos ICML 2016

Can we use Machine Learning to help us understand the Universe? 
Training, Validation and Test
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Can we use Machine Learning to help us understand the Universe? 
It achieves higher accuracies than our traditional method. 
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Now as scientists, we have lots of questions:  
AKA: Outline for the remaining of the talk

• Can we get a correct estimate of the error ?  

• See He, Ravanbaksh & Ho International Conference for Learning Representations 2018 

• Can we interpret the model learnt in Machine Learning? 

• What is the model learning? 

• More provocatively: Can machine learning interpolate and 
generalize from data just like human and find new physical 
laws?
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Can we interpret what the model is learning?

• We now design the following experiment, to learn the difference between 
analytical modeling and the full information in the density field.  

• In other words: Can we understand what gravity does to billions of dark 
matter particles over many years, without using computer to simulate the 
physical laws step by step? 

• Or: Can we use machine learning to skip the simulation of a complex 
physical system? 
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• There are recent work that tries to simulate simpler 
physical systems. See the next video by my collaborators. 

• They are able to simulate Kepler’s law quite well up to 
~1000 time steps. 

Battaglia, Pascanu, Lai, et al. NeurIPS 2016 

Can we use machine learning to simulate  
a physical system?
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Can we use machine learning to 
simulate the Universe ? 



Shirley Ho
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Using Machine Learning to simulate the Universe: 
The Setup of the Experiment

Inputs OutputsMachine Learning model

Analytical approximation of the  
non-linear evolution of the Universe
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Using Machine Learning to simulate the Universe: 
The Setup of the Experiment

Inputs OutputsMachine Learning model

Positions and velocities of all particles,  
evolved under gravity after X years
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Using Machine Learning to simulate the Universe: 
The Setup of the Experiment

Inputs OutputsMachine Learning model

Instead of using numerical simulations of newton’s laws for all 
the particles, with smart algorithms to run really fast.  

We will attempt to use machine learning to “learn”/ interpolate 
from a large number of pre-run simulations.  

We call these “training data”. 
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Predictions
Analytical 

approximation 

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

   From Analytical approximated (Zeldovich approximation) fields  
to numerically simulated (FastPM) fields

Inputs OutputsMachine Learning model
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8,000 pairs of 
[Analytical, Sim] boxes  

For training

Analytical Approximation

Numerical Sim

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

   From Analytical approximated (Zeldovich approximation) fields  
to numerically simulated (FastPM) fields: Training

Training 
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Machine learning Model
Slight variant to Residual NN

8,000 pairs of 
[Analytical, Sim] boxes  

For training

Analytical Approximation

Numerical Sim

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

   From Analytical approximated (Zeldovich approximation) fields  
to numerically simulated (FastPM) fields: Model
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Input

Predictions
Analytical 

approximation 

Prediction

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

Machine learning Model
Slight variant to Residual NN

   From Analytical approximated (Zeldovich approximation) fields  
to numerically simulated (FastPM) fields: Final setup
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Machine Learning Model  
prediction errors

Benchmark (2LPT) 
prediction errors

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

Mpc/h

Using Machine learning to simulate the Universe:   
How well do we do ?

We will show the errors in displacement field, predicted by  
Our benchmark model (2LPT), and our ML model 

Displacement field is the difference  
between current position to the initial position of the particles
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Machine Learning Model  
prediction errors

Benchmark (2LPT) 
prediction errors

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

Mpc/h

Using Machine learning to simulate the Universe:   
How well do we do ?
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Machine Learning Model  
prediction errors

Benchmark (2LPT) 
prediction errors

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

Mpc/h

Using Machine learning to simulate the Universe:   
How well do we do ?
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Prediction with Machine Learning
Truth/FastPM sims

Analytical approximation scheme  

Checking the following: 
1) the average power-spectrum of 1000 

sims, and  
2) ratios to the true power-spectrum 

(T(k)), and 
3) The cross-correlation coefficients. 

1000 simulations were predicted in 30 
seconds post training and validation. 

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

Using Machine learning to simulate the Universe:  How well do we do?
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Prediction with Machine Learning
Truth/FastPM sims

Analytical approximation scheme  

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

Checking the following: 
1) the average power-spectrum of 1000 

sims, and  
2) ratios to the true power-spectrum 

(T(k)), and 
3) The cross-correlation coefficients. 

1000 simulations were predicted in 30 
seconds post training and validation. 

Using Machine learning to simulate the Universe:  How well do we do?

Noise power-spectrum
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Using Machine learning to simulate the Universe:   
Checking higher order correlation functions

• We checked on the 2-point function, seems like the model 
is predicting well.  

