INTENSITY MAPPING OF HIGH REDSHIFT GALAXIES

Andrea Ferrara

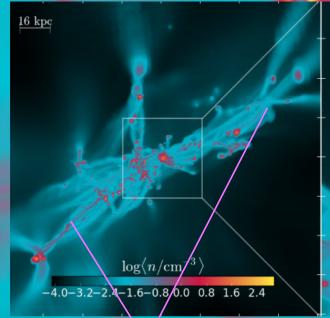
Scuola Normale Superiore, Pisa, Italy

@ferrara_sns

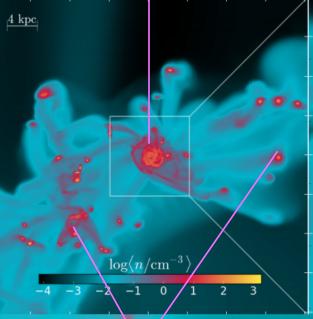
- ✓ Allows access to high-z galaxies below detection limit
- ✓ Collects radiation from galaxies in a selected redshift range
- ✓ Spurious flux due to contaminating radiation and noise can be in principle removed or suppressed.
- ✓ If the galaxy luminosity function has a sufficiently steep faint end, the observed radiation is dominated by unresolved sources
- $\sqrt{[C II]}$ 157.7μm fine-structure line from ${}^2P_{3/2} \rightarrow {}^2P_{1/2}$ transition is the **brightest** metal line emitted by the ISM of star-forming galaxies.
- √Complementary to Lyα line and other lines (e.g. 21 cm, HeII1640,..)

INTERNAL PROPERTIES OF HIGH-Z GALAXIES

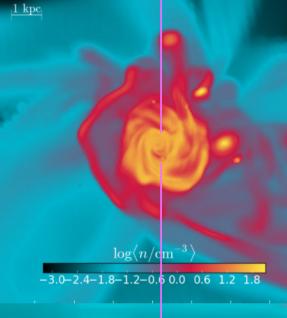
Pallottini+17


"DAHLIA", A LBG @ Z=6

AMR simulation (RAMSES)


Spatial res = 20 pcH₂- based SFR prescription Updated SN feedback model Radiation pressure

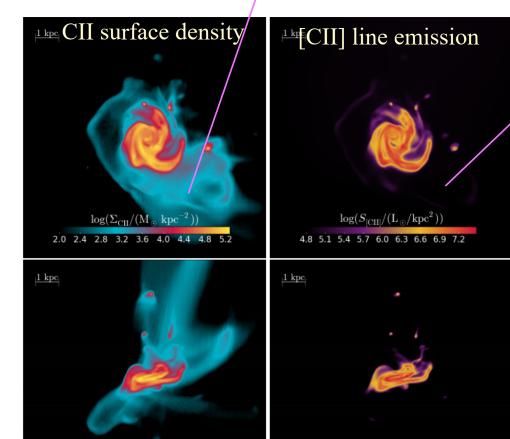
$$M_h = 1.8 \times 10^{11} M_{\odot}$$
 $M_{\star} = 1.6 \times 10^{10} M_{\odot}$
 $\Sigma_{\star} = 15 M_{\odot} \text{yr}^{-1} \text{ kpc}^{-2}$


$$M_{H2} = 3 \times 10^9 M_{\odot}$$

 $r_e = 0.6 \text{ kpc}$

over-dense accreting filaments

merging clumps/satellites



Molecular/stellar disk $< Z > = 0.5 Z_{\odot}$

 $\frac{\log(S_{\rm [CII]}/({\rm L}_{\odot}/{\rm kpc}^2))}{\text{4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0}}$

½ of CII mass in diffuse, low-Z, weakly emitting gas

(invisible due to CMB)

