

Intensity Mapping with CCAT-prime

Gordon Stacey
Cornell University

Representing the CCAT consortium

Who is CCAT-Prime?

- Cornell University
- German consortium led by University of Cologne
 - Cologne, Bonn, Max Planck Inst. for Astrophysics
 - Formed CCAT Observatory, Inc.
- Canadian consortium led by University of Waterloo
 - Waterloo, Toronto, British Columbia, Calgary, Dalhousie, McGill,
 McMaster, Western Ontario
 - Formed Canadian Atacama Telescope Corp (CATC)
- **CCAT** is a Joint Venture between CCAT Corp & CATC

What is CCAT-Prime?

A 6 m submm-mm wave telescope

with - a very large field of view

and – very high surface accuracy

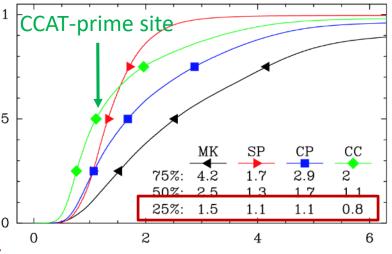
at - an extremely good site


CCAT-Prime Science

- Trace star formation in the Milky Way, the Magellanic clouds and other nearby galaxies through submm spectroscopy and photometry
- Constrain feedback mechanisms and test cosmological parameters by measuring the thermodynamic properties of galaxy clusters through the SZ effects on the CMB.
- Trace the evolution of DSFG through submm-mm wave surveys.
- Measure CMB Rayleigh scattering providing constraints on new particle species and characterizing polarized dust foregrounds that limit CMB constraints on inflation.
- Trace the formation of the first star-forming galaxies that reionize the Universe through wide-field spectral line surveys focusing on [CII] at z ~ 3.5 to 8.1.

Where is CCAT-prime?

Cerro Chajnantor at 5600 m



The Site

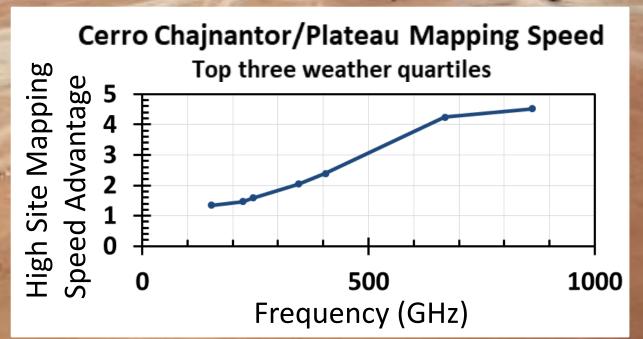
5000 meters is very good, but 5600 meters is even better...

CCAT-p

- Submillimeter sensitivity is all about telluric transmission
- Simon Radford: 350 μm ran tipping radiometers at MK, SP, Chajnantor plain and peak > than a decade –
- Simultaneous at CCAT & ALMA sites -- of median H₂O 0.6 vs. 1 mm ⇒ factor of 1.8 in sensitivity at 45 ° elevation