• Then you asked: well, 2-point function is easy, if we have 
information that is non-gaussian, you want to test more 
than 2-point function.   

• How about 3 point function? 

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533
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Projected multipoles of 3 point correlation function

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

Truth

Multipoles generated using nbodykit implementation of  3-point function fast computation  
(Hand, Feng et al. 2017; Slepian & Eisenstein 2015)
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Projected multipoles of 3 point correlation function
Truth

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

Multipoles generated using nbodykit implementation of  3-point function fast computation  
(Hand, Feng et al. 2017; Slepian & Eisenstein 2015)

Benchmark

Fractional residuals
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Projected multipoles of 3 point correlation function
Truth

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

Benchmark

Fractional residuals

Machine Learning 
model

Fractional residuals

Fractional residuals are  
~10 times better
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Now as scientists, we have lots of questions:  
AKA: Outline for the remaining of the talk

• Can we get a correct estimate of the error ?  

• See He, Ravanbaksh & Ho International Conference for Learning Representations 2018 

• Can we interpret the model learnt in Machine Learning? 

• Can we simulate the Universe with Machine Learning -> Yes we can! 

• What is the model learning? 

• More provocatively: Can machine learning interpolate and 
generalize from data just like human and find new physical laws?
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Interrogating the machine learning model 

• What can we check to understand what the network has learned that 
seems to understand? 

• Use simple analytical cases that are not in the training-set 
explicitly and see whether these cases agree with our physics as 
we know it.  

• Locating invariances in the system  

• Locating where the information is coming from 

• … other suggestions are very welcome 

• More provocatively: Can machine learning interpolate and generalize 
from data just like human and find new physical laws?
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• What can we check to understand what the network has learned that 
seems to understand? 

• Use simple analytical cases that are not in the training-set 
explicitly and see whether these cases agree with our physics 
as we know it. 

• Locating invariances in the system  

• Locating where the information is coming from 

• … other suggestions are very welcome  

• More provocatively: Can machine learning interpolate and generalize 
from data just like human and find new physical laws?

Interrogating the machine learning model 
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Interrogating the machine learning model I:  
Simple analytical cases

• Analyze what the network has learned by decomposing 
the input into different Fourier modes and look at the 
predicted power-spectra of these modes. 

• Different Fourier modes in the following form: 
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Input

Predictions
Analytical 

approximation 

Prediction

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

   From Analytical approximated fields  
to numerically simulated fields
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Input Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Interrogating the machine learning model I:  
What happen if we have power at only one scale?

k(h/Mpc)

Inject Power  
at one scale as input
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The transfer function shows that the U-Net model captures quite well at the dominate scale, which indicates the U-Net model 
is able to capture scale information. The U-Net model also captures the other modes of FastPM that are two orders smaller 
than the dominant mode and come from the numerical artifact of FastPM simulations. 

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Interrogating the machine learning model I:  
What happen if we have power at only one scale?
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Input Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

k(h/Mpc)

Inject Power  
At same k,  

but different phases

Interrogating the machine learning model I 
What happens if we change the phase of the input mode? 



Shirley Ho

P p
re

di
ct

ed
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k [h/Mpc]

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Interrogating the machine learning model I 
What happens if we change the phase of the input mode? 
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• Mode coupling of two plane waves 

• Perpendicular to each other, with same 
amplitude and wave number as marked by grey 
diamond. 

• Chosen to be in linear regime where 
perturbation theory is still valid.  

• What do we expect from linear theory?  

• Plane waves stay at initial amplitude  

• Generated by their interaction, new modes arise 
to the right of the initial modes (smaller scale).  

• The ML model is in good agreement with 
(Lagrangian) theory and simulations.  

• According to ML, there are many more modes 
to the right, with similar amplitude to the 
simulations. But some of these can be artifacts 
of the simulations. 

Interrogating the machine learning model I:  
Simple analytical cases: Two modes

Fourier amplitude of the curl-free 
displacement field

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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Interrogating the machine learning model 

• What can we check to understand what the network has learned that 
seems to understand? 

• Use simple analytical cases that are not in the training-set explicitly 
and see whether these cases agree with our physics as we know 
it.  

