
Fast algorithms for in situ single protein matching in

Cryo tomography

Manas Rachh1, Alex Barnett
1
, Leslie Greengard

1
, Nikolaus Grigorie↵

2

Nov 28, 2018

1
Center for Computational Mathematics, Flatiron Institute, Simons Foundation

2
Howard Hughes Medical Institute

Fast algorithms for hierarchical matrices

Machine Learning Seminar 
May 2, 2019



What is fast?

Suppose A ∈ ℂN×N,  and, v ∈ ℂN

Matvec A ⋅ v : O(N2)

Inversion A−1 : O(N3)

Determinants det A : O(N3)

For a given task, an algorithm is fast if it’s runtime beats the asymptotic complexity

Examples

• Sparse matrices, matvecs in O(kN), if well-conditioned, inverse in O(kN) 

• FFT matrices, matvecs in O(N log N), inverse analytically known, and inverse 
application in O(N log N) 

• FMM matrices, matvecs in O(N)

The dream: O(N logs N )



Aj,k = δj,k + cos(tj − sk)
= δj,k + cos(tj)cos(sk) + sin(tj)sin(sk)

Matvec b = A ⋅ v : O(N2)

Inversion A−1 : O(N3)

Determinants det A : O(N3)

Dense matrices  ≠ Data dense

Step 1:

W1 =
N

∑
k=1

cos(sk)vk , W2 =
N

∑
k=1

sin(sk)vk

Step 2:

bj = vj + cos(tj)W1 + sin(tj)W2 O(N)!

A = I + UVT , U =

cos(t1) sin(t1)
cos(t2) sin(t2)

⋮ ⋮
cos(tN) sin(tN)

, V =

cos(s1) sin(s1)
cos(s2) sin(s2)

⋮ ⋮
cos(sN) sin(sN)

Sherman Morrison Woodbury formula: A−1 = I − U(I2 + VTU)−1VT O(N)!

Slyvester formula formula:  det A = det (I2 + VTU) O(N)!

tj

sk



Two-point boundary value problems

Given p(x), q(x), f(x), α, β, find u(x) which satisfies

u′�′�(x) + p(x)u′�(x) + q(x)u(x) = f(x) 0 < x < 1 .
u(0) = α , u(1) = β . 0 1

u → u(x) − α − (β − α)x satisfies

u′�′�(x) + p(x)u′�(x) + q(x)u(x) = f̃(x) 0 < x < 1 .
u(0) = 0 , u(1) = 0 .

y0

G(x, y0)

Integral formulation:

G(x, y) :  Green's function for
u′�′�(x) = δy 0 < x < 1 .
u(0) = 0 , u(1) = 0 .

G(x, y) = {x(1 − y) 0 ≤ x < y ≤ 1
y(1 − x) 0 ≤ y < x < ≤ 1

u(x) = ∫
1

0
G(x, y)σ(y) , σ unknown density

• Boundary conditions  

• ODE yields following integral equation 

σ(x) + p(x)∫
1

0

∂G
∂x

(x, y)σ(y) dy + q(x)∫
1

0
G(x, y)σ(y) dy = f̃ , 0 < x < 1



Structure of off-diagonal blocks

0 1A B

σ(x) + p(x)∫
1

0

∂G
∂x

(x, y)σ(y) dy + q(x)∫
1

0
G(x, y)σ(y) dy = Pσ = f̃

[PAA PAB
PBA PBB] [σA

σB] = [f̃A

f̃B]
yx

G(x, y) = {x(1 − y) 0 ≤ x < y ≤ 1
y(1 − x) 0 ≤ y < x < ≤ 1PABσB = p(x)∫B

(1 − y)σ(y) dy + q(x) ⋅ x∫B
(1 − y)σ(y) dy

PAB = (p(x) + q(x) ⋅ x)∫B
(1 − y) ⋅ * dy

uA vT
B

Rank 1



Structure of off-diagonal blocks

0 1A B

σ(x) + p(x)∫
1

0

∂G
∂x

(x, y)σ(y) dy + q(x)∫
1

0
G(x, y)σ(y) dy = Pσ = f̃

[PAA PAB
PBA PBB] [σA

σB] = [f̃A

f̃B]
y x

G(x, y) = {x(1 − y) 0 ≤ x < y ≤ 1
y(1 − x) 0 ≤ y < x < ≤ 1PABσB = p(x)∫B

(1 − y)σ(y) dy + q(x) ⋅ x∫B
(1 − y)σ(y) dy

PAB = (p(x) + q(x) ⋅ x)∫B
(1 − y) ⋅ * dy

uA vT
B

Rank 1

PBAσA = − p(x)∫A
yσ(y) dy + q(x) ⋅ (1 − x)∫A

yσ(y) dy

PAB = (−p(x) + q(x) ⋅ (1 − x))∫A
y ⋅ * dy

uB vT
A

Rank 1



Faster? Matvec and inverse

0 1A B

[ PAA uAvT
B

uBvT
A PBB ] [σA

σB] = [f̃A

f̃B]
0 1

A B

Step 1:
Compute   uBvT

A σA , uAvT
B σB

Matvec

O(N )



Faster? Matvec and inverse

0 1A B

[ PAA uAvT
B

uBvT
A PBB ] [σA

σB] = [f̃A

f̃B]
0 1

A B

Step 1:
Compute   uBvT

A σA , uAvT
B σB

Matvec

Step 2:
Compute   PAAσA , PBBσB O(N2/2)O(N )



