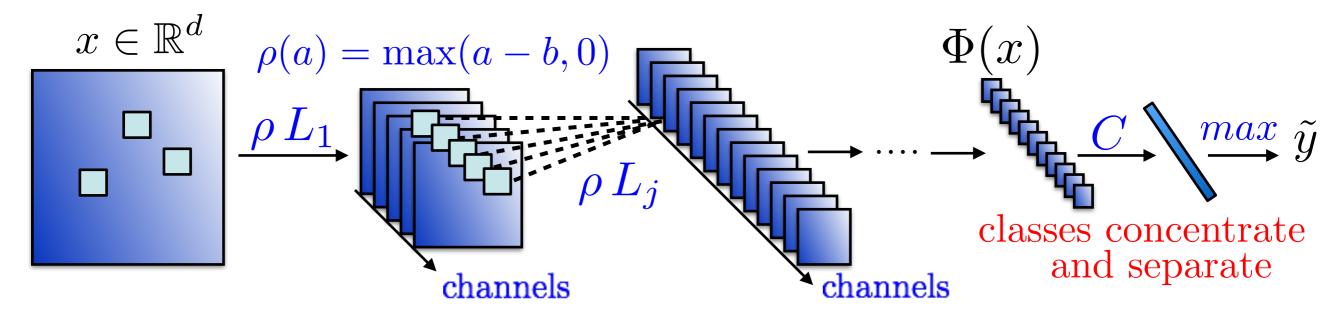
A Harmonic Analysis View of Deep Network Theory

Stéphane Mallat
Flatiron Institute, CCM
Collège de France, ENS Paris

A View of Deep Network Theory

Classification with deep convolutional networks:



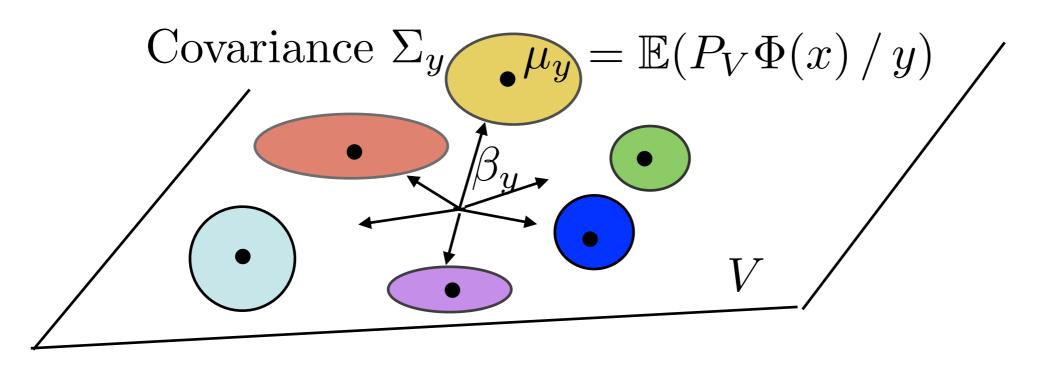
- Surprisingly good generalisation properties: not understood
- Issues of robustness and validation in applications: transport, medecine, sciences...
- Opportunity for new maths and science theories

Weekly working seminar with university collaborations (Joan Bruna)
Tuesdays 11am-12am EST (CCM Web page)

November 10th: David Donoho Neural Collapse

Linear Classification From $\Phi(x)$

Linear classifier: $\tilde{y} = \arg_y \max \langle \Phi(x), \beta_y \rangle + \alpha_y$ Only depends on the projection of $\Phi(x)$ on $V = Vect\{\beta_y\}_y$:



• $P_V\Phi(x)$ must have separated class means μ_y :

Fisher Ratio: Trace $(\Sigma_W^{-1} \Sigma_B)$ Neural collapse training

V. Papyan X.Y. Han

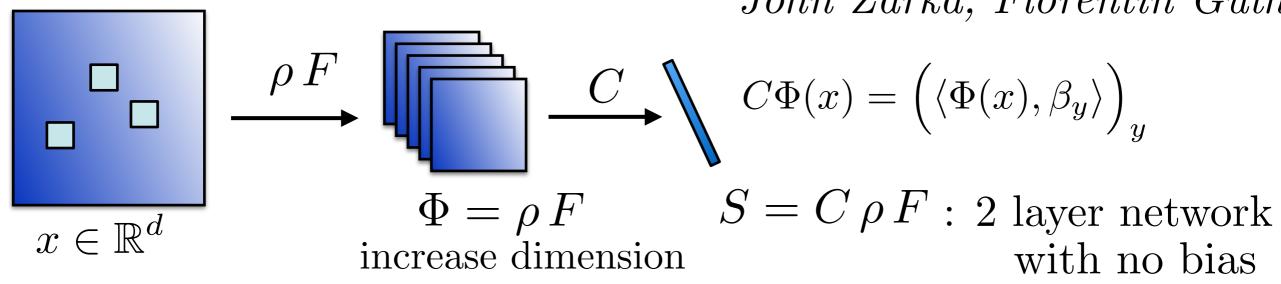
D. Donoho

with $\Sigma_B = Ave_y (\mu_y - \overline{\mu})(\mu_y - \overline{\mu})^T$ and $\Sigma_W = Ave_y \Sigma_y$.