• Locating invariances in the system (see Mallat 2016) 

• Locating where the information is coming from 

• … other suggestions are very welcome  

• More provocatively: Can machine learning interpolate and generalize 
from data just like human and find new physical laws?
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Input Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Interrogating the machine learning model II:  
Locating the Invariances in the system
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Input Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

k(h/Mpc)
Inject Power  

at [kx,ky,kz]= [0.25,0,0] 
                  = [0,0.25,0] 
                 = [0,0,0.25]

Interrogating the machine learning model II  
Is Rotational Invariance learnt by the model? 
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k [h/Mpc]

[0.25,0,0]
[0,0.25,0]
[0,0,0.25]

P p
re

di
ct

ed
(k

)

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Interrogating the machine learning model II  
Is Rotational Invariance learnt by the model? 
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Interrogating the machine learning model 

• What can we check to understand what the network has learned that 
seems to understand? 

• Use simple analytical cases that are not in the training-set explicitly 
and see whether these cases agree with our physics as we know 
it.  

• Locating invariances in the system  

• Locating where the information is coming from

• … other suggestions are very welcome :)  

• More provocatively: Can machine learning interpolate and generalize 
from data just like human and find new physical laws?
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Interrogating the machine learning model III 
Locating where the information is coming from

• Introducing Saliency map 

• Plots the derivative of the 
output with respect to the 
input

Karen Simonyan, Andrea Veldaldi & Andrew Zisserman  2013
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Shirley Ho Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

What is the saliency map  
for this position?

What is the saliency map  
for this position?

What is the saliency map  
for this position?Input Output



Shirley Ho

Interrogating the machine learning model 

• What can we check to understand what the network has learned that 
seems to understand? 

• Use simple analytical cases that are not in the training-set explicitly 
and see whether these cases agree with our physics as we know 
it.  
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Input Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

ZA maps of Different cosmology 
Dark matter density parameter = [0.1 - 0.5] 

Interrogating the machine learning model IV  
Can the model extrapolate instead of just interpolate?
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Input
UNET 

Slight variant to Residual NN Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Can the learned model “extrapolate” and  
predict simulations that do not have the same 

Cosmological parameters?

Interrogating the machine learning model IV  
Can the model extrapolate instead of just interpolate?

ZA maps of Different cosmology 
Dark matter density parameter = [0.1 - 0.5] 
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Prediction with Machine Learning
Truth/FastPM sims

Analytical approximation scheme  

Checking the following: 
1) the average power-spectrum of 1000 

sims, and  
2) ratios to the true power-spectrum (T(k)), 

and 
3) The cross-correlation coefficients.

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

Interrogating the machine learning model IV  
Can the model extrapolate instead of just interpolate?

Solid Line:  Simulation /Truth 
Long Dashed line: Prediction using ML 
Short Dashed Line: Analytical approximation (2LPT)
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Checking the following: 
1) the average power-spectrum of 1000 

sims, and  
2) ratios to the true power-spectrum (T(k)), 

and 
3) The cross-correlation coefficients.

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos 2018, arxiv:1811.06533

Interrogating the machine learning model IV  
Can the model extrapolate instead of just interpolate?
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What the heck happened?
• We didn’t need to overlap the training set with test set.  

• We did not explicitly use any transfer learning or meta-learning 

• Maybe there is overlap in information somewhere between these 
universes?  

• Maybe the Universe is fairly simple, so that the generalization 
and extrapolation by the network is ‘easy’? 

• Maybe I will finally get famous ? 
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My possible climb to fame?
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My possible climb to fame?

• Understanding 
Machine Learning? 

• Compressing the 
learned model into 
physical laws?  

• Discover new laws 
of nature?
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Conclusions
• There is immense hype, and probably immense potential for Machine Learning in 

everything field today, ranging from playing Go, image recognition to health-care. 

• We may be able to use machine learning to help advance physics and astrophysics  

• In cosmology, we used deep neural networks to predict cosmological parameters with 
some successes 

• We can start to use machine learning to be an approximate simulator in not only small 
number systems, but also relatively complex systems like our Universe. 

• But we need to understand what is happening under the hood to fully employ machine 
learning.  

• Furthermore, physical datasets can also provide an interesting playground for 
understand machine learning as we have a much better understanding of the natural 
world than the random pictures taken off facebook.  

• We have more questions than answers. But that’s why it is exciting ! 
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It seems like physics are being 
learned by the model… 
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Let’s leave you with questions: 
Why?

• Is it possible that the model is generalizing rules from the 
training set that can deal with cosmological inputs with 
different parameter sets? 

• Or maybe the model has seen these parameter sets ? 
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Possible reason ?

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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Dotted line -> Prediction using ML

Dashed Line -> (2LPT) Theoretical predictions

Power-spectrum of Density field Experiment:

1) We input Analytical approximated field of 

particles (of one cosmology parameter )

2) We predict particle position outputs 

using ML (or physics)

3) Architecture : UNet (a variant of ResNet) 

4) It works very well (ask me later)

5) Question is: What happens if I input a 

Analytical field with different cosmology ?
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How far are we from the truth?