Faster? Matvec and inverse

0 1A B

[ PAA uAvT
B

uBvT
A PBB ] [σA

σB] = [f̃A

f̃B]
0 1

A B

Step 1:
Compute   uBvT

A σA , uAvT
B σB

Matvec

Step 2:
Compute   PAAσA , PBBσB O(N2/2)O(N )

Inverse

[ PAA uAvT
B

uBvT
A PBB ] = [PAA 0

0 PBB] + [uA 0
0 uB] [vT

A 0
0 vT

B]
N × 2 2 × N

P−1 = [P−1
AA 0
0 P−1

BB] − [P−1
AAuA 0
0 P−1

BBuB] I2 + [vT
A P−1

AAuA 0
0 vT

B P−1
BBuB]

−1

[vT
A P−1

AA 0
0 vT

B P−1
BB]

D UVT

D−1 − D−1U(I + VTD−1U)−1VTD−1

O(N3/4)



Structure of off-diagonal blocks

0 1

A B
PAA PAB PAC PAD

PBA PBB PBC PBD

PCA PCB PCC PCD

PDA PDB PDC PDD

σA
σB
σC
σD

=

f̃A

f̃B

f̃C

f̃D

C D

All off-diagonal blocks are rank 1

PAA uA,RvT
B,L uA,RvT

C,L uA,RvT
D,L

uB,LvT
A,R PBB uB,RvT

C,L uB,RvT
D,L

uC,LvT
A,R uC,LvT

B,R PCC uC,RvT
D,L

uD,LvT
A,R uD,LvT

B,R uD,LvT
C,R PDD

σA
σB
σC
σD

=

f̃A

f̃B

f̃C

f̃D

uI,L = − p(x) + (1 − x) ⋅ q(x) , x ∈ I uI,R = p(x) + x ⋅ q(x) , x ∈ I

vI,L = 1 − y , y ∈ I vI,R = y , y ∈ I



Block separable form

PAA uA (0 0
1 0) vT

B uA (0 0
1 0) vT

C uA (0 0
1 0) vT

D

uB (0 1
0 0) vT

A PBB uB (0 0
1 0) vT

C uB (0 0
1 0) vT

D

uC (0 1
0 0) vT

A uC (0 1
0 0) vT

B PCC uC (0 0
1 0) vT

D

uD (0 1
0 0) vT

A uD (0 1
0 0) vT

B uD (0 1
0 0) vT

C PDD

PAA uA,RvT
B,L uA,RvT

C,L uA,RvT
D,L

uB,LvT
A,R PBB uB,RvT

C,L uB,RvT
D,L

uC,LvT
A,R uC,LvT

B,R PCC uC,RvT
D,L

uD,LvT
A,R uD,LvT

B,R uD,LvT
C,R PDD

Pi,j = uiSi,jvT
j

uI = (uI,L uI,R)

vT
I = (

vT
I,L

vT
I,R)

0 1

A B C D
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D
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A uD (0 1
0 0) vT

B uD (0 1
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C PDD

PAA uA,RvT
B,L uA,RvT

C,L uA,RvT
D,L

uB,LvT
A,R PBB uB,RvT

C,L uB,RvT
D,L
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D,L
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C,R PDD

Pi,j = uiSi,jvT
j

uI = (uI,L uI,R)

vT
I = (

vT
I,L

vT
I,R)

0 1

A B C D



Block separable form

PAA uA (0 0
1 0) vT

B uA (0 0
1 0) vT

C uA (0 0
1 0) vT

D

uB (0 1
0 0) vT

A PBB uB (0 0
1 0) vT

C uB (0 0
1 0) vT

D

uC (0 1
0 0) vT

A uC (0 1
0 0) vT

B PCC uC (0 0
1 0) vT

D

uD (0 1
0 0) vT

A uD (0 1
0 0) vT

B uD (0 1
0 0) vT

C PDD

Pi,j = uiSi,jvT
j

0 1

A B C D

P

Motivation A linear inversion scheme 1D BIEs 2D problems Concluding remarks

Intuition for inversion of Hierarchically Semi-Separable matrices

We get A =

⎡

⎢
⎢
⎣

D11 U1 Ã12 V
∗
2 U1 Ã13 V

∗
3 U1 Ã14 V

∗
4

U2 Ã21 V
∗
1 D22 U2 Ã23 V

∗
3 U2 Ã24 V

∗
4

U3 Ã31 V∗
1 U3 Ã32 V∗

2 D33 U3 Ã34 V∗
4

U4 Ã41 V
∗
1 U4 Ã42 V

∗
2 U4 Ã43 V

∗
3 D44

⎤

⎥
⎥
⎦
.

Then A admits the factorization:

A = U Ã V∗ + D,
p n × p n p n × p k p k × p k p k × p n p n × p n

= +
U S VT D



Motivation A linear inversion scheme 1D BIEs 2D problems Concluding remarks

Intuition for inversion of Hierarchically Semi-Separable matrices

Lemma: [Variation of Woodbury] If an N × N matrix A admits the
factorization

A = U ÃV∗ + D,

then

A−1 = E (Ã+ D̂)−1 F∗ + G,
p n × p n p n × p k p k × p k p k × p n p n × p n

where (provided all intermediate matrices are invertible)

D̂ =
(

V∗ D−1 U
)−1

, E = D−1 UD̂, F = (D̂ V∗ D−1)∗, G = D−1 −D−1 UD̂V∗ D

Note: All matrices set in blue are block diagonal.

