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Today's Talk:
* Introduction to Tensors
e Tensor Networks
* Applications of Tensor Networks

e Brief Intro to the ITensor Software



For ITensor activity in Discussion Later

Installing Julia:

https://julialang.org/downloads/

https://itensor.org/

Once you have installed Julia on your machine,

1. enter the command julia to launch an interactive Julia session (a.k.a. the Julia "REPL")
2. type 1] to enter the package manager ( pkg> prompt should now show)

3. enter the command add ITensors

4. after installation completes, press backspace to return to the normal julia> prompt

Sample screenshot:

add ITensors
lating registry at ‘~/.julia/registries/General®
g git-repo ‘https://github.com/JuliaRegistries/General.git"




Introduction to Tensors

What is a tensor?
Where do tensors occur?



What is a Tensor?

At a practical level — and for the purpose of this talk -
a tensor is a multi-dimensional array

A generalization of a vector or a matrix

***************************************************************************************************************************************************************************************************************

Scalar Vector Matrix 3rd-order Tensor 4th-order Tensor

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure credit: Cichocki et al., "Low-Rank Tensor Networks...", arxiv:1609.00893



What is a Tensor?

The modern definition of a tensor is:
a multi-linear function of vectors

T(x,y,v,w)— R
T(axy +bxs,y,v,w) =aT(x1,y,v,W) +bT(X2,y,V, W)

and similar for each argument

Tensor taking N vectors are "order-N" tensors

Jeevanjee. "An introduction to tensors and group theory for physicists". Birkhauser, 2011



What is a Tensor?

Connection to multi-dim. array through
plugging in standard basis vectors:

M (v, w) order-2 tensor M
M(ei,ej):Mi- :::::

Can view an order-2 tensor as a matrix
as long as basis is understood

Matrix sufficient to specify M through linearity

Jeevanjee. "An introduction to tensors and group theory for physicists". Birkhauser, 2011
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Where do Tensors Occur?

Multi-Dimensional Data

r,g,b value

X coord

Image Data
mushroom y CO O rd

Medical Data

age height weight  symptom

C——




Where do Tensors Occur?

Discretization of functions

Trmpg = [(Tny T, Tp, Tg)

Ty, =N -a

Note: this is how tensors come up in quantum physics, as
discretizations of probability” distribution functions or
"wavefunctions”

Image credit: Wolfram Language System Documentation: The Numerical Method of Lines *teChnlcaIIy amP"tUdes which square to prObab’ht’es



The Curse of Dimensionality

Tensors beyond a few indices become
exponentially costly to store and manipulate

Tn1n2n3n4n5n6 n; =1,2,..

———
10° entries

Ininsng--ny  has 10" entries, exponential in N



The Curse of Dimensionality

Tensors beyond a few indices become
hard to visualize

4th-order tensor 5th-order tensor 6th-order tensor

Figure credit: Cichocki et al., "Low-Rank Tensor Networks...", arxiv:1609.00893



The Curse of Dimensionality

Complicated expressions like

alia as2as as3ag a4as asaeg

Tn1n2n3n4n5n6 — E A’le AnZ AnS An4 AnS An6 Agg
a

difficult for traditional index notation



Tensor Diagram Notation

Fortunately there is a way out!

N-index tensor = shape with N lines

818283840000 oo o0 oo SN

R G

Low-order tensor examples:
S
J

Uj Mij




Tensor Diagram Notation

Joining lines implies contraction, can omit names

l J

oo — A;;Bj; = Tr[AB]
\_

N



Tensor Diagram Notation

Complicated expressions like

a aia as2as as3ag a4as asaeg

zﬂ@yngn3n4n5n6 — E 14n514NQ fqng f4n4 j4n5 f4n6 qug
a

much clearer in diagram notation

Q
—
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N1 N2 N3 N4 ns Ng ny Nz N3 Ng ng Ng

and equally rigorous



Tensor Diagram Notation

Complicated expressions like
a aia as2as as3ag a4as asaeg

zﬂ@yngn3n4n5n6 — E 14n514NQ fqng f4n4 j4n5 f4n6 qug
a

much clearer in diagram notation

SRMENIN—— o999

N1 N2 N3 N4 ns Ng ny Nz N3 Ng ng Ng

and equally rigorous



Tensor Networks

Breaking the curse of dimensionality



Key problem:
cannot store or manipulate tensor with N indices

818283840000 e o o0 o o SN

e G

Some ways out:
* sparsity, if applicable
e sampling

e l[ow-rank structure



Low-rank Structure

Uncovering low-rank structure
straightforward for matrices

—_ - -o—l—
M U S VI

. . A=UVS

A B B =4SVt

Solved by singular value decomposition (SVD)