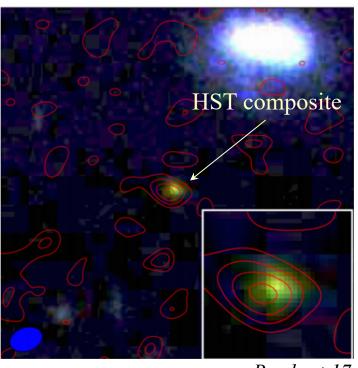
 $\log(\Sigma_{\rm CII}/({\rm M}_{\odot}~{\rm kpc}^{-2}\,))$

2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6

Total [CII] Luminosity $L_{CII} = 3.5 \times 10^7 L_{\odot}$

95% of emission co-located with H₂ disk

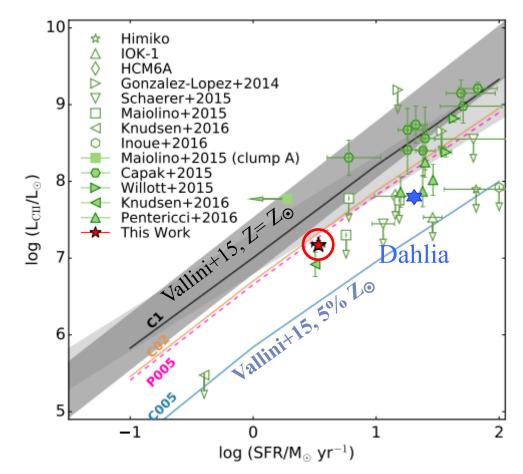
Edge-on


Face on

[CII]-SFR RELATION

Maiolino+15, Capak+15, Knudsen+16, Pentericci+16

ALMA [CII] detection


5× Lensed LAE @ z=6.765 $L_{CII} = 1.4 \times 10^7 L_{\odot}$ Low [CII]-Ly\alpha shift = 20 km/s

Bradac+17

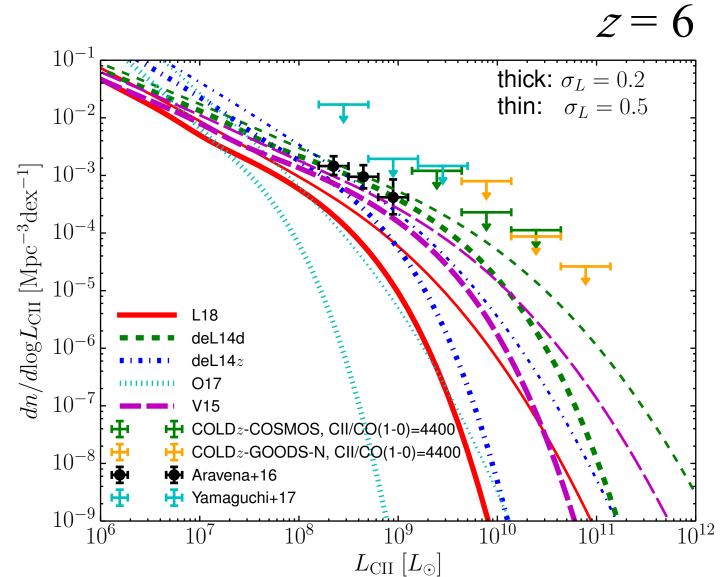
Best fit relation (Yue+15)


 $Log L_{CII} = 7.0 + 1.2 log(SFR) + 0.021 log Z$ + 0.012 log(SFR)log Z - 0.74 log² Z

Yue & AF 19, submitted

 L_{ICIII} - M_{UV} RELATION

$${}^{\text{[CII] Luminosity}}_{\text{Function}} = \ \frac{dn}{d \text{log} L_{\text{CIII}}} = \frac{dn}{d M_{\text{UV}}} \frac{dM_{\text{UV}}}{d \text{log} L_{\text{CII}}}$$



$$L_{\rm [CII]} = \mathbf{A} \times \mathrm{SFR}^{\gamma}$$

		log A	γ
L18	Lagache+18	6.68	0.98
deL14d	deLooze+14	7.26	1.25
deL14z	deLooze+14	7.22	0.85
O17	Olsen+17	6.69	0.58
V15	Vallini+15	6.96	1.20

Yue & AF 19, submitted

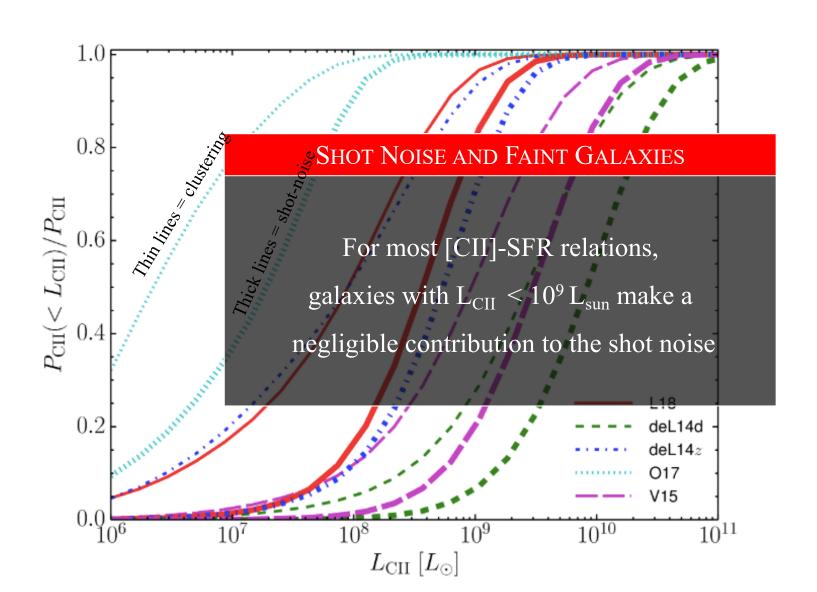
[CII] LUMINOSITY FUNCTIONS

Instrumental noise power-spectrum

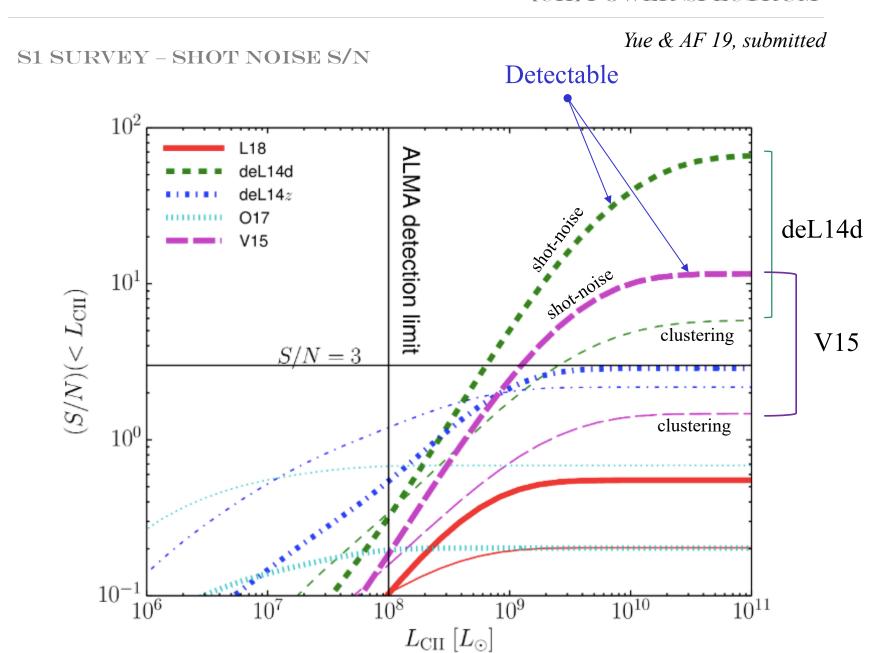
BASIC FORMULAE

Number of sampled *k*-modes

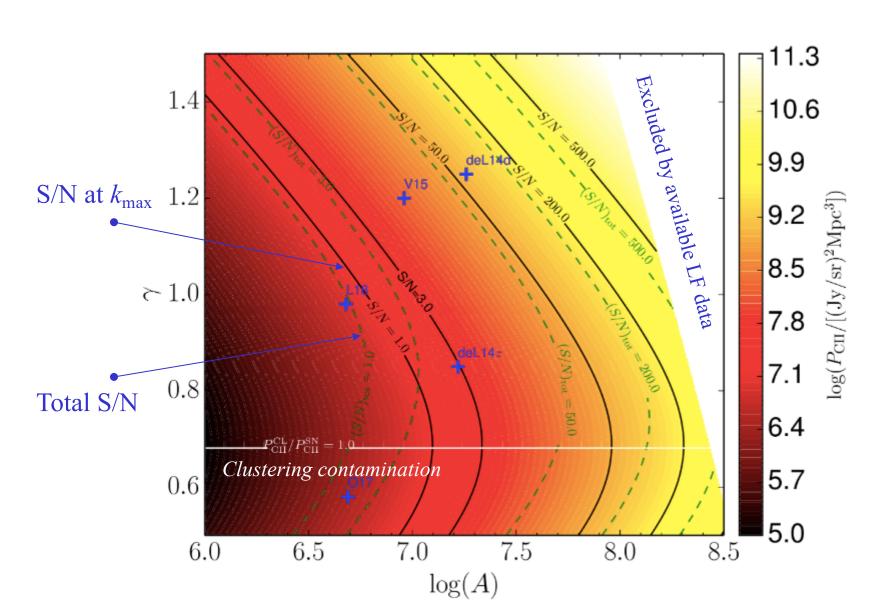
PCII(
$$< L_{\rm CII}, k, z$$