Block separable form

PAA uA (0 0
1 0) vT

B uA (0 0
1 0) vT

C uA (0 0
1 0) vT

D

uB (0 1
0 0) vT

A PBB uB (0 0
1 0) vT

C uB (0 0
1 0) vT

D

uC (0 1
0 0) vT

A uC (0 1
0 0) vT

B PCC uC (0 0
1 0) vT

D

uD (0 1
0 0) vT

A uD (0 1
0 0) vT

B uD (0 1
0 0) vT

C PDD

Pi,j = uiSi,jvT
j

0 1

A B C D

P−1

= +
E (S + D̂)−1 FT G

D̂ = (VTD−1U)−1 , E = D−1UD̂ , F = (D̂VTD−1)T , G = D−1 − D−1UD̂VTD−1

P−1 = [P−1
AA 0
0 P−1

BB] − [P−1
AAuA 0
0 P−1

BBuB] I2 + [vT
A P−1

AAuA 0
0 vT

B P−1
BBuB]

−1

[vT
A P−1

AA 0
0 vT

B P−1
BB]Recall inverse with two intervals:



Sparse matrix embedding of P

P

Motivation A linear inversion scheme 1D BIEs 2D problems Concluding remarks

Intuition for inversion of Hierarchically Semi-Separable matrices

We get A =

⎡

⎢
⎢
⎣

D11 U1 Ã12 V
∗
2 U1 Ã13 V

∗
3 U1 Ã14 V

∗
4

U2 Ã21 V
∗
1 D22 U2 Ã23 V

∗
3 U2 Ã24 V

∗
4

U3 Ã31 V∗
1 U3 Ã32 V∗

2 D33 U3 Ã34 V∗
4

U4 Ã41 V
∗
1 U4 Ã42 V

∗
2 U4 Ã43 V

∗
3 D44

⎤

⎥
⎥
⎦
.

Then A admits the factorization:

A = U Ã V∗ + D,
p n × p n p n × p k p k × p k p k × p n p n × p n

= +
U S VT D

Pσ = f

ϕ = VTσ , ψ = Sϕ
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Intuition for inversion of Hierarchically Semi-Separable matrices

Lemma: [Variation of Woodbury] If an N × N matrix A admits the
factorization

A = U ÃV∗ + D,

then

A−1 = E (Ã+ D̂)−1 F∗ + G,
p n × p n p n × p k p k × p k p k × p n p n × p n

where (provided all intermediate matrices are invertible)

D̂ =
(

V∗ D−1 U
)−1

, E = D−1 UD̂, F = (D̂ V∗ D−1)∗, G = D−1 −D−1 UD̂V∗ D

Note: All matrices set in blue are block diagonal.

Motivation A linear inversion scheme 1D BIEs 2D problems Concluding remarks

Intuition for inversion of Hierarchically Semi-Separable matrices

We get A =

⎡

⎢
⎢
⎣

D11 U1 Ã12 V
∗
2 U1 Ã13 V

∗
3 U1 Ã14 V

∗
4

U2 Ã21 V
∗
1 D22 U2 Ã23 V

∗
3 U2 Ã24 V

∗
4

U3 Ã31 V∗
1 U3 Ã32 V∗

2 D33 U3 Ã34 V∗
4

U4 Ã41 V
∗
1 U4 Ã42 V

∗
2 U4 Ã43 V

∗
3 D44

⎤

⎥
⎥
⎦
.

Then A admits the factorization:

A = U Ã V∗ + D,
p n × p n p n × p k p k × p k p k × p n p n × p n

0
−I
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Intuition for inversion of Hierarchically Semi-Separable matrices

We get A =

⎡

⎢
⎢
⎣

D11 U1 Ã12 V
∗
2 U1 Ã13 V

∗
3 U1 Ã14 V

∗
4

U2 Ã21 V
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1 D22 U2 Ã23 V

∗
3 U2 Ã24 V

∗
4
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2 D33 U3 Ã34 V∗
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∗
1 U4 Ã42 V

∗
2 U4 Ã43 V

∗
3 D44

⎤

⎥
⎥
⎦
.
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A = U Ã V∗ + D,
p n × p n p n × p k p k × p k p k × p n p n × p n

−I

Motivation A linear inversion scheme 1D BIEs 2D problems Concluding remarks

Intuition for inversion of Hierarchically Semi-Separable matrices

We get A =

⎡

⎢
⎢
⎣

D11 U1 Ã12 V
∗
2 U1 Ã13 V

∗
3 U1 Ã14 V

∗
4

U2 Ã21 V
∗
1 D22 U2 Ã23 V

∗
3 U2 Ã24 V

∗
4

U3 Ã31 V∗
1 U3 Ã32 V∗

2 D33 U3 Ã34 V∗
4

U4 Ã41 V
∗
1 U4 Ã42 V

∗
2 U4 Ã43 V

∗
3 D44

⎤

⎥
⎥
⎦
.

Then A admits the factorization:

A = U Ã V∗ + D,
p n × p n p n × p k p k × p k p k × p n p n × p n[

σ
ψ
ϕ]

f
0
0

=

Matvec:

Inverse:

O(N2/4)

O(N3/32)

Not fast enough!
S admits a similar factorization



Structure of S

PAA uA (0 0
1 0) vT

B uA (0 0
1 0) vT

C uA (0 0
1 0) vT

D

uB (0 1
0 0) vT

A PBB uB (0 0
1 0) vT

C uB (0 0
1 0) vT

D

uC (0 1
0 0) vT

A uC (0 1
0 0) vT

B PCC uC (0 0
1 0) vT

D

uD (0 1
0 0) vT

A uD (0 1
0 0) vT

B uD (0 1
0 0) vT

C PDD

Pi,j = uiSi,jvT
j

0 1

A B C D

S =

(0 0
1 0)

(0 0
1 0)

(0 1
0 0)

(0 1
0 0)

=

(0 0
1 0)