Zenith optical depth, au @ 350 μ m Radford & Peterson 2016PASP..128g5001R

Water Vapor Scale Height

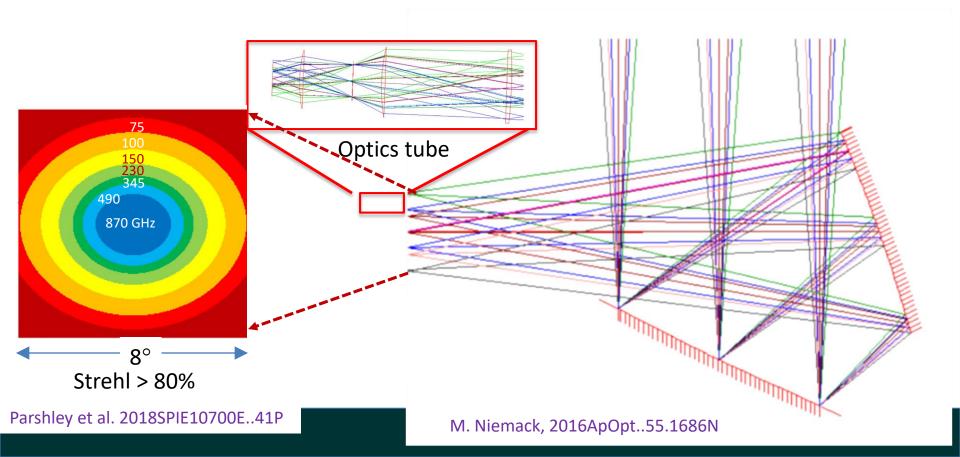

	$\tau(350\mu\mathrm{m})$		PWV [mm]		WV
	Chaj.	Ćerro	Chaj.	Cerro	$\operatorname{scl.ht.}$
	plateau	Chaj.	plateau	Chaj.	[m] *
75 %	2.7	1.9	2.0	1.3	1280
50%	1.5	1.1	1.0	0.6	1080
25%	1.0	0.7	0.53	0.28	860

WV scale height = $550 \,\mathrm{m/\ln(PWV_{cp}/PWV_{cc})}$

Cerro Chajnantor CCAT-p site at 5600 m

Chajnantor plateau ALMA site at 5000 m

Significant gains in mapping speed even at lower frequencies



The Telescope and Instrument

Crossed Dragone Design

- Original concept published in 1978: C. Dragone AT&T Tech. Mem. 57, 2663
- Used in 2 <2 m CMB experiments (QUIET, C. Bischoff. et al. 2013) and the Atacama B-Mode Search, T. Essingger-Hileman et al. 2009

Crossed Dragone Design

- Field is split into "instrument modules"
- Each module can have entirely different configurations

3 mm 2 mm 58,000 f· λ pixels 98,000 f· λ pixels

1 mm 150,000 f· λ pixels 0.35 mm 400,000 f· λ pixels

75 **Optics** tube 870 GHz **Strehl > 80%** Parshley et al. 2018SPIE10700E..41P M. Niemack, 2016ApOpt..55.1686N

Pulse Tube

Refrigerators

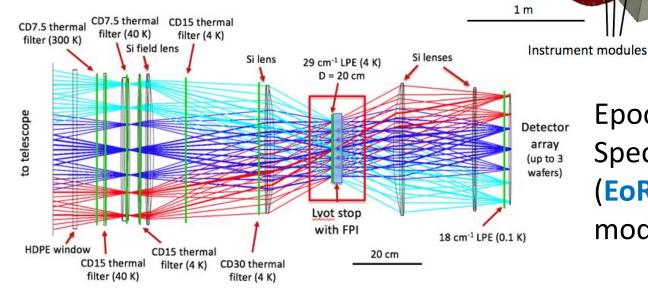
+

Dilution

Refrigerator

PrimeCam Design

• 7- 1.3° Instrument Modules: first light


- (1) 860 GHz camera 20 K-pix. KID array

(2) 220, 270, 350, 405 GHz camera 1512
 pol-sensitive multichroic TES each

- (2) EoR-Spec 3024 dichroic TES each

• Growth potential in focal plane to 19

instrument modules

Epoch of Reionization
Spectrometer
(EoR-Spec) instrument
module

SMuRF Electronics

Crates



Amplifier Electronics

and RF Feedthrough:

The Telescope Specifications

6 m diameter - 5.8 m illumination

10.7 μm rms wfe Up to 8° FoV

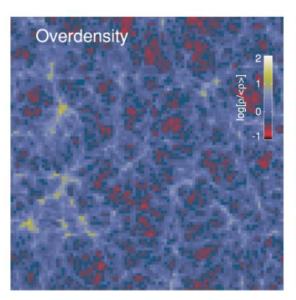
No blockage, small gaps (<1%) \Rightarrow emissivity < 2.8%