Error power-spectrum
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How far are we from the truth?

Error power-spectrum

Dotted line -> Prediction using ML

Dashed Line -> (2LPT) Theoretical predictions

Power-spectrum of Density field

Why can the machine learning algorithm  
generalize from the one set of cosmology  
and still predict well for other cosmology? 

Aka. the test set is not the training set.

Experiment:

1) We input Analytical approximated field of 

particles (of one cosmology parameter )

2) We predict particle position outputs 

using ML (or physics)

3) Architecture : UNet (a variant of ResNet) 

4) It works very well (ask me later)

5) Question is: What happens if I input a 

Analytical field with different cosmology ?
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ImageNet Large Scale Visual Recognition Competition

Improving on Machine Learning algorithms:  
Introducing Deep Residual Neural Net

Kaimin He (Facebook Research) et al. 2016



Shirley Ho

Improving on Machine Learning algorithms:  
Introducing Deep Residual Neural Net

Kaimin He (Facebook Research) et al. 2016
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Improving on Machine Learning algorithms:  
Introducing Deep Residual Neural Net

Kaimin He (Facebook Research) et al. 2016

Try to fit for F(x) instead, 
desired mapping: 

H(x) = F(x) + x 
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Improving on Machine Learning algorithms:  
Introducing Deep Residual Neural Net

ResNet’s object detection result on Common Object in Context
Kaimin He (Facebook Research, now Microsoft Research Asia) et al. 2016
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Where do we go from here?

• Better Prediction possible? Improving the algorithms. 

• Can we interpret the model learnt in Machine Learning?
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Where is this extra information coming 
from ?  
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Analytical physics (2nd order Lagrangian Perturbation Theory)  
vs Computer Simulation (N-body/complex simulations)

2LPT/simple simulation: White
N-body/complex simulation: Blue

Movie Credit: Andrea Klein, Junier Oliver, Hy Trac



Shirley Ho

Training
UNET 

Slight variant to Residual NN

10,000 pairs of 
[Simple,complex] simulations  

For training

Zeldovich Approximation 
Simple simulation

N-body simulation/ 
Complex simulation

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Predicting from Zeldovich Approximation fields  
to Fast-PM simulated fields
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Input

Simple simulation

UNET 
Slight variant to Residual NN

Predictions
Zeldovich 

Approximation

Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Predicting from Zeldovich Approximation fields  
to Fast-PM simulated fields
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Density fields quick visual comparison

PredictionsTruth/Complex sim
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Complex Sim Predictions2LPT

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Density field comparisons

Let’s see how well the simple 2LPT would predict



Shirley Ho

Truth/Fast-PM simulations Predictions2LPT

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Density field comparisons
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Truth/Fast-PM simulations 2LPT

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Density field comparisons

Predictions

Now let’s compare the ML predictions with the truth! 
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Truth/Fast-PM simulations 2LPT

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Density field comparisons

Predictions
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Truth/Fast-PM simulations 2LPT

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Density field comparisons

Predictions
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Truth/Fast-PM simulations Predictions2LPT

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Displacement field comparisons



Shirley Ho Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Prediction
Truth/FastPM sims

Example approximation scheme 

Checking the following: 
1) the average power-spectrum 

of 1000 sims, and  
2) ratios to the true power-

spectrum (T(k)), and 
3) The cross-correlation 

coefficients. 

The simulations can be predicted 
in O(1) minutes post training and 
validation. 
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Foray into understanding  
what the heck the Model is learning

• We first train a network with [ZA, N-body] pairs, and make 
prediction using ZA inputs. And we have seen that the 
predictions are pretty good.  

• Then we analyze what the network has learned by 
decomposing the input into different Fourier modes and 
look at the predicted power-spectra of these modes. 

• Different Fourier modes in the following form: 
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Input

ZA boxes 

UNET 
Slight variant to Residual NN

Predictions
Zeldovich 

Approximation

Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Predicting from Zeldovich Approximation fields  
to Fast-PM simulated fields
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Input
UNET 

Slight variant to Residual NN Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Predicting from Zeldovich Approximation fields  
to Fast-PM simulated fields

k(h/Mpc)

Inject Power  
at one scale as input
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Input mode: Pancake… 
What happen if we have power only one scale?

The transfer function shows that the U-Net model captures quite well at the dominate scale, which indicates the U-Net model 
is able to capture scale information. The U-Net model also captures the other modes of FastPM that are two orders smaller 
than the dominant mode and come from the numerical artifact of FastPM simulations. 