) = $P_{\rm CII}^{\rm CL}(< L_{\rm CII}, k, z) + P_{\rm CII}^{\rm SN}(< L_{\rm CII}, z)$
Shot-noise

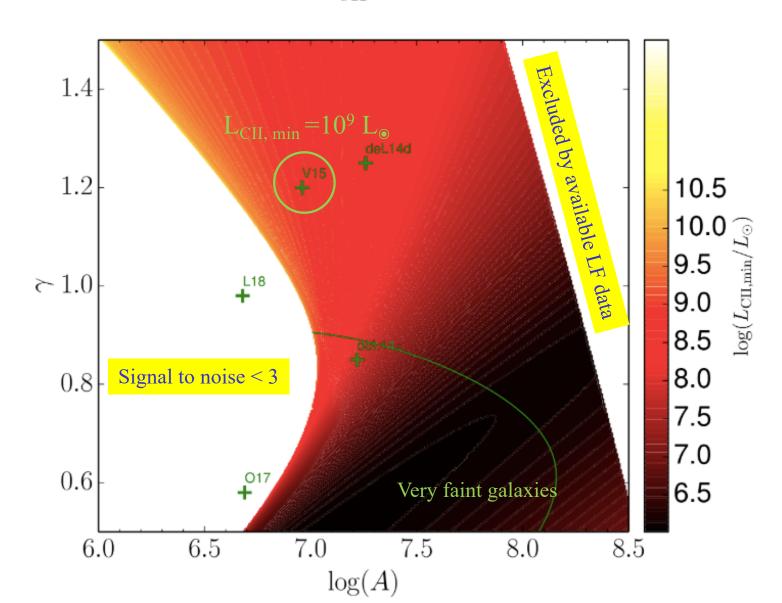

PCII($< L_{\rm CII}, k, z$) = $\left(\frac{c}{4\pi\nu_{\rm CII}H(z)}\right)^2 \left(\int dM_h \frac{dn}{dM_h} L_{\rm CII}(M_h) b_{\rm SMT}\right)^2 P(k, z)$,