(0 0
1 0)

(0 1
0 0)

(0 1
0 0)

0 0 0 0
1 0 1 0
0 0 0 0
1 0 1 0

0 1 0 1
0 0 0 0
0 1 0 1
0 0 0 0

0
1
0
1

(1 0 1 0)

1
0
1
0

(0 1 0 1)



Heirarchical block separable form for P

P = U(ℓ) (U(ℓ−1) (…U(1)D(0) (V (1))T + D(1))…(V (ℓ−1))T + D(ℓ−1)+) (V (ℓ))T + D(ℓ)

P
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⎡

⎢
⎢
⎣

D11 U1 Ã12 V
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2 U1 Ã13 V
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3 U1 Ã14 V

∗
4

U2 Ã21 V
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1 D22 U2 Ã23 V
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3 U2 Ã24 V

∗
4

U3 Ã31 V∗
1 U3 Ã32 V∗

2 D33 U3 Ã34 V∗
4

U4 Ã41 V
∗
1 U4 Ã42 V

∗
2 U4 Ã43 V

∗
3 D44

⎤

⎥
⎥
⎦
.

Then A admits the factorization:

A = U Ã V∗ + D,
p n × p n p n × p k p k × p k p k × p n p n × p n

= +
U S VT D
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⎤

⎥
⎥
⎦
.
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A = U Ã V∗ + D,
p n × p n p n × p k p k × p k p k × p n p n × p n

=

Motivation A linear inversion scheme 1D BIEs 2D problems Concluding remarks

Intuition for inversion of Hierarchically Semi-Separable matrices

Using a telescoping factorization of A:

A = U(3)(U(2)(U(1) B(0) (V(1))∗
)

+ B(1))(V(2))∗ + B(2))(V(3))∗ +D(3),

we have a formula

A−1 = E(3)(E(2)(E(1) D̂
(0)

F(1))∗ + D̂
(1))

(F(2))∗ + D̂
(2))

(F(3))∗ + D̂
(3)
.

Block structure of factorization:
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

All matrices are now block diagonal except D̂
(0)
, which is small.
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Motivation A linear inversion scheme 1D BIEs 2D problems Concluding remarks

Intuition for inversion of Hierarchically Semi-Separable matrices

Using a telescoping factorization of A:

A = U(3)(U(2)(U(1) B(0) (V(1))∗
)

+ B(1))(V(2))∗ + B(2))(V(3))∗ +D(3),

we have a formula

A−1 = E(3)(E(2)(E(1) D̂
(0)
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All matrices are now block diagonal except D̂
(0)
, which is small.



Hierarchical block separable (HBS) form of P

Motivation A linear inversion scheme 1D BIEs 2D problems Concluding remarks

Intuition for inversion of Hierarchically Semi-Separable matrices

Using a telescoping factorization of A:

A = U(3)(U(2)(U(1) B(0) (V(1))∗
)

+ B(1))(V(2))∗ + B(2))(V(3))∗ +D(3),

we have a formula

A−1 = E(3)(E(2)(E(1) D̂
(0)

F(1))∗ + D̂
(1))

(F(2))∗ + D̂
(2))

(F(3))∗ + D̂
(3)
.

Block structure of factorization:
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

All matrices are now block diagonal except D̂
(0)
, which is small.

P = U(3) (U(2) (U(1)D(0) (V (1))T + D(1)) (V (2))T + D(2)) (V (3))T + D(3)
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Intuition for inversion of Hierarchically Semi-Separable matrices

Lemma: [Variation of Woodbury] If an N × N matrix A admits the
factorization

A = U ÃV∗ + D,

then

A−1 = E (Ã+ D̂)−1 F∗ + G,
p n × p n p n × p k p k × p k p k × p n p n × p n

where (provided all intermediate matrices are invertible)

D̂ =
(

V∗ D−1 U
)−1

, E = D−1 UD̂, F = (D̂ V∗ D−1)∗, G = D−1 −D−1 UD̂V∗ D

Note: All matrices set in blue are block diagonal.
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Intuition for inversion of Hierarchically Semi-Separable matrices

Lemma: [Variation of Woodbury] If an N × N matrix A admits the
factorization

A = U ÃV∗ + D,

then

A−1 = E (Ã+ D̂)−1 F∗ + G,
p n × p n p n × p k p k × p k p k × p n p n × p n

where (provided all intermediate matrices are invertible)

D̂ =
(

V∗ D−1 U
)−1

, E = D−1 UD̂, F = (D̂ V∗ D−1)∗, G = D−1 −D−1 UD̂V∗ D

Note: All matrices set in blue are block diagonal.

Block 
Gaussian 

elim

Inversion: O(N )



Higher dimensions?

Given f(x) , find u(x) which satisfies

Δu(x) = 0 x ∈ Ω .
u(x) = f(x) , x ∈ Γ .

Integral formulation:

G(x, y) :  Green's function for

Δu(x) = δy

G(x, y) = −
1

2π
log |x − y |

u(x) = ∫Γ

∂
∂ν

G(x, y)σ(y) x ∈ Ω , σ unknown density

• PDE  

• Boundary conditions yields following integral equation

σ(x) + 2∫Γ

∂
∂ν

G(x, y)σ(y) dSy = 2f(x)

Ω

Γ

Pσ = f
P is also HBS compressible!