Low-rank Structure

Uncovering low-rank structure
straightforward for matrices

—_ - -o—l—
M U S VI

. . A=UVS

A [/5 B =SV!

runs over r values, rank(M) = r

Solved by singular value decomposition (SVD)



Review: Singular Value Decomposition (SVD)

Given rectangular (4x3) matrix M

0.435839 0.223707 0.10
M — 0.435839 0.223707 -0.10

0.223707 0.435839 0.10
0.223707 0.435839 -0.10

Can factorize as

1/2 -1/2 1/2 0.933 0 0

1/2 1/2 -1/2 —

1/2 -1/2 -1/2 0 0300 O
1/2 1/2 1/2 0 0 0.200

0.707107 0.707107 O
-0.707107 0.707107 O
0 0 1




1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

U

0.933 0 0
0 0300 O
0 0 0.200
S

0.707107 0.707107 O
-0.707107 0.707107 O
0 0 0 1

VT

Matrices U and V have orthonormal columns:

UlU =
ViV =




1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

U

0.933 0 0
0 0300 O
0 0 0.200
S

0.707107 0.707107 O
-0.707107 0.707107 O
0 0 0 1

VT

Matrices U and V have orthonormal columns:

U'U =1
Vv =1
S diagonal = "singular values”

Elements of S always:

1) Real

2) Non-negative

3) Decreasing




Keep fewer and fewer elements of S:

U

1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

<
n

0.933

0.435339
0.435839
0.223707
0.223707

S
0 0
0.300 0
0 0.200

0.223707 0.10
0.223707 -0.10
0.435839 0.10
0.435839 -0.10

M — M| =0

VT
0.707107 0.707107 0

-0.707107 0.707107 O
0 0 0 1




Keep fewer and fewer elements of S:

T
U S vV
1/2 -1/2 1/2 0.933 0 0 0.707107 0.707107 O
1/2 -1/2 -1/2 0 0.300 0O -0.707107 0.707107 O
1/2 1/2 1/2 0 0 0.200 0 0 0 1
1/2 1/2 -1/2 — - —

0.435839 0.223707
— A, — 0.435839 0.223707
— 2 — 0.223707 0.435839
0.223707 0.435839

o O O O

M — M| =0



Keep fewer and fewer elements of S:

T
U S vV
1/2 -1/2 1/2 0.933 0 0 0.707107 0.707107 O
1/2 -1/2 -1/2 0 0.300 0O -0.707107 0.707107 O
1/2 1/2 1/2 0 0 0 0 0 0 1
1/2 1/2 -1/2 — - -

0.435839 0.223707
— A, — 0.435839 0.223707
— 2 — 0.223707 0.435839
0.223707 0.435839

o O O O

| My — M||* = 0.04 = (0.2)°



Keep fewer and fewer elements of S:

T
U S vV
1/2 -1/2 1/2 0.933 0 0 0.707107 0.707107 O
1/2 -1/2 -1/2 0 0.300 0 -0.707107 0.707107 O
1/2 1/2 1/2 0 0 0 0 0 0 1
1/2 1/2 -1/2 — - -

0.329773 0.329773
— N — 0.329773 0.329773
— 3 — 0.329773 0.329773

0.329773 0.329773

o O O O

| My — M||* = 0.04 = (0.2)°



Keep fewer and fewer elements of S:

T
U S vV
1/2 -1/2 1/2 0.933 0 0 0.707107 0.707107 O
1/2 -1/2 -1/2 0 0 0 -0.707107 0.707107 O
1/2 1/2 1/2 0 0 0 0 0 0 1
1/2 1/2 -1/2 — - -

0.329773 0.329773
— N — 0.329773 0.329773
— 3 — 0.329773 0.329773

0.329773 0.329773

o O O O

|Ms — M| =0.13 = (0.3)* + (0.2)°



Keep fewer and fewer elements of S:

T
U S vV
1/2 -1/2 1/2 0.933 0 0 0.707107 0.707107 O
1/2 -1/2 -1/2 0 0 0 -0.707107 0.707107 O
1/2 1/2 1/2 0 0 0 0 0 0 1
1/2 1/2 -1/2 — - -

0.329773 0.329773
— N — 0.329773 0.329773
— 3 — 0.329773 0.329773

0.329773 0.329773

Truncating SVD =

Controlled
approximation for M

o O O O

|Ms — M||* =0.13 = (0.3)* + (0.2)°



Low-rank Structure

If matrix M approximately low-rank,
truncating singular values of SVD gives optimal approximation

—— —-o

M U S VI

¢

———

~

A B



Let's apply SVD to a tensor - how?

Reshape as a matrix:

N



Let's apply SVD to a tensor - how?

Reshape as a matrix:



Let's apply SVD to a tensor - how?

Reshape as a matrix:



Let's apply SVD to a tensor - how?

Reshape as a matrix:

Reshaping {TJ= as a matrix means
treating as a 2x8 matrix M, where:

1 1
—(OE =M, =
2 2
—(OEi =M, —(E;

M13

M
14 etc.



How to generalize SVD to tensors?

Reshape as a matrix:



How to generalize SVD to tensors?

Other partitions:



How to generalize SVD to tensors?

Other partitions:



From now on, reshaping steps are
implicit:




From now on, reshaping steps are
implicit:




For N-index tensor, which partition to choose?

N-index tensor: Cm

Could reshape as 2 x 2N-1 matrix and SVD

M U S V



For N-index tensor, which partition to choose?

N-index tensor: Cm

Or reshape to 22 x 2N-2 matrix and SVD

M U S V



For N-index tensor, which partition to choose?

N-index tensor: Cm

Or reshape to 23 x 2N-3 matrix and SVD

M U S V



For N-index tensor, which partition to choose?

N-index tensor: Cm

Or reshape to 24 x 2N-4 matrix and SVD

M U S V



Can combine all SVD's simultaneously
Result known as matrix product state (MPS)

i ey
At 1 naaa g
Aadi na sy

A AAAAAAAA:

MPS = vast generalization of SVD for tensors

also known as tensor train (TT) in math literature



Matrix product state (MPS) tensor network

Can view as multi-SVD of a tensor

P R—
Or special class or subspace of tensors
(low-rank subspace)



Name matrix product state refers to retrieving elements:

T



Name matrix product state refers to retrieving elements:



Name matrix product state refers to retrieving elements:

O SO0 o

3



Name matrix product state refers to retrieving elements:

3




Name matrix product state refers to retrieving elements:

3




Name matrix product state refers to retrieving elements:

3

O SO0 o
o009
o-o-9@
oo



Name matrix product state refers to retrieving elements:

3
ERE %



Name matrix product state refers to retrieving elements:

3
ERE %

¢

TOllOl



Hyper-parameter of matrix product state (MPS) is
bond dimension X

d d dddddddd d d d d d d d d d d

If modest X yields good approximation,
obtain massive compression:

2

a - Nd X



Can efficiently sum MPS in compressed form:

Or multiply by other networks:

333333 - revres

Typical cost X , memory usage X



More detailed tensor network algorithm

Inner product of two MPS tensors

00089



More detailed tensor network algorithm

Inner product of two MPS tensors
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More detailed tensor network algorithm

Inner product of two MPS tensors
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More detailed tensor network algorithm

Inner product of two MPS tensors
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o *
» .
D . o
0 \J 3 A
J . J \
] - ] :
L] : :
- ] :
- ] .
: L
: L
: »
: I -
: n
: — ol
: .
] "
: .
] .
- o :
. d :
. : ;
3 -
., R " 3
- ’o. “’
Yea, .*
LEFTTTTE LA