What $\Phi(x)$ achieves this concentration/separation?

Tight Frame Contraction

John Zarka, Florentin Guth



Tight frame: $F^TF = Id$,

contraction: $|\rho(a) - \rho(a')| \leq |a - a'|$ "Stein shrinking estimation"

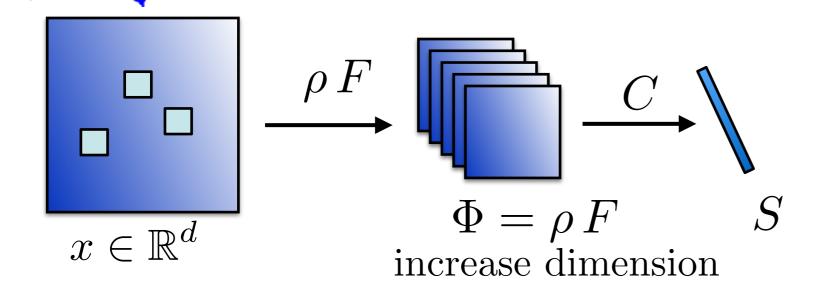
 $\Rightarrow \|\Phi(x) - \Phi(x')\| \le \|x - x'\| : \text{contraction}$

Contractions with a fixed global bias b_0 :

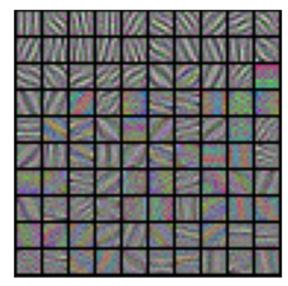
Soft-Thresh. $\rho(a) = \text{sign}(a) \max(|a| - b_0, 0)$ shrinks amplitude for noise removal

ReLu $\rho(a) = \max(a - b_0, 0)$ shrinks amplitude and sign

Tight Frame Contraction



Filters of F for CIFAR



• SGD optimisation		$\Phi(x)$	x	$\begin{array}{c} \operatorname{Soft} \\ ho F x \end{array}$	$\begin{array}{c c} \operatorname{ReLu} \\ ho F x \end{array}$
MNIST	8/79	Error Fisher	7.4% 20	1.4% 60	1.4% 60
CIFAR		Error Fisher	60% 7	39% 12	28% 15

• A soft-thresholding ρ can reduce within class variance and preserve class means μ_y if Fx is sufficiently sparse. (Donoho A ReLu ρ also modifies class means.

Johnstone)

Do we need to learn the tight frame F?

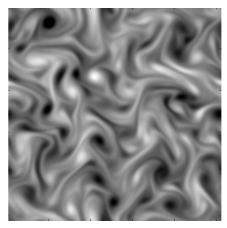
Overview

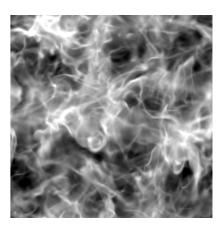


I- Concentration in Statistical Physics:

- Models of non-Gaussian processes

Turbulences:





- Wavelet separation and ReLU: scales, orientations and phases

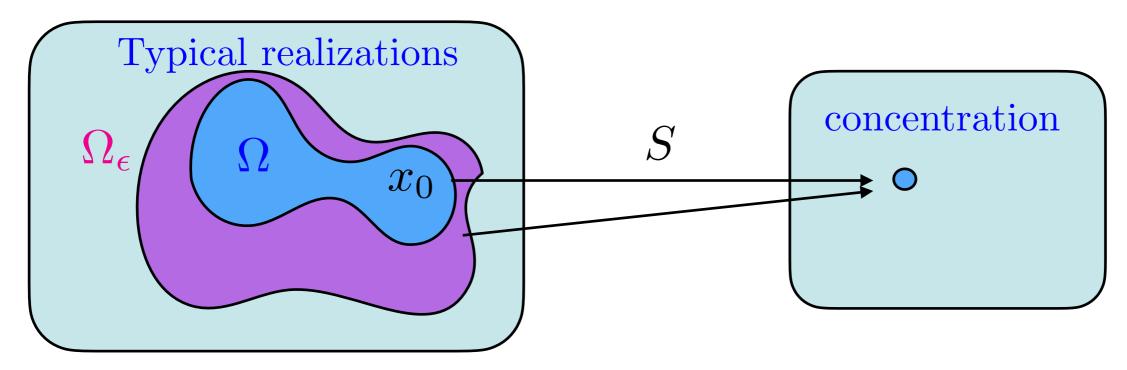
II- Image classification by deep separation and concentration:

- Deep nets from priors without learning
- Learning tight frame contractions along channels only

Statistical Physics Models Vector of statistics S(x): observable

Concentration:
$$\operatorname{Prob}_{p}\left(\|S(x) - \mathbb{E}_{p}(S(x))\| > \epsilon\right) \xrightarrow[d \to \infty]{} 0$$

 \Rightarrow a realisation x_0 satisfies $S(x_0) \approx \mathbb{E}_p(S(x))$ with high proba.