∫Γ

∂
∂ν

G(x, y)σ(y) dSy = Re∫Γ

σ(ξ)
z − ξ

dξ z = x1 + ix2 , ξ = y1 + iy2



Off-diagonal blocks

Ω

ΓB
ΓA

ΓC
ΓD

PAA PAB PAC PAD

PBA PBB PBC PBD

PCA PCB PCC PCD

PDA PDB PDC PDD

σA
σB
σC
σD

=

f̃A

f̃B

f̃C

f̃D

Motivation A linear inversion scheme 1D BIEs 2D problems Concluding remarks

Model problem

Singular values of A(I2, I
c
2 )

0 10 20 30 40 50 60 70 80 90 100
10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

σ
j(
A
(I

2
,
Ic 2
))

j

To precision 10−10, the matrix A(I2, I
c
2 ) has rank 29.Singular values of matrix : [PBA 0 PBC PBD]

Pi,j = uiSi,jvT
j

ui, vj,  now rank-k matrices
How to compute ui, vj?

Option 1: Use analytical FMM expansions — 
matrix no longer HBS then, but ℋ2

Option 2: Use numerical compression 
techniques, like SVD, ID



Low-rank approximations - Functional SVDs

B

B0

Suppose Pσ = ∑
j

K(xi, yj)σj , xi ∈ B yj ∈ B0∖B

Tf = ∫B
K(x, y)f(y)dy , T : 𝕃2(B0∖B) → 𝕃2(B) with

∫B0∖B ∫B
|K(x, y) |2 dx dy < ∞

Then, K(x, y) =
p

∑
i=1

ui(x)sivi(y) + O(ε) .

• Computing the functional SVD can be numerically intensive, particularly beyond 
d=2,3 

• Costs can be amortized for translationally invariant kernels                  and/or 
homogeneous kernels 

• Computational savings if kernel satisfies Green’s identities (Proxy surfaces) 

•  FMM-like translation operators through SVDs for recompressing S

K(λx, λy) = λrK(x, y)
K( |x − y | )



PAA PAB PAC PAD

PBA PBB PBC PBD

PCA PCB PCC PCD

PDA PDB PDC PDD

σA
σB
σC
σD

=

f̃A

f̃B

f̃C

f̃D

Low rank approximations - Randomized algorithms

Ω

ΓB
ΓA

ΓC
ΓD

Randomized algorithms:

Y = PBW
W = ℝN×(k+r) , random Gaussian matrix, FFT matrix

Y = QR
T = Q*PB

Y ∈ ℝp×(k+r)

T ∈ ℝ(k+r)×p

T = ÛSVT

Sample range of matrix

Orthogonalize sampled range

Change of basis

SVD of reduced matrix

PB ≈ QÛSVT

[PAB 0 PCB PDB] = UB [ṼT
BA 0 ṼT

BC ṼT
BD]

p × N k × N k × p

PB



Randomized algorithms - error analysis and performance

[PAB 0 PCB PDB] = UB [ṼT
BA 0 ṼT

BC ṼT
BD]

p × N k × N k × p

Randomized algorithms:

Y = PBW
W = ℝN×(k+r) , random Gaussian matrix, FFT matrix

Y = QR
T = Q*PB

Y ∈ ℝp×(k+r)

T ∈ ℝ(k+r)×N

T = ÛSVT

Sample range of matrix

Orthogonalize sampled range

Change of basis

SVD of reduced matrix

PB ≈ QÛSVT

PB

∥PB − QÛSVT∥ = ∥PB − QT∥ = ∥PB − QQ*PB∥

∥PB − QQ*PB∥ ≤ (1 + C N) sk+1 with probability 1 − 6r−r

O(N ⋅ (k + r) ⋅ p)
O(p ⋅ (k + r)2)
O(N ⋅ (k + r) ⋅ p)
O((k + r)2 ⋅ N )

Issues:
Cost of compressing one block of rows: O(N ⋅ (k + r) ⋅ p)
N such factorizations needed  ⟹ cost of factorization: O(N2)
Lack of interpretability of S at next layer



In practice

I Randomized approach if min(m,n) � k

I Project the columns (via randomized Fourier transform
[Ailon-Chazelle-2009]) to a random O(k) dimensional subspace.

I Apply QRCP to the projected (fat) matrix.

I Benefits
I Reuse the entries of A (save space),
I Inherit the structure of the columns: sparsity, locality, factorized

form.

Interpolative Decomposition  (ID)

Interpolative decomposition (ID)

I A low-rank approximation that uses A’s own columns.

I The picked columns are called the skeletons.

I Let P be the permutation matrix moving the skeletons to the front.

AP ⇡ (AP )(:,1:k)
⇥
I T

⇤
, T 2 Rk⇥(n�k).

I Key advantages: keep the columns of A in the approximation
I Reuse the entries of A (save space),
I Keep structure of the columns.

PB ZP̃B

Low rank approximation that uses columns 
of input matrix

∥PB − P̃BZ∥ ≤ (1 + k(n − k))sk+1

|Zi, j | ≤ 1
Combinatorial search, exponential cost

∥PB − P̃BZ∥ ≤ (1 + k(n − k))sk+1

|Zi, j | ≤ 2

O(N ⋅ p2 log N )
In practice, rank revealing QR works fine

Randomized approach for computing ID

Y = PBW
Inherit the structure of columns from 
ID of approximated range



Interpolative Decomposition  (ID)

In practice

I Randomized approach if min(m,n) � k

I Project the columns (via randomized Fourier transform
[Ailon-Chazelle-2009]) to a random O(k) dimensional subspace.

I Apply QRCP to the projected (fat) matrix.

I Benefits
I Reuse the entries of A (save space),
I Inherit the structure of the columns: sparsity, locality, factorized

form.

Randomized approach for computing ID

Y = PBW
Inherit the structure of columns from 
ID of approximated range

Issues:
Cost of compressing one block of rows: O(N ⋅ (k + r) ⋅ p)
N such factorizations needed  ⟹ cost of factorization: O(N2)
Lack of interpretability of S at next layer
Entries of S are sub-blocks of the original matrix



PAA PAB PAC PAD

PBA PBB PBC PBD

PCA PCB PCC PCD

PDA PDB PDC PDD

σA
σB
σC
σD

=

f̃A

f̃B

f̃C

f̃D

Low rank approximations - Proxy surfaces

Ω

ΓB

Γproxy

Γn

Instead of compressing PB , compress [PB,Γn
PB,Γproxy]

p × (nproxy + nnear)

Issues:
Cost of compressing one block of rows: O(N ⋅ (k + r) ⋅ p)

N such factorizations needed  ⟹ cost of factorization: O(N2)
Lack of interpretability of S at next layer
Entries of S are sub-blocks of the original matrix

Cost of compressing one block of rows: O((nproxy + nnear) ⋅ (k + r) ⋅ p)

Works when matrix entries from Kernel satisfying Green’s identity
General idea: identify smaller collection of columns which approximate bulk of matrix
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A 2 level FMM matrix based on a binary tree, where the points lie on an interval with the natural ordering in 1D. The
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ij , U
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(2)
j are low-rank matrices.

– Full-rank; – Low-rank

Fig. 2.2. The figure shows the FMM matrix based on a binary tree, where the points lie on an interval with the natural

ordering in 1D. Left: Level 2; Middle: Level 3; Right: Level 4. The figures do not reveal the nested low-rank structure. The

row and column basis of the low-rank matrices at a level in the tree can be constructed from the row and column basis of the

low-rank matrices of its children.

term sparse matrix in the conventional sense; i.e., a matrix primarily populated with zeros. This
should not be confused with data-sparsity, i.e., a matrix with low-rank sub-blocks.)

• The second key ingredient is that, when performing the elimination of unknowns in the extended
sparse linear system, the interaction between the unknowns corresponding to the well-separated
clusters at all stages in the elimination process can be e�ciently compressed as low-rank, which is
validated in Tables 3.1 and 3.2 for di↵erent kernel functions.
This implies, after an appropriate ordering of equations and unknowns, while we perform the elimi-
nation, the fill-in that occurs in the elimination process corresponding to well-separated clusters can
be compressed and e�ciently represented as a low-rank matrix. As shown in Section 4, the ordering
of the equations and the unknowns in the extended sparser matrix is strongly related to the local
and multipole coe�cients in the fast multipole method, which is di↵erent from the one obtained

The Inverse Fast Multipole Method 5

– Full-rank; – Low-rank

Fig. 2.3. The figure shows the FMM matrix based on a quad tree, where the points lie on a 2D manifold homeomorphic

to a square with Morton ordering/ Z-ordering. Left: Level 2; Right: Level 3. The figure on the right does not reveal the nested

low-rank structure present in the matrix. The row and column basis of the low-rank matrices at level 2 in the tree can be

constructed from the row and column basis of the low-rank matrices of its children at level 3.

Cluster 1 Cluster 2 Cluster 3

G12

G13

G23

G22

Fig. 3.1. The relevant interactions along a 1D manifold for Table 3.1. N denotes the number of particles in each cluster.

Cluster 1 Cluster 2 Cluster 3

G12
G13

G23

G22

Fig. 3.2. The relevant interactions along a 2D manifold for Table 3.2. N denotes the number of particles in each cluster.

using the nested dissection approach.

Before discussing our algorithm, we present a brief discussion of previous works in this direction and
our new contribution. The idea of extended sparsification has been considered before in the article by
Chandrasekaran et al. [22], though only in the context of HSS matrices, which are strict sub-class of H2

matrices, i.e., has the additional constraint that the interaction between all (not just the “well-separated
clusters”) are low-rank. The algorithm for HSS matrices is fairly easier since in the elimination process
there are no new fill-ins. However, hierarchically semi-separable matrices are restricted to one-dimensional
applications. In our approach, we deal with the larger class of FMM matrices, which model a large class of
hierarchical matrices in all dimensions.

FMM/ℋ2 matrices

3.2. HSS MATRIX 27

where 1 Æ i Æ 2k and 0 Æ k < Ÿ, denoted as K(k)
i

, can be written as

K(k)
i

=

S

U K(k+1)
2i≠1 U (k+1)

2i≠1 K(k+1)
2i≠1,2i

V (k+1)T

2i

U (k+1)
2i

K(k+1)
2i,2i≠1V (k+1)T

2i≠1 K(k+1)
2i

T

V . (3.3)

The operators K(k+1)
2i≠1,2i

and K(k+1)
2i,2i≠1 are the interaction operators, U (k+1)

2i≠1 , U (k+1)
2i

are the
interpolation operators and V (k+1)

2i≠1 , V (k+1)
2i

are the anterpolation operators. The maximum
number of levels, in case of a perfectly balanced HODLR tree, is given by Ÿ =

%
log2(N/2r)

&
.

A pictorial description of the HODLR-matrix, corresponding to the binary tree in Figure 3.2,

(a) Level 0 (b) Level 1 (c) Level 2

Figure 3.3: HODLR-matrix at di�erent levels for the corresponding tree in Figure 3.2.

is shown in Figure 3.3.

3.2 HSS matrix

The HSS matrix is a sub-class of the HODLR matrix with the additional property that the
low-rank basis for the interaction of a node with its siblings can be constructed from the
low-rank basis of the interaction of its children.

The recursive hierarchical structure of the HSS representation is seen when we consider
a 4 ◊ 4 block partitioning of a HSS matrix, K. The two-level HSS representation is shown

HODLR/HSS matrices

Butterfly/FFT matrices



�(`) = B(`)⇣(`), 2  ` < L, (2.11d)

�(L) = U (L)⇣(L), (2.11e)

u(ad) = A(ad)v. (2.11f)

ℓ = #
ℓ = # − %
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ℓ = &

Reshape
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LCR-linear
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LCR-linear
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LCK-linear

LCI-linear
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Figure 5: Neural network architecture for the matrix-vector multiplication of H2-matrices.

Following Property 1.1 and the definition of LCR, we can directly represent (2.11a) as

(2.11a) ) ⇠(L) = LCR[linear;N, 1, 2L, r](v). (2.12)

Here we note that the output of LCR is a 2-tensor, so we should reshape it to a vector. In the next step,
when applying other operations, it is reshaped back to a 2-tensor with same size. These operations usually
do not produce any e↵ect on the whole pipeline, so they are omitted in the following discussion. Similarly,
since all of V (L), B(`) and C(`) are block diagonal matrices (Property 1.1 and Property 1.2),

(2.11b) ) ⇠(`) = LCR[linear; 2`+1, r, 2`, r](⇠(`+1)),

(2.11d) ) �(`) = LCI[linear; 2`, r, 2r](⇣(`)),

(2.11e) ) �(L) = LCI[linear; 2L, r,m](⇣(`)).

(2.13)

Analogously, using Property 1.3, Property 1.4 and the definition of LCK,

(2.11c) ) ⇣(`) = LCK[linear; 2`, r, r, 2n(`)
b + 1](⇠(`)),

(2.11f) ) u(ad) = LCK[linear; 2L,m,m, 2n(ad)
b + 1](v).

(2.14)

Combining (2.12), (2.13) and (2.14) and adding necessary Reshape, we can now translate Algorithm 1 to
a neural network representation of the matrix-vector multiplication of H2-matrices in Algorithm 2, which is
illustrated in Fig. 5.
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Hierarchical matrices in Neural Networks
A multiscale neural network based on hierarchical nested bases

Yuwei Fan⇤, Jordi Feliu-Fabà†, Lin Lin‡, Lexing Ying§, Leonardo Zepeda-Núñez¶

Abstract

In recent years, deep learning has led to impressive results in many fields. In this paper, we introduce a
multi-scale artificial neural network for high-dimensional non-linear maps based on the idea of hierarchical
nested bases in the fast multipole method and the H

2-matrices. This approach allows us to e�ciently
approximate discretized nonlinear maps arising from partial di↵erential equations or integral equations.
It also naturally extends our recent work based on the generalization of hierarchical matrices [Fan et
al. arXiv:1807.01883] but with a reduced number of parameters. In particular, the number of parameters
of the neural network grows linearly with the dimension of the parameter space of the discretized PDE.
We demonstrate the properties of the architecture by approximating the solution maps of non-linear
Schrödinger equation, the radiative transfer equation, and the Kohn-Sham map.

Keywords: Hierarchical nested bases; fast multipole method; H
2-matrix; nonlinear mappings; artificial

neural network; locally connected neural network; convolutional neural network.

1 Introduction

In recent years, deep learning and more specifically deep artificial neural networks have received ever-
increasing attention from the scientific community. Coupled with a significant increase in the computer power
and the availability of massive datasets, artificial neural networks have fueled several breakthroughs across
many fields, ranging from classical machine learning applications such as object recognition [32, 38, 52, 56],
speech recognition [24], natural language processing [49, 53] or text classification [61] to more modern do-
mains such as language translation [55], drug discovery [39], genomics [34, 63], game playing [51], among
many others. For a more extensive review of deep learning, we point the reader to [33, 50, 18].

Recently, neural networks have also been employed to solve challenging problems in numerical analysis
and scientific computing [3, 6, 7, 10, 11, 15, 27, 42, 45, 48, 54]. While a fully connected neural network
can be theoretically used to approximate very general mappings [14, 26, 28, 41], it may also lead to a
prohibitively large number of parameters, resulting in extremely long training stages and overwhelming
memory footprints. Therefore, it is often necessary to incorporate existing knowledge of the underlying
structure of the problem into the design of the network architecture. One promising and general strategy is
to build neural networks based on a multiscale decomposition [17, 35, 62]. The general idea, often used in
image processing [4, 9, 12, 37, 47, 60], is to learn increasingly coarse-grained features of a complex problem
across di↵erent layers of the network structure, so that the number of parameters in each layer can be
e↵ectively controlled.

In this paper, we aim at employing neural networks to e↵ectively approximate non-linear maps of the
form

u = M(v), u, v 2 ⌦ ⇢ Rn. (1.1)

⇤
Department of Mathematics, Stanford University, Stanford, CA 94305, email: ywfan@stanford.edu
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Algorithm 1 Application of H2-matrices on a vector v 2 RN .

1: u(ad) = A(ad)v;
2: ⇠(L) = (V (L))T v;
3: for ` from L� 1 to 2 by �1 do
4: ⇠(`) = (C(`))T ⇠(`+1);
5: end for
6: for ` from 2 to L do
7: ⇣(`) = M (`)⇠(`);
8: end for

9: � = 0;
10: for ` from 2 to L� 1 do
11: � = �+ ⇣(`);
12: � = B(`)�;
13: end for
14: � = �+ ⇣(L);
15: � = U (L)�;
16: u = �+ u(ad);

2. B(`)
and C(`)

, ` = 2, · · · , L� 1 are block diagonal matrices with block size 2r ⇥ r;

3. M (`)
, ` = 2, · · · , L are block cyclic band matrices with block size r ⇥ r and band size n(`)

b , which is 2
for ` = 2 and 3 for ` > 2;

4. A(ad)
is a block cyclic band matrix with block size m⇥m with band size n(ad)

b = 1.