3°/sec scanning

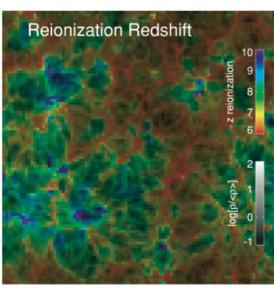
1/10 beam reconstruction

El: 0 to 170 degrees

Systematics and sun avoidance


Manufactured by Vertex Antennentechnik gmbh

EoR-IM: Intensity Mapping of [CII] in the Epoch of Reionization

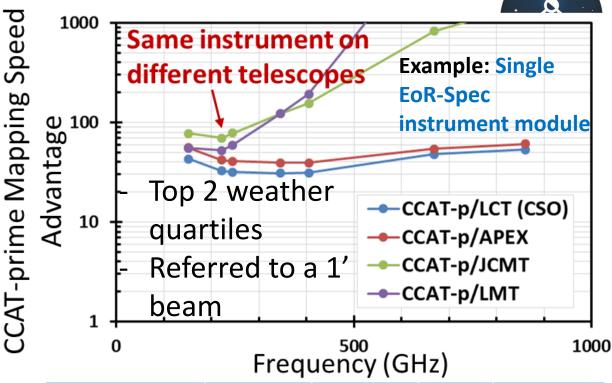


- Aggregate [CII] signal from star forming galaxies at z ~ 3.5 to 8.1 ⇒ 3-D information:
- **Simulating Reionization**

- Reveals the process of reionization and the underlying dark matter distribution over the cosmic time when the first galaxies formed
- Combine with SKA 21 cm HI line tracing neutral ISM concentrations

(b) Redshift of reionization, defined as the redshift at which the hydrogen neutral fraction first dips below 10⁻³.

Reionization appears not to occur instantaneously, but rather depends on local density (see Finlator et al. 2009). First things to reionize are overdense regions, then voids, then moderate-density structures.

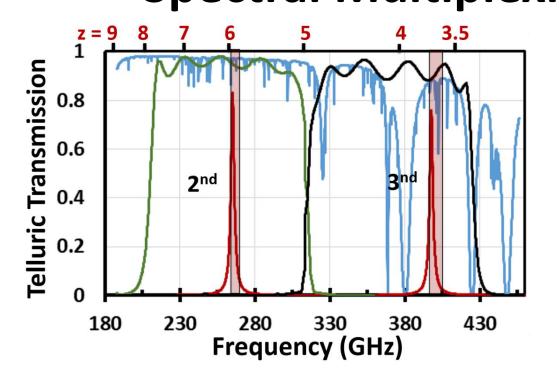

Intensity Mapping Requirements

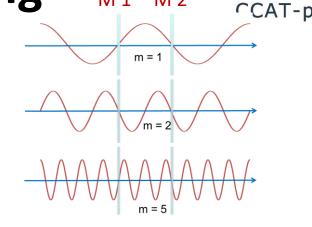
- Resolution into individual galaxies not required
 - Clustering scale 0.5 to 1 Mpc or \sim 1-2' at z = 3.5-8.1, good match for 6-m aperture (40"@ 1mm)
 - Need wide (~8°²) survey areas: spectral/spatial mapping speed critical
 - Ideally would like FoV \sim > 1° matches 40 Mpc void size-scale: systematics
 - Need moderate spectral resolution R ~ 100 for line detection and constraints along z direction, and...
 - Large enough spectral BW to identify interloper lower z CO by line multiplicity
 - Sensitivity is at a premium: high site, very low emissivity telescope is essential!