More detailed tensor network algorithm

Inner product of two MPS tensors
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More detailed tensor network algorithm

Inner product of two MPS tensors
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More detailed tensor network algorithm

Inner product of two MPS tensors
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More detailed tensor network algorithm

Inner product of two MPS tensors
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More detailed tensor network algorithm

Inner product of two MPS tensors
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More detailed tensor network algorithm

Inner product of two MPS tensors
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Cost ~ X3 , memory usage ~ X2



Inner product of two MPS tensors

It each MPS represents tensor with 40 indices of dimension 2

Then above algorithm computes dot product of two 'vectors'
of a trillion entries each

Takes ~ 10ms for bond dimension x = 100



There are other tensor networks too,
with their own algorithms and degrees of expressive power

R B
/

rreree /N
m%

tree tensor network PEPS / tensor grid
/ hierarchical Tucker



Applications of Tensor Networks



Compressing Neural Network Weight Layers

View weight layer (size 2N x 2N)
as tensor with 2N indices (each of dimension 2)

Training through tensor-network approx. of weight layer
yields state-of-art performance while giving 80x
compression (only 1% decrease on CIFAR-10)

Novikov et al., "Tensorizing Neural Networks", NeurlPS 28 (2015)
Garipov et al., "Ultimate Tensorization...", NeurlIPS (2016) arxiv:1611.03214



Solving PDE's with Tensor Networks )y cca

0
=W ({r} 1) = HU({r},1)

Schrodinger equation, quantum mechanics

Discretize H and W by introducing a basis set

Represent by tensor networks: W G
H

Stationary solution for 1000's of Hydrogen atoms:

Stoudenmire, White, PRL 119, 046401 (2017)



Contracting Arbitrary Tensor Networks
Pan, Zhou, Li, Zhang, Phys. Rev. Lett. 125, 060503 (2020)

—
mY
Application to graphical models (e.g. Ising spin glass):
107 /Jr.\\ V B o
2 1077 i —<— NMF
% ! —— TAP
oAl : Bethe
:ﬁlo 0 : —+— VAN
BN ! —+— Conv VAN
10 W —s—  Our method
| Wm
10716 !
0.1 0.3 | 0.5 0.7 0.9 0.1 0.5 0.9 1.3 1.7
g g

See also: Jermyn, "Automatic Contraction of Unstructured Tensor Networks", S
SciPost Phys. 8, 005 (2020)



Tensor Network Machine Learning Models

0 00

5,66, *

LN

4

iy

f(x)

. MNIST dataset

0.99F

098 F
>
Q
s
=
Q
Q
<
b7
(]
=

095F [+MPS

- -MLP
i |- -CNN-MLP
094F | o pEPS
-©-CNN-PEPS
0.93 1 1 1 1
2 3 4 5

Bond dimension

{e——— neural net

Only beaten by one other model

for FashionMNIST dataset

Cheng, Wang, Zhang, "Supervised Learning with PEPS" arxiv:2009.09932

() (p(x2) ¢(x3)\j @(xd: II\I’(XSSII
A, A, A 4, A
IPe()IIZ = | |
Ay A, A A, As

I I I I I

0x) b)) b)) Ba)  (Ba)
__ \__/ __/ \ >

Table 3: Mean AUROC scores (in %) and standard errors on ODDS datasets.

Dataset OC-SVM IF GOAD DAGMM TNAD
Wine 60.0 46.0+84 48.2+24.7 51.7+193 97.3+t4.5
Glass 62.0 572+16 535+13.6 525+129 81.8+7.3

Thyroid 98.8 99.0+0.1 95.8+13 888+6.8 99.0+0.1

Satellite 79.9 772+£09 606+53 721+47 81.3+0.5
Forest 97.7 71.7+£26 64.6+47 609+89 98.8+0.6

New state-of-the-art result for

anomaly detection task for
tabular (heterogeneous) data

Geometrical framework for

anomaly detection

Wang, Roberts, Vidal, Leichenauer, "Anomaly detection with tensor networks" arxiv:2006.02516