2.2 Matrix-vector multiplication as a neural network

We represent the matrix-vector multiplication (2.8) using the framework of neural networks. We first intro-
duce our main tool — locally connected network — in Section 2.2.1 and then present the neural network
representation of (2.8) in Section 2.2.2.

2.2.1 Locally connected network

In order to simplify the notation, let us present the 1D case as an example. In this setup, an NN layer can
be represented by a 2-tensor with size ↵ ⇥ Nx, where ↵ is called the channel dimension and Nx is usually
called the spatial dimension. A locally connected network is a type of mapping between two adjacent layers,
where the output of each neuron depends only locally on the input. If a layer ⇠ with size ↵⇥Nx is connected
to a layer ⇣ with size ↵0

⇥N 0

x by a locally connected (LC) network, then

⇣c0,i = �

0

@
(i�1)s+wX

j=(i�1)s+1

↵X

c=1

Wc0,c;i,j⇠c,j + bc0,i

1

A , i = 1, . . . , N 0

x, c0 = 1, . . . ,↵0, (2.9)

where � is a pre-specified function, called activation, usually chosen to be e.g. a linear function, a rectified-
linear unit (ReLU) function or a sigmoid function. The parameters w and s are called the kernel window

size and stride, respectively. Fig. 3 presents a sample of the LC network. Furthermore, we call the layer ⇣
locally connected layer (LC layer) hereafter.

!"

!"#

$

%

(a) ↵ = ↵0
= 1

&

&#

(b) ↵ = 2, ↵0
= 3

Figure 3: Sample of LC network with Nx = 12, s = 2, w = 4 and N 0

x = 5.

In (2.9) the LC network is represented using tensor notation; however, we can reshape ⇣ and ⇠ to a vector
by column major indexing and W to a matrix and write (2.9) into a matrix-vector form as

⇣ = �(W ⇠ + b). (2.10)
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A multiscale neural network based on hierarchical matrices

Yuwei Fan⇤, Lin Lin†, Lexing Ying‡, Leonardo Zepeda-Núñez§

Abstract

In this work we introduce a new multiscale artificial neural network based on the structure
of H-matrices. This network generalizes the latter to the nonlinear case by introducing a local
deep neural network at each spatial scale. Numerical results indicate that the network is able
to e�ciently approximate discrete nonlinear maps obtained from discretized nonlinear partial
di↵erential equations, such as those arising from nonlinear Schrödinger equations and the Kohn-
Sham density functional theory.

Keywords: H-matrix; multiscale neural network; locally connected neural network; convolutional
neural network

1 Introduction

In the past decades, there has been a great combined e↵ort in developing e�cient algorithms to
solve linear problems issued from discretization of integral equations (IEs), and partial di↵erential
equations (PDEs). In particular, multiscale methods such as multi-grid methods [10], the fast mul-
tipole method [21], wavelets [45], and hierarchical matrices [9, 24], have been strikingly successful
in reducing the complexity for solving such systems. In several cases, for operators of pseudo-
di↵erential type, these algorithms can achieve linear or quasi-linear complexity. In a nutshell, these
methods aim to use the inherent multiscale structure of the underlying physical problem to build
e�cient representations at each scale, thus compressing the information contained in the system.
The gains in complexity stem mainly from processing information at each scale, and merging it in
a hierarchical fashion.

Even though these techniques have been extensively applied to linear problems with outstanding
success, their application to nonlinear problems has been, to the best of our knowledge, very
limited. This is due to the high complexity of the solution maps. In particular, building a global
approximation of such maps would normally require an extremely large amount of parameters,
which in return, is often translated to algorithms with a prohibitive computational cost. The
development of algorithms and heuristics to reduce the cost is an area of active research [6, 18, 19, 22,
44]. However, in general, each method is application-dependent, and requires a deep understanding
of the underlying physics.

⇤Department of Mathematics, Stanford University, Stanford, CA 94305, email: ywfan@stanford.edu
†Department of Mathematics, University of California, Berkeley, and Computational Research Division, Lawrence

Berkeley National Laboratory, Berkeley, CA 94720, email: linlin@math.berkeley.edu
‡Department of Mathematics and Institute for Computational and Mathematical Engineering, Stanford University,

Stanford, CA 94305, email: lexing@stanford.edu
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Using ℋ2 in layers of locally connected networks

Using ℋ in layers of locally connected networks

Affords fewer number of parameters 
in Neural net representation and 
fast application of the forward 
network



Software

https://github.com/sivaramambikasaran/HODLRhttps://github.com/klho/FLAM

http://www.hlib.org https://github.com/fastalgorithms/libid



More resources

• Video lectures by Gunnar - https://www.youtube.com/playlist?
list=PLPDZ9rcIfxyOrlpcu_D1PRcyK-o2iofwW 

• Excellent review article on randomized methods for low rank approximations - 
Finding structure with randomness: Probabilistic algorithms for constructing 
approximate matrix decompositions: https://arxiv.org/pdf/0909.4061.pdf 

• Some of the illustrations courtesy: Sivaram Ambikasaran, Per-Gunnar Martinsson, 
Ken Ho, Lesliie Greengard, Lexing Ying, Adrianna Gillman 

https://github.com/ChenhanYu/hmlp/wiki/
Introduction-to-GOFMM https://github.com/victorminden/GPMLE

https://arxiv.org/pdf/0909.4061.pdf
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