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Note that we deliberately construct the reduced cross-
bispectrum using only the cross-power spectrum in the
denominator of Eq. 10: explicitly, “2 perm.” is speci-
fied by P21,CII(k2)P21,CII(k3)+P21,CII(k3)P21,CII(k1) and
does not involve the auto-power spectrum of either field.
Similar definitions hold for Q̂CII,21,CII and Q̂CII,CII,21;
these merely rearrange which wavevector is attached to
the 21 cm field. Note that with this definition, using
mK units for T21 and Jy/str units for ICII, the cross-
bispectrum B21,CII,CII has units of mK(Jy/str)2(Mpc)6,

while the reduced cross-bispectrum Q̂21,CII,CII has units
of mK�1.

Q̂21,CII,CII(k1,k2,k3) =
Q�,�,�(k1,k2,k3)

hT21ib21

+
b
(2)

21

2hT21ib221
L(k1, k2)

+
b
(2)

CII

2hT21ib21bCII

⇥
L(k2, k3) + L(k3, k1)

⇤
,

where we have defined

L(ki, kj) =
P1,2(ki)P1,2(kj)

P1,2(k1)P1,2(k2) + 2 perm.
. (11)

As will become clear shortly, these L terms are inconve-
nient, but note that

L(k1, k2) + L(k2, k3) + L(k3, k1) = 1. (12)

Therefore, summing permutations of Eq. 2 and using
Eq. 12 rids us of the L terms:

Q21,CII,CII ⌘
1

3

⇣
Q̂21,CII,CII + Q̂CII,21,CII + Q̂CII,CII,21

⌘
.

(13)
Throughout we will only work with Q1,2,2, and so these
permutations are implicit in what follows. Note that the
permutations in Eq. 13 imply that swapping any two of
the wavevector arguments results in the same value of Q.
Therefore, we will also implicitly enforce k1 � k2 � k3

where relevant, to avoid double counting.
With these permutations in mind, we now have the

following formula:

Q21,CII,CII =
Q�,�,�

hT21ib21
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1
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(2)

21

hT21ib221

+
1

3

b
(2)

CII

hT21ib21bCII

.

(14)

As we have described, this formula is valid at second-
order in perturbation theory. In our actual analysis, we
will use the simulated Q�,�,� instead of the perturbative
Q�,�,�. This is mostly to minimize the impact of sample
variance and is discussed further in § 4.
Our analysis strategy is now clear, and analogous to

methods developed previously to constrain galaxy bias
(Fry 1994; Matarrese et al. 1997; Scoccimarro et al. 2001;
Verde et al. 2002). The first term in Q21,CII,CII depends
on the reduced density bispectrum, with its distinctive
“U”-shaped dependence on ✓12, and the 21 cm linear bias
factor. In this term, only the 21 cm bias enters and so this
term is entirely independent of the statistical properties

of the [CII] emission fluctuations. In contrast, the other
terms depend on the first and second-order bias factors of
both the 21 cm and [CII] fields, and so these factors are
harder to interpret, but produce only a constant o↵set.
The rationale for taking the permuted version (Eq. 13) is
now clarified, since as a result the [CII] bias factors enter
only as an overall constant, independent of triangular
configuration. In summary, by measuring the triangular
shape dependence of Q21,CII,CII, we should be able to
extract hT21ib21.
In testing the perturbative framework described above,

we will consider various additional bispectra. At lowest
non-vanishing order in perturbation theory, these all have
the general form:

Q
(0)

21,X,X =
Q�,�,�

hT21ib21
+ C21,X,X, (15)

where the various values of C depend on which field “X”
is being combined with the 21 cm fluctuations. Specifi-
cally,

C21,21,21 =
1

2

b
(2)

21

hT21ib221
, (16)

C21,�,� =
1
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21

hT21ib221
, (17)

and

C21,CII,CII =
1
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b
(2)

21

hT21ib221
+

1

3

b
(2)

CII

hT21ib21bCII

. (18)

3. REIONIZATION SIMULATIONS AND METHODOLOGY

In order to characterize the cross-bispectrum signal at
di↵erent stages of reionization, and to test the accuracy
of the perturbative formulas from the previous section,
we turn to semi-numerical simulations of the EoR (Zahn
et al. 2006; Mesinger & Furlanetto 2007), based on the
excursion-set (Bond et al. 1991) model of reionization
(Furlanetto et al. 2004). Specifically, we use the publicly
available 21cmFAST code v1.12 (Mesinger et al. 2011).
Our simulations are unlikely to provide fully accurate

models of the small-scale 21 cm signal. In the context of
this paper, the small-scale modes mostly set the overall
values of the bias factors (hT21ib21) at di↵erent redshifts
and neutral fractions. The small-scale modes should
therefore impact the precise evolution of the bias factors
with redshift, and not the overall framework we propose
here.

3.1. L-PICOLA

By default, 21cmFAST uses the Zel’dovich approxima-
tion (ZA) to generate the density field (Zel’dovich 1970).
This is appropriate for capturing the large-scale two-
point statistics of the 21 cm field at high redshifts, but
it is inadequate for modeling three-point statistics. The
ZA is known to underestimate the density bispectrum
(Scoccimarro 1997; Leclercq et al. 2013), and we have
verified that it provides a poor description of the density
bispectrum at the scales and redshifts of interest for our
study. We thus turn to the publicly available L-PICOLA

v1.3 code (Howlett et al. 2015; Tassev et al. 2013), which
is a hybrid between a 2nd order Lagrangian perturbation
theory (2LPT) and a particle mesh (PM) code. L-PICOLA