JOIN ITS MAILING LIST

< BACK TO ALL EVENTS

Quantum-inspired machine
learning

Friday, October 23, 2020
10:00 - 18:00

Google Calendar - ICS

ITS @ The Graduate Center

Initiative for the Theoretical Sciences

FRIDAY, OCTOBER 23, 2020 ON ZOOM
10:00 AM - 6:00 PM EDT

REGISTER TO JOIN

Anomaly detection with tensor networks

Stefan Leichenauer, X (Google)

Language modeling with reduced densities
Tai-Danae Bradley, X (Google)

Probabilistic modeling with tensor networks

Jacob Miller, Université de Montreal

Progress in tensor network algorithms for machine learning:

Miles Stoudenmire, Flatiron Institute

Differentiable programming with tensor networks

Lei Wang, Institute of Physics, Chinese Academy of Sciences

Organizers:
David Schwab, The Graduate Center, CUNY
John Terilla, Queens College and The Graduate Center, CUNY



High-Dimensional Integration with Tensor Networks

Goal to compute I = / f(xy,22,..,2q)
0,1]¢

1. approximate as sum (quadrature):

I ~ Zf(xk1,$k2,...,xkd)wklka---wkd
k

2. optimize MPS to represent f (most expensive step)

?—?—W ’if(.il}kl,.ilj‘kQ,...,ZEkd)

kl ]{2 kg k4 k5 k6

3. sum with weights — very efficient

= 3TTTET o-u



The ITensor Software

Inspired by tensor diagrams



For tensor network algorithms,

contractions take up the majority of:

* conceptual steps (= correctness of algorithm)

* computational time

Z AzjkB mjp Cikmp
i\



What can go wrong?
 contract the wrong indices
* too much human time inputting contractions

* take too long to compute

Z Ai nmjp
J

B
_/



Conventional tensor library (not ITensor)

C =A["1,3,k,1"1 * B["k,1,m"]

* Index labels are temporary
¢ Must think about index ordering

e Possible to mistake same-size indices



ITensor introduces "intelligent"” indices

which recognize each other

Index(5,"k")

Index(7,"1")

ITensor(i,j,k,1)

ITensor(l,m,k)




ITensor introduces "intelligent"” indices

which recognize each other:

- - BCw

Immediately rules out:

e mental burden of index ordering

e contraction of wrong indices

Only think about topology of network -

like tensor diagrams



Adding ITensors "just works"

® - - »

No thinking about index ordering



To prevent indices from contracting

/

0@ o}

Can put "primes" on indices and remove them after

2 A
kl



ITensor — Summary

Tensor library with unique interface to accelerate
development, reduce bugs

Ported in 2020 to the Julia programming language

Delivering on speed, rapid development times

Matt Fishman (CCQ ADS)

New paper to appear in SciPost Phys. Codebases:

Computer Science > Mathematical Software

[Submitted on 28 Jul 2020]
The ITensor Software Library for Tensor Network Calculations

Matthew Fishman, Steven R. White, E. Miles Stoudenmire



Further Topics

Tensor network optimization algorithms (putting numbers into a T.N.
for some task):

e DMRG / alternating least-squares
e density-matrix algorithm

e TT-cross / skeleton algorithm

Other applications:
e simulating quantum computers
e l|arge-scale PCA and other iterative methods

* branch-and-bound spin glass algorithm

Computational strategies
* tensor renormalization group

* block-sparse tensor networks



Concluding Thoughts

With hindsight, tensor networks may be "right" way
to do linear algebra in exponentially large spaces

Big developments in tensor-network algorithms still
to come (e.g. analogues of matrix factorizations)

Intimate connection to hierarchical matrices only
beginning to be understood

Probably still under-used — many application domains
to be explored. Yours may be next - let's discuss!



High-Dimensional Integration with ITensor http:/itensor.org/sine_int.j

http://itensor.org/sine_util.jl
]:/ f(x1,22,..,74)
[0,1]¢

~ Zf(ajk17xk27"'7$kd)wk1wk2 crc Wiy,
k

= f(xklaxkzw"vxkd)



http://itensor.org/sine_int.jl
http://itensor.org/sine_util.jl