Microcanonial ensemble: $\Omega_{\epsilon} = \{x : ||S(x) - S(x_0)|| \le \epsilon\}$

Maximum entropy model \tilde{p} supported in Ω_{ϵ} is uniform.

Generation by sampling \tilde{p} : SGD on $||S(x) - S(x_0)||$ from white noise not exactly maximum entropy (J. Bruna)

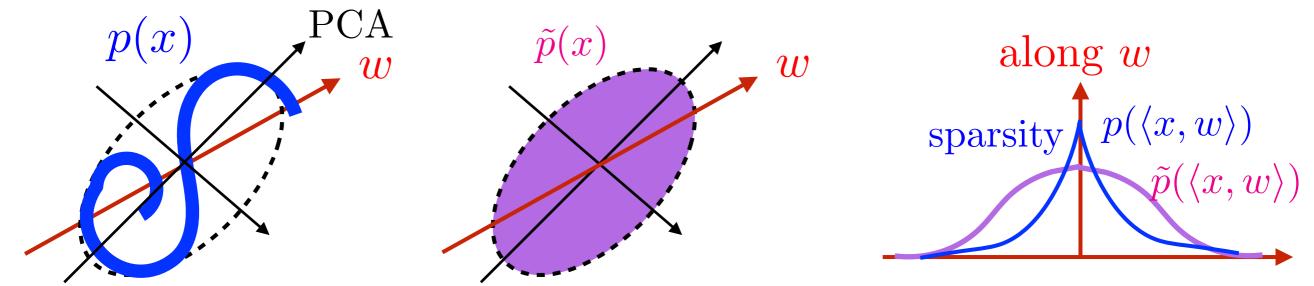
"Sufficient statistics" if $\Omega \approx \Omega_{\epsilon}$: how to define S?

Stat. for Gaussian Stationary Models-

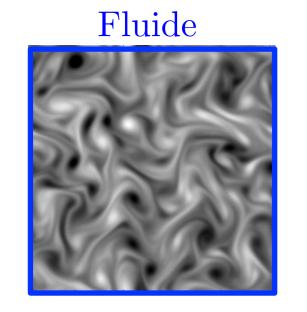
Symmetry prior: p(x) is translation invariant

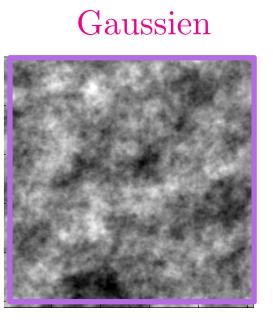
$$S(x) = \left(d^{-1}\sum_{u} x(u) x(u - \tau)\right)_{\tau} \text{ empirical covariance concentrates by spatial averaging}$$

Maximum entropy model \tilde{p} asymptotically Gaussian: how good?



PCA basis: Fourier \Rightarrow Harmonic Analysis



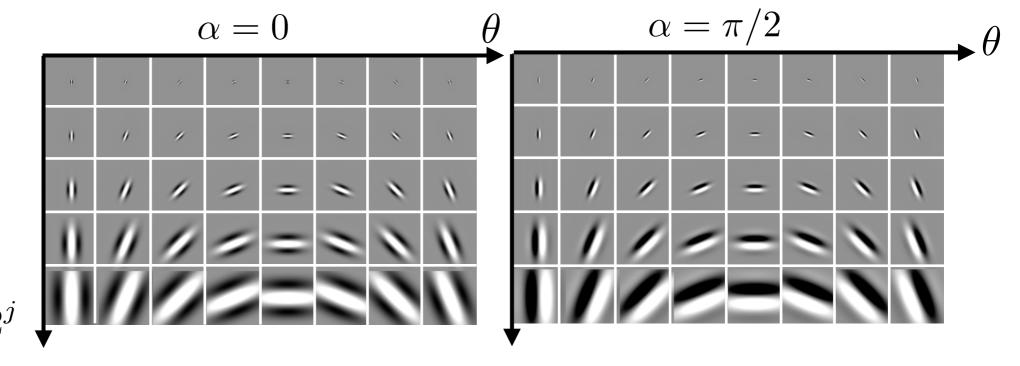


Separation with Wavelets

• Wavelet filter $\psi^{\alpha}(u)$:

phase α : 0 $\pi/2$

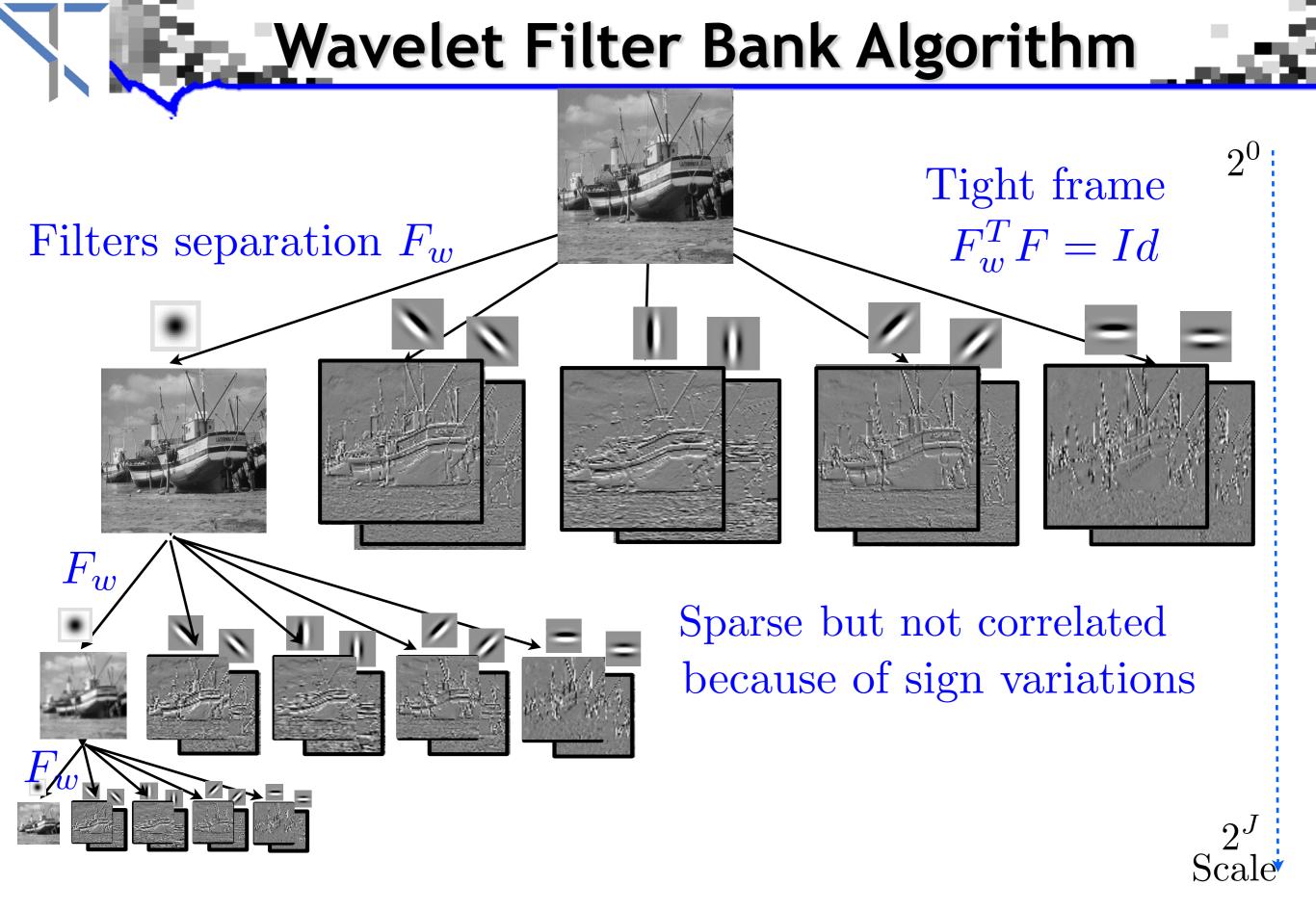
Scales 2^{j} , angles θ , phases α : $\psi_{\lambda}(u) = 2^{-2j} \psi^{\alpha}(2^{-j}r_{\theta}u)$



Wavelets ψ_{λ}

- Wavelet tight frame separation: $Wx(u,\lambda) = x \star \psi_{\lambda}(u)$
- Not correlated across "channels" if x is stationary:

$$\mathbb{E}\Big(Wx(u,\lambda)\,Wx(u,\lambda')\Big)\approx 0 \quad \text{if} \quad \lambda\neq\lambda'$$



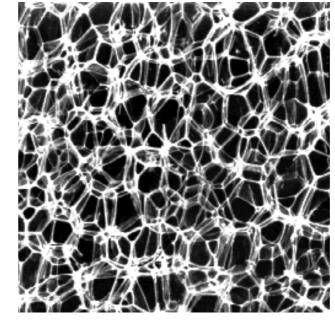
How to capture dependance across scales, angles, phases channels?

Models of Stationary Processes

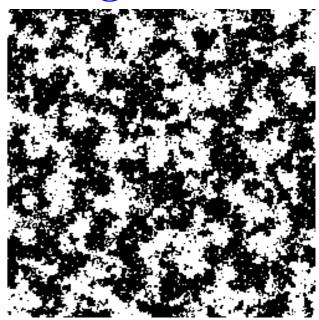
Astrophysics



Sixin Zhang



Ising-critical



Correlations across scales/orientations/phases $\lambda = (2^j, \theta, \alpha)$

are created by a ReLu $\rho(a) = \max(a, 0)$ (no bias) which shrinks sign:

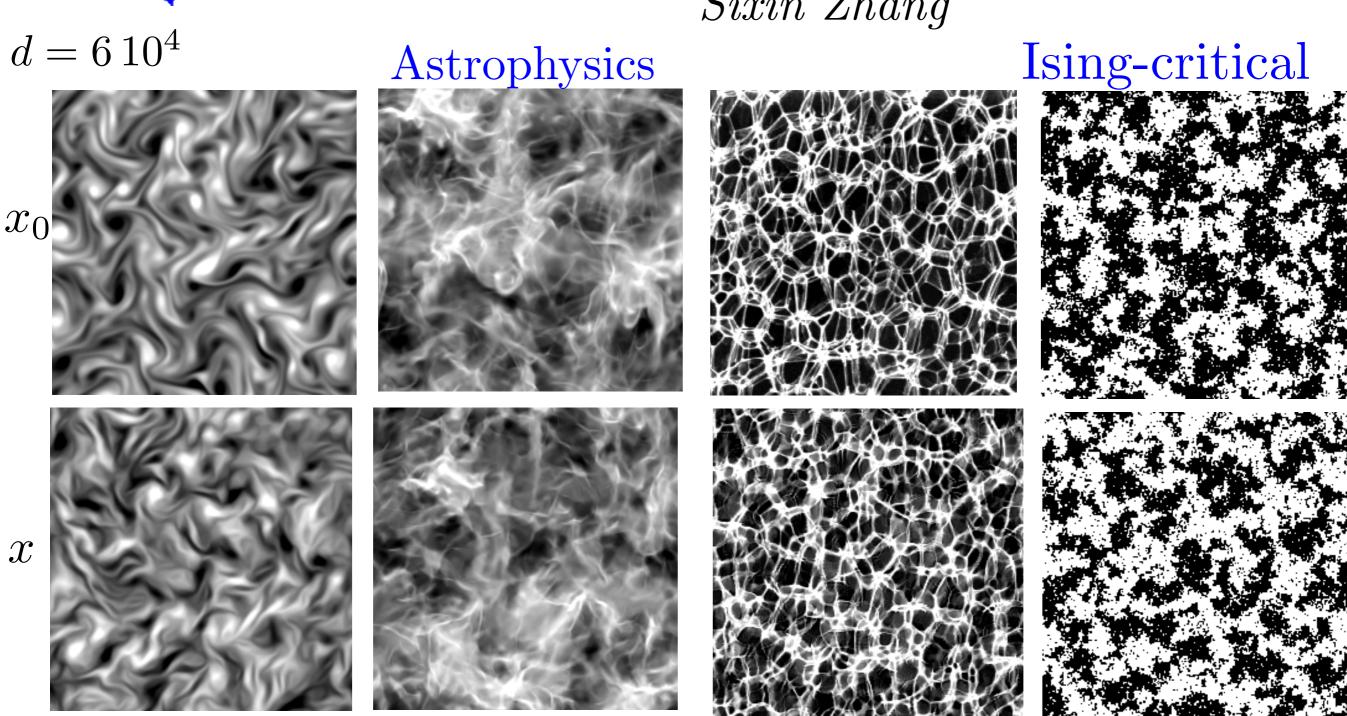
$$S(x) = d^{-1} \sum_{u} \rho W x(u) \rho W x(u)^{T}$$
 : empirical correlation

Concentration by spatial averaging: dimension $O(\log^2 d)$

Maximum entropy models conditioned by $S(x_0)$

Sampling from Max Entropy Model - -

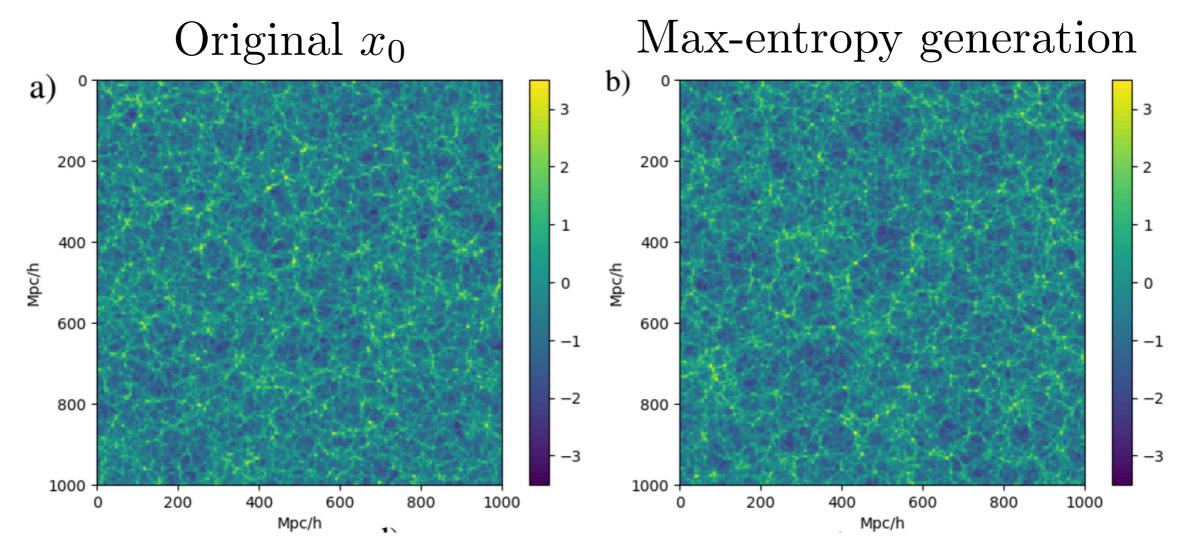
Sixin Zhang



 $S(x_0)$ has $2 \cdot 10^3$ empirical covariances Sampled from $S(x_0)$ with SGD algorithm

Generation of Cosmological Models -

E. Allys, T. Marchand, J.F. Cardoso, F. Villaescusa, S. Ho, S. Mallat Generation of matter density fields from rectified wavelet covariances:



- Reproduces high order moments
- Accurate regression of 6 cosmological parameters from $S(x_0)$

II - Image Classification

• A deep network progressively separates and concentrates

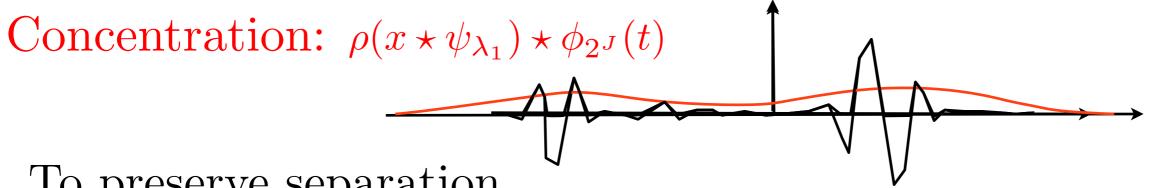
• Can we do it from prior without learning?

• If not, what needs to be learned?

Concentration and Scale Separation-

Concentration by averaging Wavelet separation: $x \star \phi_{2^J}(t)$ $\rho W_1 x = \begin{pmatrix} x x \phi \phi_{2J} \\ y(x \psi x \psi_{\lambda_1}) \end{pmatrix}$

> Lost high frequencies: $x \star \psi_{\lambda_1}(t)$ but $(x \star \psi_{\lambda_1}) \star \phi_J = 0$ Relu non-linearity: $\rho(x \star \psi_{\lambda_1}(t))$ to remove sign



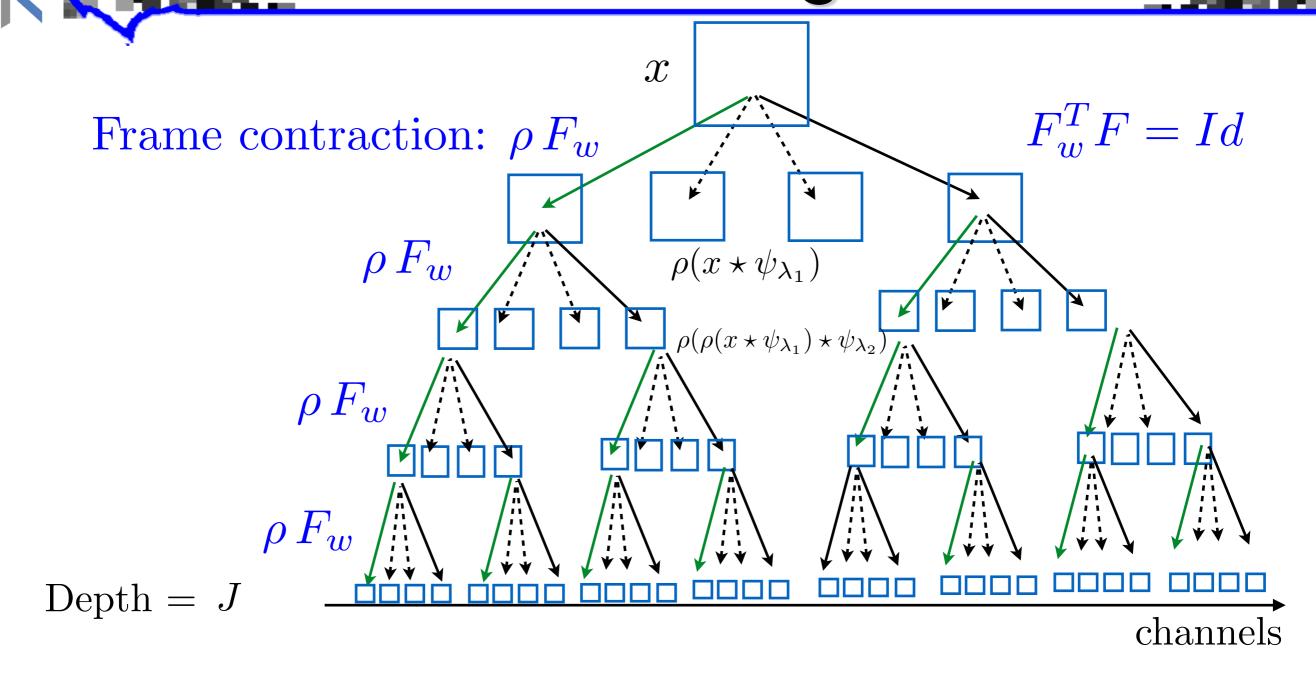
To preserve separation

Need to recover lost high frequencies: $\rho(x \star \psi_{\lambda_1}) \star \psi_{\lambda_2}(t)$

Concentration with Relu and averaging:

$$\begin{pmatrix} \rho(x \star \psi_{\lambda_1}) \star \phi_{2^J}(t) \\ \rho(\rho(x \star \psi_{\lambda_1}) \star \psi_{\lambda_2}) \star \phi_{2^J}(t) \end{pmatrix}_{\lambda_2}$$

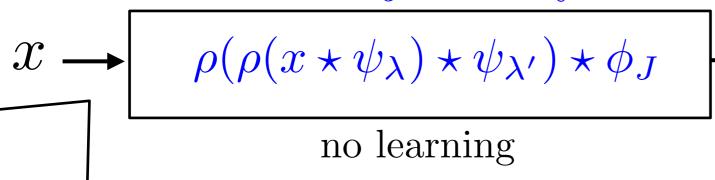
Wavelet Scattering Network

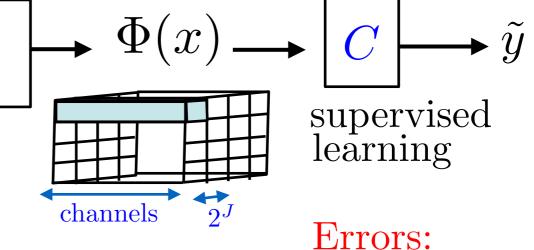


 $\Phi = (\rho F_w)^J$: iterated frame contractions Scatters along progressively more channels

A convolution tree: no channel interactions, no learning.

Image Classification

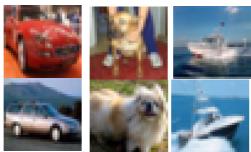




MNIST: 28^2 10 classes

Scattering Deep Nets.

CIFAR: 32^2



$$J = 3$$
 0.5 % \vdots 0.5 %

10 classes

J = 4 23% : ResNet-18: 8%

ResNet-50: 7.6%

ImageNet: 228²

 10^3 classes 1 million training

J=6

AlexNet-7: 20% 52 %: ResNet-18: 11%

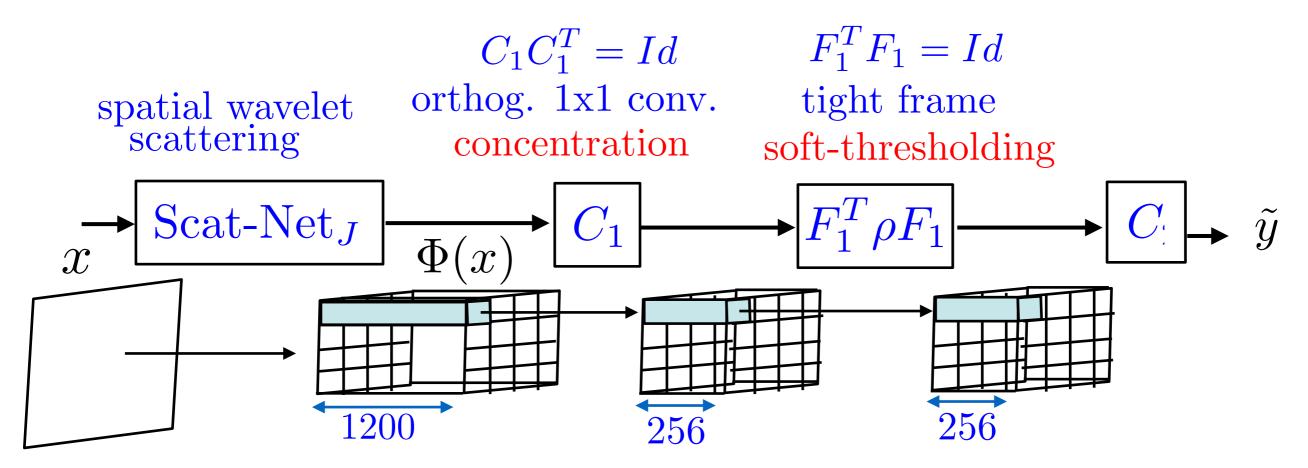
Res-Net 50: 7%

What is learned?

One Concentrated Scattering

John Zarka, Florentin Guth

Frame soft-thresholding along scattering channels:

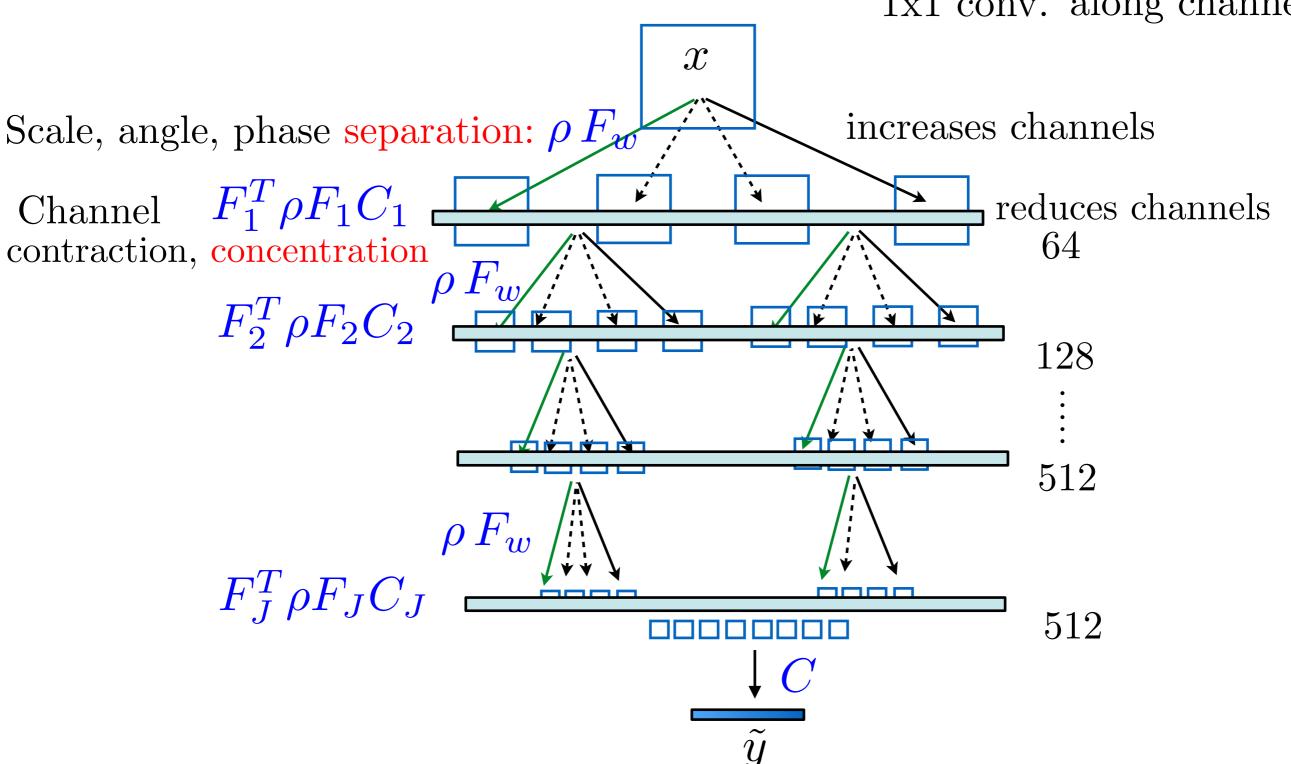


• SGD optimisation		$\Phi(x)$	Scat.	1CoScat	ResNet-18
	CIFAR	Error Fisher	27% 22	18% 30	8%
	ImageNet Top 5	Error Fisher	60% 2.9	30% 3.4	11%

Multiscale Concentrated Scattering

Wavelet frame contraction: ρF_w spatial conv, shrinks sign

Concentrated frame contraction: $F_j^T \rho F_j C_j$ shrinks amplitude 1x1 conv. along channels



Concentrated Scattering J. Zarka, F. Guth $x \in \mathbb{R}^d$ $P_1^T \rho F_1 C_1$ $P_2^T \rho F_2 C_2$ $P_3^T \rho F_3 C_2$ $P_4^T \rho F_4 C_4$ $P_4^T \rho F_4 C_5$ $P_4^T \rho F_5$ $P_4^T \rho$

• Network without learning bias and semi-orthogonal operators

128 channels

... 512 ..

• Learning 1x1 convolutions across scattering channels

64 channels

• SGD optimisation		$\Phi(x)$	1CoScat	CoScat	ResNet-18
	CIFAR	Error Fisher Depth	18% 30 5	7.8% 70 8	8% 18
	ImageNet Top 5	Error Fisher Depth	$30\% \\ 3.4 \\ 7$	13% 7.2 12	11% 18

Mathematical control of Fisher ratios?

Conclusion

- Deep network separate and concentrate: what mechanism?
- Variance can be reduced with tight frame contractions
- Spatial filtering can be handled with wavelet frame which separate scale, angle and phase channels.
- Learning contractions along channels can reach ResNet accuracy
- Control of *Fisher ratios* is an open math. problem.

New Interpretable Statistics for Large Scale Structure Analysis and Generation *Allys, Marchand, Cardoso, Villaescusa, Ho, Mallat,* arXiv:2006.06298, Phys. Rev.

Tight Frame Contractions in Deep Networks

J. Zarka, F. Guth,, S. Mallat, OpenReview, ICLR 2021