Center for Computational Mathematic

Fast algorithms for hierarchical matrices

Machine Learning Seminar
May 2, 2019

What is fast?

Suppose $A \in \mathbb{C}^{N \times N}$, and, $\boldsymbol{v} \in \mathbb{C}^{N}$

- Matvec $A \cdot v: O\left(N^{2}\right)$
- Inversion $A^{-1}: O\left(N^{3}\right)$
- Determinants $\operatorname{det} A: O\left(N^{3}\right)$

For a given task, an algorithm is fast if it's runtime beats the asymptotic complexity The dream: $O\left(N \log ^{s} N\right)$

Examples

- Sparse matrices, matvecs in $\mathrm{O}(\mathrm{kN})$, if well-conditioned, inverse in $\mathrm{O}(\mathrm{kN})$
- FFT matrices, matvecs in $\mathrm{O}(\mathrm{N}$ log N$)$, inverse analytically known, and inverse application in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- FMM matrices, matvecs in $\mathrm{O}(\mathrm{N})$

Dense matrices \neq Data dense

$$
\begin{aligned}
A_{j, k} & =\delta_{j, k}+\cos \left(t_{j}-s_{k}\right) \\
& =\delta_{j, k}+\cos \left(t_{j}\right) \cos \left(s_{k}\right)+\sin \left(t_{j}\right) \sin \left(s_{k}\right)
\end{aligned}
$$

- Matvec $\boldsymbol{b}=A \cdot \boldsymbol{v}: \quad O\left(N^{2}\right)$

Step 1:

$$
\begin{aligned}
& W_{1}=\sum_{k=1}^{N} \cos \left(s_{k}\right) v_{k}, \quad W_{2}=\sum_{k=1}^{N} \sin \left(s_{k}\right) v_{k} \\
& A=I+U V^{T}, \quad U=\left[\begin{array}{cc}
\cos \left(t_{1}\right) & \sin \left(t_{1}\right) \\
\cos \left(t_{2}\right) & \sin \left(t_{2}\right) \\
\vdots & \vdots \\
\cos \left(t_{N}\right) & \sin \left(t_{N}\right)
\end{array}\right], \quad V=\left[\begin{array}{cc}
\cos \left(s_{1}\right) & \sin \left(s_{1}\right) \\
\cos \left(s_{2}\right) & \sin \left(s_{2}\right) \\
\vdots & \vdots \\
\cos \left(s_{N}\right) & \sin \left(s_{N}\right)
\end{array}\right]
\end{aligned}
$$

- Inversion $A^{-1}: O\left(N^{3}\right)$

Sherman Morrison Woodbury formula: $A^{-1}=I-U\left(I_{2}+V^{T} U\right)^{-1} V^{T}$

- Determinants $\operatorname{det} A: O\left(N^{3}\right)$ Slyvester formula formula: $\operatorname{det} A=\operatorname{det}\left(I_{2}+V^{T} U\right)$

Two-point boundary value problems

Given $p(x), q(x), f(x), \alpha, \beta, \quad$ find $u(x)$ which satisfies

$$
\begin{aligned}
u^{\prime \prime}(x)+p(x) u^{\prime}(x)+q(x) u(x) & =f(x) \quad 0<x<1 . \\
u(0) & =\alpha, \quad u(1)=\beta .
\end{aligned}
$$

$u \rightarrow u(x)-\alpha-(\beta-\alpha) x$ satisfies

$$
\begin{aligned}
u^{\prime \prime}(x)+p(x) u^{\prime}(x)+q(x) u(x) & =\tilde{f}(x) \quad 0<x<1 . \\
u(0) & =0, \quad u(1)=0 .
\end{aligned}
$$

$G(x, y)$: Green's function for

$$
\begin{aligned}
& u^{\prime \prime}(x)=\delta_{y} \quad 0<x<1 . \\
& u(0)=0, \quad u(1)=0 . \\
& G(x, y)= \begin{cases}x(1-y) & 0 \leq x<y \leq 1 \\
y(1-x) & 0 \leq y<x<\leq 1\end{cases}
\end{aligned}
$$

Integral formulation: $\quad u(x)=\int_{0}^{1} G(x, y) \sigma(y), \quad \sigma$ unknown density

- Boundary conditions
- ODE yields following integral equation

$$
\sigma(x)+p(x) \int_{0}^{1} \frac{\partial G}{\partial x}(x, y) \sigma(y) d y+q(x) \int_{0}^{1} G(x, y) \sigma(y) d y=\tilde{f}, \quad 0<x<1
$$

Structure of off-diagonal blocks

$$
\begin{gathered}
\sigma(x)+p(x) \int_{0}^{1} \frac{\partial G}{\partial x}(x, y) \sigma(y) d y+q(x) \int_{0}^{1} G(x, y) \sigma(y) d y=P \sigma=\tilde{f} \\
{\left[\begin{array}{ll}
P_{A A} & P_{A B} \\
P_{B A} & P_{B B}
\end{array}\right]\left[\begin{array}{l}
\sigma_{A} \\
\sigma_{B}
\end{array}\right]=\left[\begin{array}{l}
\tilde{f}_{A} \\
\tilde{f}_{B}
\end{array}\right] \quad G(x, y)= \begin{cases}x(1-y) & 0 \leq x<y \leq 1 \\
y(1-x) & 0 \leq y<x<\leq 1\end{cases} } \\
P_{A B} \sigma_{B}=p(x) \int_{B}(1-y) \sigma(y) d y+q(x) \cdot x \int_{B}(1-y) \sigma(y) d y
\end{gathered}
$$

Structure of off-diagonal blocks

$$
\begin{aligned}
& \sigma(x)+p(x) \int_{0}^{1} \frac{\partial G}{\partial x}(x, y) \sigma(y) d y+q(x) \int_{0}^{1} G(x, y) \sigma(y) d y=P \sigma=\tilde{f} \\
& {\left[\begin{array}{ll}
P_{A A} & P_{A B} \\
P_{B A} & P_{B B}
\end{array}\right]\left[\begin{array}{c}
\sigma_{A} \\
\sigma_{B}
\end{array}\right]=\left[\begin{array}{c}
\tilde{f}_{A} \\
\tilde{f}_{B}
\end{array}\right]} \\
& P_{A B} \sigma_{B}=p(x) \int_{B}(1-y) \sigma(y) d y+q(x) \cdot x \int_{B}(1-y) \sigma(y) d y \\
& G(x, y)= \begin{cases}x(1-y) & 0 \leq x<y \leq 1 \\
y(1-x) & 0 \leq y<x<\leq 1\end{cases} \\
& P_{A B}=(p(x)+q(x) \cdot x) \int_{B}(1-y) \cdot * d y \\
& P_{B A} \sigma_{A}=-p(x) \int_{A} y \sigma(y) d y+q(x) \cdot(1-x) \int_{A} y \sigma(y) d y \\
& P_{A B}=(-p(x)+q(x) \cdot(1-x)) \int_{A} y \cdot * d y \\
& \text { Rank } 1 \\
& u_{B} \quad v_{A}^{T}
\end{aligned}
$$

Faster? Matvec and inverse

$$
\left[\begin{array}{cc}
P_{A A} & u_{A} v_{B}^{T} \\
u_{B} v_{A}^{T} & P_{B B}
\end{array}\right]\left[\begin{array}{l}
\sigma_{A} \\
\sigma_{B}
\end{array}\right]=\left[\begin{array}{c}
\tilde{f}_{A} \\
\tilde{f}_{B}
\end{array}\right]
$$

Matvec
Step 1:
Compute $u_{B} v_{A}^{T} \sigma_{A}, u_{A} v_{B}^{T} \sigma_{B} \quad O(N)$

Faster? Matvec and inverse

$$
\left[\begin{array}{cc}
P_{A A} & u_{A} v_{B}^{T} \\
u_{B} v_{A}^{T} & P_{B B}
\end{array}\right]\left[\begin{array}{c}
\sigma_{A} \\
\sigma_{B}
\end{array}\right]=\left[\begin{array}{c}
\tilde{f}_{A} \\
\tilde{f}_{B}
\end{array}\right]
$$

Matvec

Step 1:
Compute $u_{B} v_{A}^{T} \sigma_{A}, u_{A} v_{B}^{T} \sigma_{B} \quad O(N)$

Step 2:
Compute $P_{A A} \sigma_{A}, P_{B B} \sigma_{B}$
$O\left(N^{2} / 2\right)$

Faster? Matvec and inverse

$$
\left[\begin{array}{cc}
P_{A A} & u_{A} v_{B}^{T} \\
u_{B} v_{A}^{T} & P_{B B}
\end{array}\right]\left[\begin{array}{c}
\sigma_{A} \\
\sigma_{B}
\end{array}\right]=\left[\begin{array}{c}
\tilde{f}_{A} \\
\tilde{f}_{B}
\end{array}\right]
$$

Matvec

Step 1:
Compute $u_{B} v_{A}^{T} \sigma_{A}, u_{A} v_{B}^{T} \sigma_{B} \quad O(N)$

Step 2:

Compute $P_{A A} \sigma_{A}, P_{B B} \sigma_{B}$

Inverse

$$
\begin{gathered}
{\left[\begin{array}{cc}
P_{A A} & u_{A} v_{B}^{T} \\
u_{B} v_{A}^{T} & P_{B B}
\end{array}\right]=\left[\begin{array}{cc}
P_{A A} & 0 \\
0 & P_{B B}
\end{array}\right]+\left[\begin{array}{cc}
u_{A} & 0 \\
0 & u_{B}
\end{array}\right]\left[\begin{array}{cc}
v_{A}^{T} & 0 \\
0 & v_{B}^{T}
\end{array}\right]} \\
N \times 2 \begin{array}{l}
2 \times N
\end{array} \\
P^{-1}=\left[\begin{array}{cc}
P_{A A}^{-1} & 0 \\
0 & P_{B B}^{-1}
\end{array}\right]-\left[\begin{array}{cc}
P_{A A}^{-1} u_{A} & 0 \\
0 & P_{B B}^{-1} u_{B}
\end{array}\right]\left(I_{2}+\left[\begin{array}{cc}
v_{A}^{T} P_{A A}^{-1} u_{A} & 0 \\
0 & v_{B}^{T} P_{B B}^{-1} u_{B}
\end{array}\right]\right)^{-1}\left[\begin{array}{cc}
v_{A}^{T} P_{A A}^{-1} & 0 \\
0 & v_{B}^{T} P_{B B}^{-1}
\end{array}\right] O\left(N^{3} / 4\right) \\
D^{-1}-D^{-1} U\left(I+V^{T} D^{-1} U\right)^{-1} V^{T} D^{-1}
\end{gathered}
$$

Structure of off-diagonal blocks

$$
\left[\begin{array}{llll}
P_{A A} & P_{A B} & P_{A C} & P_{A D} \\
P_{B A} & P_{B B} & P_{B C} & P_{B D} \\
P_{C A} & P_{C B} & P_{C C} & P_{C D} \\
P_{D A} & P_{D B} & P_{D C} & P_{D D}
\end{array}\right]\left[\begin{array}{c}
\sigma_{A} \\
\sigma_{B} \\
\sigma_{C} \\
\sigma_{D}
\end{array}\right]=\left[\begin{array}{c}
\tilde{f}_{A} \\
\tilde{f}_{B} \\
\tilde{f}_{C} \\
\tilde{f}_{D}
\end{array}\right]
$$

All off-diagonal blocks are rank 1

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
P_{A A} & u_{A, R} v_{B, L}^{T} & u_{A, R} v_{C, L}^{T} & u_{A, R} v_{D, L}^{T} \\
u_{B, L} v_{A, R}^{T} & P_{B B} & u_{B, R} v_{C, L}^{T} & u_{B, R} v_{D, L}^{T} \\
u_{C, L} v_{A, R}^{T} & u_{C, L} v_{B, R}^{T} & P_{C C} & u_{C, R} v_{D, L}^{T} \\
u_{D, L} v_{A, R}^{T} & u_{D, L} v_{B, R}^{T} & u_{D, L} v_{C, R}^{T} & P_{D D}
\end{array}\right]\left[\begin{array}{c}
\sigma_{A} \\
\sigma_{B} \\
\sigma_{C} \\
\sigma_{D}
\end{array}\right]=\left[\begin{array}{l}
{\left[\begin{array}{c}
\tilde{f}_{A} \\
\tilde{f}_{B} \\
\tilde{f}_{C} \\
\tilde{f}_{D}
\end{array}\right]} \\
\begin{array}{l}
u_{I, L}=-p(x)+(1-x) \cdot q(x), \quad x \in I \\
v_{I, L}=1-y, \quad y \in I
\end{array} \\
u_{I, R}=p(x)+x \cdot q(x), \quad x \in I \\
v_{I, R}=y, \quad y \in I
\end{array}\right.}
\end{aligned}
$$

Block separable form

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
P_{A A} & u_{A, R} V_{B, L}^{T} & u_{A, R} v_{C, L}^{T} & u_{A, R} v_{D, L}^{T} \\
u_{B, L} \nu_{A, R}^{T} & P_{B B} & u_{B, R} V_{C, L}^{T} & u_{B, R} v_{D, L}^{T} \\
u_{C, L} \nu_{A, R}^{T} & u_{C, L} \nu_{B, R}^{T} & P_{C C} & u_{C, R} v_{D, L}^{T} \\
u_{D, L} \nu_{A, R}^{T} & u_{D, L} \nu_{B, R}^{T} & u_{D, L} V_{C, R}^{T} & P_{D D}
\end{array}\right]} \\
& u_{I}=\left(\begin{array}{ll}
u_{I, L} & u_{I, R}
\end{array}\right) \\
& v_{I}^{T}=\binom{v_{I, L}^{T}}{v_{I, R}^{T}} \\
& {\left[\begin{array}{ccccc}
P_{A A} & u_{A}\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) v_{B}^{T} & u_{A}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{C}^{T} & u_{A}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{D}^{T} \\
u_{B}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{A}^{T} & P_{B B} & u_{B}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{C}^{T} & u_{B}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{D}^{T} \\
u_{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{A}^{T} & u_{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{B}^{T} & P_{C C} & u_{C}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{D}^{T} \\
u_{D}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{A}^{T} & u_{D}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{B}^{T} & u_{D}\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) v_{C}^{T} & P_{D D}
\end{array}\right]} \\
& P_{i, j}=u_{i} S_{i, j} v_{j}^{T}
\end{aligned}
$$

Block separable form

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
P_{A A} & u_{A, R} V_{B, L}^{T} & u_{A, R} v_{C, L}^{T} & u_{A, R} v_{D, L}^{T} \\
u_{B, L} \nu_{A, R}^{T} & P_{B B} & u_{B, R} V_{C, L}^{T} & u_{B, R} v_{D, L}^{T} \\
u_{C, L} \nu_{A, R}^{T} & u_{C, L} \nu_{B, R}^{T} & P_{C C} & u_{C, R} v_{D, L}^{T} \\
u_{D, L} \nu_{A, R}^{T} & u_{D, L} \nu_{B, R}^{T} & u_{D, L} V_{C, R}^{T} & P_{D D}
\end{array}\right]} \\
& u_{I}=\left(\begin{array}{ll}
u_{I, L} & u_{I, R}
\end{array}\right) \\
& v_{I}^{T}=\binom{v_{I, L}^{T}}{v_{I, R}^{T}} \\
& {\left[\begin{array}{ccccc}
P_{A A} & u_{A}\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) v_{B}^{T} & u_{A}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{C}^{T} & u_{A}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{D}^{T} \\
u_{B}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{A}^{T} & P_{B B} & u_{B}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{C}^{T} & u_{B}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{D}^{T} \\
u_{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{A}^{T} & u_{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{B}^{T} & P_{C C} & u_{C}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{D}^{T} \\
u_{D}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{A}^{T} & u_{D}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{B}^{T} & u_{D}\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) v_{C}^{T} & P_{D D}
\end{array}\right]} \\
& P_{i, j}=u_{i} S_{i, j} v_{j}^{T}
\end{aligned}
$$

Block separable form

Block separable form

$$
\hat{D}=\left(V^{T} D^{-1} U\right)^{-1}, \quad E=D^{-1} U \hat{D}, \quad F=\left(\hat{D} V^{T} D^{-1}\right)^{T}, \quad G=D^{-1}-D^{-1} U \hat{D} V^{T} D^{-1}
$$

$$
\begin{aligned}
& P^{-1} \\
& =\square_{\square}^{E} \begin{array}{c}
(S+\hat{D})^{-1} F^{T} \\
\square
\end{array}
\end{aligned}
$$

Sparse matrix embedding of P

$$
P \sigma=f
$$

S admits a similar factorization

Structure of S

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
P_{A A} & u_{A}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{B}^{T} & u_{A}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{C}^{T} & u_{A}\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) v_{D}^{T}
\end{array}\right]} \\
& u_{B}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{A}^{T} \quad P_{B B} \quad u_{B}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{C}^{T} \quad u_{B}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{D}^{T} \\
& u_{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{A}^{T} \quad u_{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{B}^{T} \quad P_{C C} \quad u_{C}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) v_{D}^{T} \\
& P_{i, j}=u_{i} S_{i, j} v_{j}^{T} \\
& {\left[u_{D}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{A}^{T} u_{D}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{B}^{T} \quad u_{D}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) v_{C}^{T} \quad P_{D D} \quad\right]}
\end{aligned}
$$

Heirarchical block separable form for P

$$
\begin{aligned}
& P=U^{(\ell)}\left(U^{(\ell-1)}\left(\ldots U^{(1)} D^{(0)}\left(V^{(1)}\right)^{T}+D^{(1)}\right) \ldots\left(V^{(\ell-1)}\right)^{T}+D^{(\ell-1)}+\right)\left(V^{(\ell)}\right)^{T}+D^{(\ell)} \\
& \begin{array}{lllll}
P & U & S & V^{T} & D
\end{array} \\
& \text { 茴 }= \\
& \text { 新 }=4
\end{aligned}
$$

Hierarchical block separable (HBS) form of P

$$
\begin{aligned}
& P=U^{(3)}\left(U^{(2)}\left(U^{(1)} D^{(0)}\left(V^{(1)}\right)^{T}+D^{(1)}\right)\left(V^{(2)}\right)^{T}+D^{(2)}\right)\left(V^{(3)}\right)^{T}+D^{(3)} \\
& P^{-1}=E^{(3)}\left(E^{(2)}\left(E^{(1)} G^{(0)}\left(F^{(1)}\right)^{T}+G^{(1)}\right)\left(F^{(2)}\right)^{T}+G^{(2)}\right)\left(F^{(3)}\right)^{T}+G^{(3)}
\end{aligned}
$$

All matrices except $G^{(0)}$ are block diagonal

Sparse embedding of HBS form of P

Sparse embedding of HBS form of P - inversion

$$
P^{-1}=E^{(3)}\left(E^{(2)}\left(E^{(1)} G^{(0)}\left(F^{(1)}\right)^{T}+G^{(1)}\right)\left(F^{(2)}\right)^{T}+G^{(2)}\right)\left(F^{(3)}\right)^{T}+G^{(3)}
$$

Inversion: $\quad O(N)$

Sparse embedding of HBS form of P - inversion

$$
P^{-1}=E^{(3)}\left(E^{(2)}\left(E^{(1)} G^{(0)}\left(F^{(1)}\right)^{T}+G^{(1)}\right)\left(F^{(2)}\right)^{T}+G^{(2)}\right)\left(F^{(3)}\right)^{T}+G^{(3)}
$$

Inversion: $\quad O(N)$

Higher dimensions?

Given $f(x)$, find $u(x)$ which satisfies

$$
\begin{aligned}
\Delta u(x) & =0 \quad x \in \Omega . \\
u(x) & =f(x), \quad x \in \Gamma .
\end{aligned}
$$

$G(x, y)$: Green's function for

$$
\Delta u(x)=\delta_{y}
$$

$G(x, y)=-\frac{1}{2 \pi} \log |x-y|$
Integral formulation: $\quad u(x)=\int_{\Gamma} \frac{\partial}{\partial \nu} G(x, y) \sigma(y) \quad x \in \Omega, \quad \sigma$ unknown density

- PDE

$$
\int_{\Gamma} \frac{\partial}{\partial \nu} G(x, y) \sigma(y) d S_{y}=\operatorname{Re} \int_{\Gamma} \frac{\sigma(\xi)}{z-\xi} d \xi \quad z=x_{1}+i x_{2}, \quad \xi=y_{1}+i y_{2}
$$

- Boundary conditions yields following integral equation

$$
\sigma(x)+2 \int_{\Gamma} \frac{\partial}{\partial \nu} G(x, y) \sigma(y) d S_{y}=2 f(x)
$$

$$
P \sigma=f
$$

Off-diagonal blocks

$$
\left[\begin{array}{llll}
P_{A A} & P_{A B} & P_{A C} & P_{A D} \\
P_{B A} & P_{B B} & P_{B C} & P_{B D} \\
P_{C A} & P_{C B} & P_{C C} & P_{C D} \\
P_{D A} & P_{D B} & P_{D C} & P_{D D}
\end{array}\right]\left[\begin{array}{c}
\sigma_{A} \\
\sigma_{B} \\
\sigma_{C} \\
\sigma_{D}
\end{array}\right]=\left[\begin{array}{c}
\tilde{f}_{A} \\
\tilde{f}_{B} \\
\tilde{f}_{C} \\
\tilde{f}_{D}
\end{array}\right]
$$

$P_{i, j}=u_{i} S_{i, j} v_{j}^{T}$
u_{i}, v_{j}, now rank-k matrices
How to compute u_{i}, v_{j} ?
Option 1: Use analytical FMM expansions matrix no longer HBS then, but \mathscr{H}^{2}

Option 2: Use numerical compression techniques, like SVD, ID
Singular values of matrix : $\left[\begin{array}{llll}P_{B A} & 0 & P_{B C} & P_{B D}\end{array}\right]$

Low-rank approximations - Functional SVDs

$$
\begin{aligned}
& \text { Suppose } P \sigma=\sum_{j} K\left(x_{i}, y_{j}\right) \sigma_{j}, \quad x_{i} \in B \quad y_{j} \in B_{0} \backslash B \\
& T f=\int_{B} K(x, y) f(y) d y, \quad T: \mathbb{L}^{2}\left(B_{0} \backslash B\right) \rightarrow \mathbb{L}^{2}(B) \text { with } \\
& \int_{B_{0} \backslash B} \int_{B}|K(x, y)|^{2} d x d y<\infty
\end{aligned}
$$

Then, $K(x, y)=\sum_{i=1}^{p} u_{i}(x) s_{i} v_{i}(y)+O(\varepsilon)$.

- Computing the functional SVD can be numerically intensive, particularly beyond $d=2,3$
- Costs can be amortized for translationally invariant kernels $K(|x-y|)$ and/or homogeneous kernels $K(\lambda x, \lambda y)=\lambda^{r} K(x, y)$
- Computational savings if kernel satisfies Green's identities (Proxy surfaces)
- FMM-like translation operators through SVDs for recompressing S

Low rank approximations - Randomized algorithms

$$
\left[\begin{array}{llll}
P_{A A} & P_{A B} & P_{A C} & P_{A D} \\
P_{B A} & P_{B B} & P_{B C} & P_{B D} \\
P_{C A} & P_{C B} & P_{C C} & P_{C D} \\
P_{D A} & P_{D B} & P_{D C} & P_{D D}
\end{array}\right]\left[\begin{array}{c}
\sigma_{A} \\
\sigma_{B} \\
\sigma_{C} \\
\sigma_{D}
\end{array}\right]=\left[\begin{array}{c}
\tilde{f}_{A} \\
\tilde{f}_{B} \\
\tilde{f}_{C} \\
\tilde{f}_{D}
\end{array}\right]
$$

$$
\begin{array}{cc}
P_{B} \\
{\left[\begin{array}{llll}
P_{A B} & 0 & P_{C B} & P_{D B}
\end{array}\right]=U_{B}\left[\begin{array}{lll}
\tilde{V}_{B A}^{T} & 0 & \tilde{V}_{B C}^{T} \\
& p \times N & \tilde{V}_{B D}^{T}
\end{array}\right]} \\
& k \times N
\end{array}
$$

Randomized algorithms:
$W=\mathbb{R}^{N \times(k+r)}$, random Gaussian matrix, FFT matrix

$Y=P_{B} W$	$Y \in \mathbb{R}^{p \times(k+r)}$	Sample range of matrix
$Y=Q R$		Orthogonalize sampled range
$T=Q^{*} P_{B}$	$T \in \mathbb{R}^{(k+r) \times p}$	Change of basis
$T=\hat{U} S V^{T}$		SVD of reduced matrix

Randomized algorithms - error analysis and performance

\[

\]

Randomized algorithms:
$W=\mathbb{R}^{N \times(k+r)}$, random Gaussian matrix, FFT matrix

$$
\begin{array}{llll}
Y=P_{B} W & Y \in \mathbb{R}^{p \times(k+r)} & \text { Sample range of matrix } & O(N \cdot(k+r) \cdot p) \\
Y=Q R & & \text { Orthogonalize sampled range } & O\left(p \cdot(k+r)^{2}\right) \\
T=Q^{*} P_{B} & T \in \mathbb{R}^{(k+r) \times N} & \text { Change of basis } & O(N \cdot(k+r) \cdot p) \\
T=\hat{U} S V^{T} & & \text { SVD of reduced matrix } & O\left((k+r)^{2} \cdot N\right)
\end{array}
$$

$$
P_{B} \approx Q \hat{U} S V^{T}
$$

$\left\|P_{B}-Q \hat{U} S V^{T}\right\|=\left\|P_{B}-Q T\right\|=\left\|P_{B}-Q Q^{*} P_{B}\right\|$
$\left\|P_{B}-Q Q^{*} P_{B}\right\| \leq(1+C \sqrt{N}) s_{k+1} \quad$ with probability $1-6 r^{-r}$

Issues:

Cost of compressing one block of rows: $O(N \cdot(k+r) \cdot p)$ N such factorizations needed \Longrightarrow cost of factorization: $O\left(N^{2}\right)$
Lack of interpretability of S at next layer

Interpolative Decomposition (ID)

$$
\begin{aligned}
& \left\|P_{B}-\tilde{P}_{B} Z\right\| \leq(1+\sqrt{k(n-k)}) s_{k+1} \\
& \left|Z_{i, j}\right| \leq 1
\end{aligned}
$$

Combinatorial search, exponential cost
$\left\|P_{B}-\tilde{P}_{B} Z\right\| \leq(1+\sqrt{k(n-k)}) s_{k+1}$
$\left|Z_{i, j}\right| \leq 2$
$O\left(N \cdot p^{2} \log N\right)$

Low rank approximation that uses columns of input matrix

In practice, rank revealing QR works fine

Inherit the structure of columns from ID of approximated range

Randomized approach for computing ID

Interpolative Decomposition (ID)

Randomized approach for computing ID

Issues:
Cost of compressing one block of rows: $O(N \cdot(k+r) \cdot p)$
N such factorizations needed \Longrightarrow cost of factorization: $O\left(N^{2}\right)$
tack of interpretability of Ler atmextlayer $^{\prime}$
Entries of S are sub-blocks of the original matrix

Low rank approximations - Proxy surfaces

$\left[\begin{array}{llll}P_{A A} & P_{A B} & P_{A C} & P_{A D} \\ P_{B A} & P_{B B} & P_{B C} & P_{B D} \\ P_{C A} & P_{C B} & P_{C C} & P_{C D} \\ P_{D A} & P_{D B} & P_{D C} & P_{D D}\end{array}\right]\left[\begin{array}{c}\sigma_{A} \\ \sigma_{B} \\ \sigma_{C} \\ \sigma_{D}\end{array}\right]=\left[\begin{array}{c}\tilde{f}_{A} \\ \tilde{f}_{B} \\ \tilde{f}_{C} \\ \tilde{f}_{D}\end{array}\right]$

Instead of compressing P_{B}, compress $\left[\begin{array}{ll}P_{B, \Gamma_{n}} & \left.P_{B,\lceil\mathrm{proxy}}\right]\end{array}\right.$

$$
p \times\left(n_{\text {proxy }}+n_{\text {near }}\right)
$$

Works when matrix entries from Kernel satisfying Green's identity
General idea: identify smaller collection of columns which approximate bulk of matrix
Issues:
Cest-ofeompressing-one block of rows: O(N) (k+r)
Cost of compressing one block of rows: $O\left(\left(n_{\text {proxy }}+n_{\text {near }}\right) \cdot(k+r) \cdot p\right)$
N such factorizations needed \Longrightarrow cost offactorization: $\vartheta\left(N^{2}\right)$

Entries of S are sub-blocks of the original matrix

The zoo of matrix factorizations

HODLR/HSS matrices

Butterfly/FFT matrices

FMM $/ \mathscr{H}^{2}$ matrices

		Nested basis	
		No	Yes
	Strong	HODLR	HSS
제	Weak	\mathcal{H}	\mathcal{H}^{2}

Hierarchical matrices in Neural Networks

A multiscale neural network based on hierarchical nested bases
Yuwei Fan, ${ }^{*}$ Jordi Feliu-Fabà ${ }^{\dagger}$ Lin Lin, ${ }^{\ddagger}$ Lexing Ying§, Leonardo Zepeda-Núñez ${ }^{〔}$
Using \mathscr{H}^{2} in layers of locally connected networks

A multiscale neural network based on hierarchical matrices
Yuwei Fan, ${ }^{*}$ Lin Lin, ${ }^{\dagger}$ Lexing Ying ${ }^{\ddagger}$ Leonardo Zepeda-Núñez ${ }^{\S}$
Using \mathscr{H} in layers of locally connected networks

Software

https://github.com/klho/FLAM

http://www.hlib.org

https://github.com/sivaramambikasaran/HODLR

https://github.com/fastalgorithms/libid

https://github.com/ChenhanYu/hmlp/wiki/ Introduction-to-GOFMM

https://github.com/victorminden/GPMLE

- Video lectures by Gunnar - https://www.youtube.com/playlist? list=PLPDZ9rclfxyOrlpcu_D1PRcyK-o2iofwW
- Excellent review article on randomized methods for low rank approximations Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions: https://arxiv.org/pdf/0909.4061.pdf
- Some of the illustrations courtesy: Sivaram Ambikasaran, Per-Gunnar Martinsson, Ken Ho, Lesliie Greengard, Lexing Ying, Adrianna Gillman

References

- Ho, Kenneth L., and Leslie Greengard. "A fast direct solver for structured linear systems by recursive skeletonization." SIAM Journal on Scientific Computing 34.5 (2012): A2507-A2532.
- Yu, Chenhan D., et al. "Geometry-oblivious FMM for compressing dense SPD matrices." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. ACM, 2017.
- Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W., \& O'Neil, M. (2016). Fast direct methods for Gaussian processes. IEEE transactions on pattern analysis and machine intelligence, 38(2), 252-265.
- Gillman, A., Young, P. M., \& Martinsson, P. G. (2012). A direct solver with O (N) complexity for integral equations on one-dimensional domains. Frontiers of Mathematics in China, 7(2), 217-247.
- Halko, N., Martinsson, P. G., \& Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2), 217-288
- Greengard, L., \& Rokhlin, V. (1991). On the numerical solution of two-point boundary value problems. Communications on Pure and Applied Mathematics, 44(4), 419-452.
- Fan, Y., Lin, L., Ying, L., \& Zepeda-Núnez, L. (2018). A multiscale neural network based on hierarchical matrices. arXiv preprint arXiv:1807.01883.
- Minden, V., Damle, A., Ho, K. L., \& Ying, L. (2017). Fast spatial gaussian process maximum likelihood estimation via skeletonization factorizations. Multiscale Modeling \& Simulation, 15(4), 1584-1611.
- Martinsson, P. G., Rokhlin, V., Shkolnisky, Y., \& Tygert, M. (2008). ID: A software package for low-rank approximation of matrices via interpolative decompositions, Version 0.2.
- Corona, E., Martinsson, P. G., \& Zorin, D. (2015). An O (N) direct solver for integral equations on the plane. Applied and Computational Harmonic Analysis, 38(2), 284-317.
- Gimbutas, Z., \& Rokhlin, V. (2003). A generalized fast multipole method for nonoscillatory kernels. SIAM Journal on Scientific Computing, 24(3), 796-817.