PCII($< L_{\rm CII}, k, z$) = $\left(\frac{c}{4\pi\nu_{\rm CII}H(z)}\right)^2 \int_0^{\log L_{\rm CII}} d\log L_{\rm CII} \frac{dn}{d\log L_{\rm CII}} L_{\rm CII}^2$;

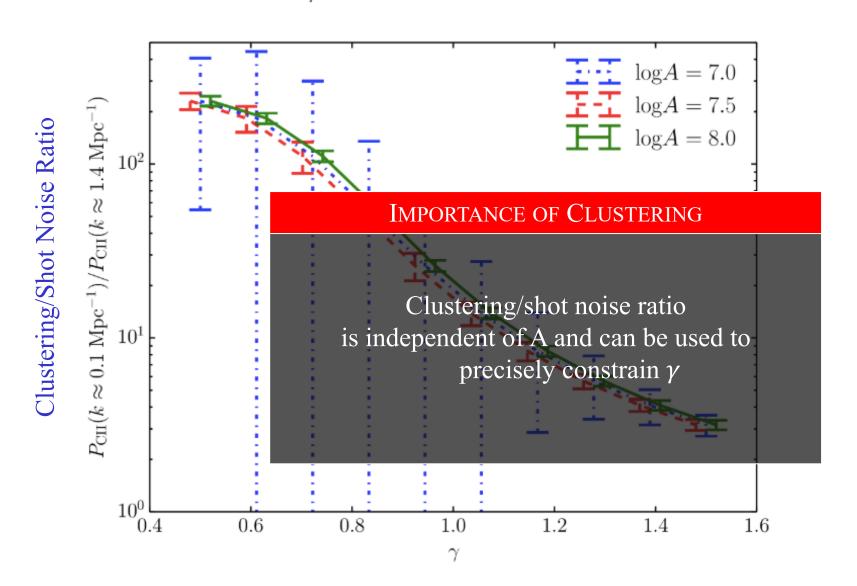

 $\sigma_{\rm CII}^2(< L_{\rm CII}, k, z) = \frac{1}{N_m(k)} \left(P_{\rm CII}(< L_{\rm CII}, k) + P_{\rm N}\right)^2$,

 $N_m(k) \approx 2\pi k^3 d\ln k \frac{V_{\rm survey}}{(2\pi)^3}$
 $P_{\rm N} = \left[\frac{2k_B T_{\rm sys}}{D^2 \sqrt{\delta\nu_0 t_{\rm vox}}} \frac{1}{\Omega_{\rm beam}}\right]^2 V_{\rm vox}$