CCAT-p

Intensity Mapping Advantage

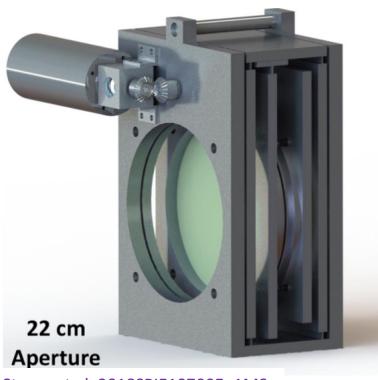
- Referred to a 1' beam
- Site advantage (pwv)
 - Take top 2 quartiles
- Surface accuracy (wfe)
- Emissivity (ε_{tel})
- Field of View
- CCAT-prime has >30 × the mapping speed
- Advantage grows if we employ > 1 EoR-Spec instrument module


Telescope	pwv(mm)	wfe (μm)	ϵ_{tel}	FoV (dia.)
CCAT-p : 6 m	0.28; 0.60	10.7	2.8%	78′
LCT (CSO): 10.4	0.53; 1.0	13	10%	15'
APEX: 12 m	0.53: 1.0	18→11	10%	11.4'
JCMT: 15 m	1.0; 2.0	25	10%	9.0'
LMT: 50 m	1.0: 2.0	50	15%	8.0'


Large BW × FoV Spectrometer

- Trans-mm wave from ~ 0.71 to 1.4 mm (420-210 GHz)
- Direct detection for optimal sensitivity
- Need a spectral \times spatial product of pixels > 10-20,000 to complete an $8^{(\circ)2}$ survey in 4000 hours.
- Pixel costs limit the experiment
 - Can invest pixels spectrally, e.g. grating spectrometers
 - Can invest pixels spatially, e.g. Fabry-Perot interferometers (FPI)
- A FPI can take both polarizations, and more than one spatial mode ⇒ can be twice as sensitive per pixel
- CCAT-prime is optimized for wide-fields with planar large format arrays, technologies are mature \Rightarrow we chose the FPI.

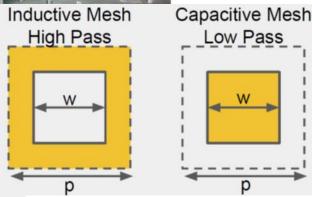
Fabry-Perot Fringe Selection and Spectral Multiplexing



Dichroic bolometer BP set to sort the 2nd and 3rd orders of the FPI

- Start with 2nd order at 210 GHz 3rd at 315
- Natural spectral multiplex of ~ 15 GHz, or 7% of total BW
- Spatially scan on sky
- Move FPI scan again need about 14 spectral positions for full coverage

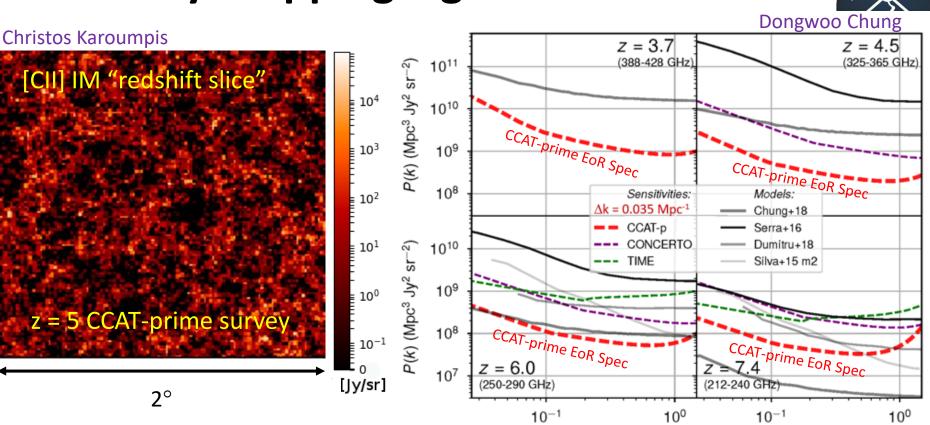
EoR-Spec Implementation



High-Resolution Long-λ FPI for HIRMES Scanning PZT (with mechanical Capacitor motion multiplier) plates Moving flex-vane Inductive stage free-standing metal meshes Flex-vane stage Tilt PZT (x3) Fixed part of flex-vane Douthit et al. stage 2018SPIE10708E..1PD