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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Input
UNET 

Slight variant to Residual NN Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Predicting from Zeldovich Approximation fields  
to Fast-PM simulated fields

k(h/Mpc)
Inject Power  

at [kx,ky,kz]= [0.25,0,0] 
                  = [0,0.25,0] 
                 = [0,0,0.25]
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Is Rotational Invariance learnt by the model? 
Yes, predicted power is the similar no matter which orientation: 

rotational invariance is learnt!

k [h/Mpc]

[0.25,0,0]
[0,0.25,0]
[0,0,0.25]

P p
re

di
ct

ed
(k

)

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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Input
UNET 

Slight variant to Residual NN Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Predicting from Zeldovich Approximation fields  
to Fast-PM simulated fields

k(h/Mpc)

Inject Power  
At same k,  

but different phases
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P p
re

di
ct

ed
(k

)

k [h/Mpc]

What happens if we change the phase of the input mode? 

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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Input
UNET 

Slight variant to Residual NN Prediction

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Predicting from Zeldovich Approximation fields  
to Fast-PM simulated fields

ZA maps of  
Different cosmology: 

As={0.2 A0, 0.8A0, 1.2A0, 1.8A0}  



Shirley Ho Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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Why?

• Is it possible that the model is generalizing rules from the 
training set that can deal with cosmological inputs with 
different parameter sets? 

• Or maybe the model has seen these parameter sets ? 
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Possible reason ?

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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Conclusion
• First foray into learning cosmological parameters from LSS 

simulations  

• First foray into unraveling the blackbox called Deep Neural Net. 

• Predicts N-body like simulations in minutes (*post training). 

• Model learn about power at each scales, rotational invariance, 
phase preservation.  

• Does the model generalize and learn real physical laws?  

• Or does it generalize from the various “island universes” with 
different cosmological parameters?
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Let’s talk about what we expect first
• At large scales: physics are completely linear, and can be 

fully represented by the analytical inputs, so the large 
scales should be preserved at the output 

• At small scales: physics are not well modeled by linear 
theory, so we expect that the model predict both small 
scale power and large scale powers.  

• We have predictions from perturbation theory to higher 
order, but these are not complete, but we hope to use 
these as guidance/prior. Another interesting question: 
What is the best way to incorporate intuition / prior 
knowledge in the network?
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Learning Physics from ML?

k [h/Mpc] k [h/Mpc]

  Input  
  Prediction  

  Prediction    

Note: Log scaleNote: Linear scale

What happen if we have power only one scale?
P(k)   P(k)   P(k)   

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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k [h/Mpc] k [h/Mpc]

  Input  
  Prediction  

  Prediction    

Power at one large scale gives power at multiple scales

Learning Physics from ML?

P(k)   

Note: Linear scale Note: Log scale

P(k)   

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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k [h/Mpc] k [h/Mpc]

  Input  

  Input  

  Prediction  

  Prediction  

     Prediction  

  Prediction  

Moving the input mode to smaller scales.

P(
k)

   
P(

k)
   

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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Is Rotational Invariance learnt by the model? 
Aka: If I input same power at modes at kx, ky, kz independently   

they should give the same power

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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Is Rotational Invariance learnt by the model? 
Yes, predicted power is the similar no matter which orientation: 

rotational invariance is learnt!

k [h/Mpc]

[0.25,0,0]
[0,0.25,0]
[0,0,0.25]

P p
re

di
ct

ed
(k

)
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What happens if we change the phase of the input mode? 
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P p
re

di
ct

ed
(k

)

k [h/Mpc]

What happens if we change the phase of the input mode? 

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos
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What did the model learn so far?

• power at one single mode gives power at many scales 

• rotational invariance is learnt by the model  

• power at different phases predicts the same power 

• slight excess at large scales that are not expected 
(possible to fix with different models?) 



• Improving the models, and see if the excess power at 
large scale will go away 

• Compare what the model has learnt to classical theory 
(LPT/2LPT/CLPT/EFT..)  

• Discover new physics with Machine Learning!/? 

• Combine LSS and CMB [with realism] and learn more 
about our Universe!

Looking forward
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Analytical physics (Zeldovich Approximation/ Lagrangian 
Perturbation Theory)  vs Computer Simulations (N-body)

Zeldovich Approximation Lagrangian Perturbation Theory

Truth/N-body simulations Predictions

                    

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos

Input

Prediction/Output

Input
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Analytical physics (Zeldovich Approximation/ Lagrangian 
Perturbation Theory)  vs Computer Simulations (N-body)

Zeldovich Approximation Lagrangian Perturbation Theory

Truth/N-body simulations Predictions

                    

Preliminary results from: Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos