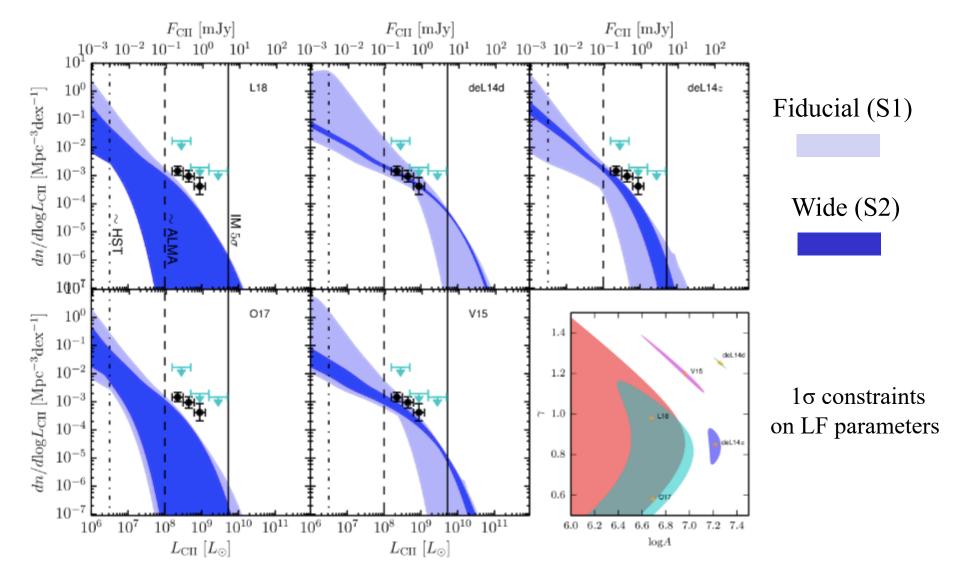

FRACTIONAL CONTRIBUTION


CCAT-like							
SURVEY STUDY		S1 FIDUCIAL	S2 WIDE	S3 BIG DISH	S4 MINI		
Name		S1*	S2	S3	S4		
D	[m]	6	6	25	6		
$N_{ m det}$	#	4000	4000	4000	400		
δu_0	[GHz]	1.0	1.0	1.0	0.1		
$T_{ m sys}$	[K]	50	50	50	150		
NEFD	$Jy sr^{-1} s^{1/2}$	2.4×10^{6}	2.4×10^{6}	2.4×10^{6}	2.3×10^{7}		
Band	[GHz]	237.6 - 271.5	237.6 - 271.5	237.6 - 271.5	267.7 - 271.5		
Bandwidth	[GHz]	33.9	33.9	33.9	3.8		
Redshift		6.0 - 7.0	6.0 - 7.0	6.0 - 7.0	6.0 - 6.1		
Survey area	$[deg^2]$	4.0	100.0	4.0	0.04		
$\operatorname{Beam}^{\dagger}$	[arcsec]	46.3	46.3	11.1	46.3		
Survey volume	$[\mathrm{Mpc}^3]$	3.2×10^{7}	8.1×10^{8}	3.2×10^{7}	3.7×10^{4}		
$V_{ m vox}$	$[\mathrm{Mpc^3}]$	39.6	39.6	2.3	4.0		
$t_{ m obs}$	[hour]	10 - 2000	10 - 2000	10 - 2000	10 - 2000		
Instrumental noise ⁺	$[\mathrm{Jy}\ \mathrm{sr}^{-1}]$	1.8×10^{4}	9.1×10^{4}	7.6×10^{4}	5.8×10^{4}		
-	[mJy beam ⁻¹]	0.92	4.6	0.2	2.9		
k_{max}	$[\mathrm{Mpc^{-1}}]$	1.7	1.7	6.9	3.3		

SURVEY S1 - SHOT NOISE SIGNAL



THE FAINTEST DETECTABLE $L_{ m CII}$



Yue & AF 19, submitted

BREAKING THE LOG A-7 DEGENERACY

RECOVERING LUMINOSITY FUNCTIONS

SUMMARY

- ♦ [CII] Intensity Mapping provides new windows on the ISM of galaxies in the EoR.
- ♦ In fiducial survey S1 (inspired by CCAT-p/1000 hr) at z=6 the shot-noise (clustering) signal is detectable for 2 (1) of the 5 proposed L_{CII} SFR relations.
- ♦ The shot noise is dominated by galaxies with $L_{CII} > 10^9 L_{\odot}$, already well at reach of ALMA. However, crucial information on the bright-end of the LF can be obtained.
- ♦ If L_{CII} =A×SFR $^{\gamma}$ relation varies in a wider (log A- γ) range, the signal produced by galaxies as faint as $L_{CII} \simeq 10^6 L_{\odot}$ can be detected (shallow relation/steep faint-end)
- ♦ Clustering measurements crucial to break the degeneracies between LF parameters.
 Larger area surveys decrease uncertainties.
- ♦ The detection of the CII power spectrum signal will allow to reconstruct the [CII] LF, including uncertainties induced by instrumental noise and L_{CII} SFR variance.