Stacey et al. 2018SPIE10700E..1MS

- Step through octave of bandwidth
 - Possible with free-standing inductive metal mesh mirrors
 - Better with the silicon substrate based inductive/ capacitive mirror technologies that we are developing



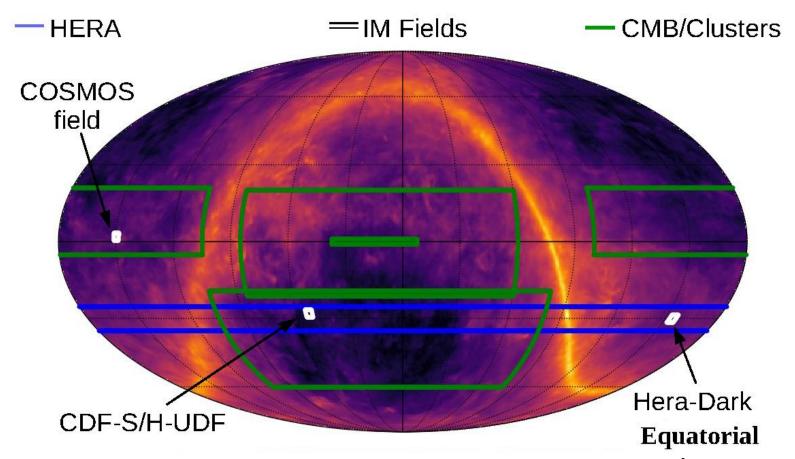
Cothard et al. 2018SPIE10706E..5BC

Quick summary of EoR Spec

- Frequency Coverage: 420 to 210 GHz (z ~ 3.5 to 8.1 in [CII]) with 2
 FPI fringes
 - Complementary to other surveys/techniques to follow
 - More or less orthogonal systematics to spectral multiplexers
- Beamsize: ~ 52 to 35" at 420 to 210 GHz
- Instantaneous Field of View: 1.3° diameter
- Numbers of Pixels: 3024 spatial positions sampling 10 spectral channels simultaneously per instrument module
- # Modules: First light 2 deployed, up to 7 modules possible.
- Sensitivity: Photon noise limited at RP ~ 100 ~ 0.66 to 3 MJy/sr-s^{1/2}
 RP of 100 is sufficient to:
 - Sufficiently resolve the IM signal in redshift space for model tests
 - Facilitate removal of foreground CO rotational line emission
- Versatility:
 - Resolving power can be tuned higher if signal comes in fast...
 - Scan range can be shortened to focus on lower z if signal comes in slowly...

Intensity Mapping Signal

• $2 \times 4^{(\circ)2}$ surveys; total integration time 4000 hrs; top 2 weather quartiles


k (Mpc⁻¹)

 The EoR Spec/CCAT-prime combination detects the [CII] IM signal all spatial frequencies and for all models to z ~ 6, and most models at higher redshifts

k (Mpc⁻¹)

Survey Strategy

 Science fields coordinated with other (CMB/cluster) surveys to maximize efficiency

Telescope Schedule

Four year project (July 2017 to June 2021)

- Detailed Design CDR passed Oct. 2019
- Road upgrade in process (TAO)
- FDR in June 2019
- Concrete pads late 2019
- 13 months Fabrication which includes a trial assembly in Europe before shipping to Chanjnantor
- June 2020 parts starts arriving at the site
- 12 months Assembly/Checkout
 - Incl. 3 months unpacking/inspection and sequenced transport to summit

Telescope Schedule

Four year project (July 2017 to June 2021)

- Detailed Design CDR passed Oct. 2019
- Road upgrade in process (TAO)
- FDR in lune 2019

First light spring 2021!

assembly in Europe before shipping to

Still looking for additional partners!

- 12 months Assembly/Checkout
 - Incl. 3 months unpacking/inspection and sequenced transport to summit

2016 CCAT. All Rights Reserved. www.ccatobservatory.org