

Inverse Problems, Sparsity and Neural Networks Priors

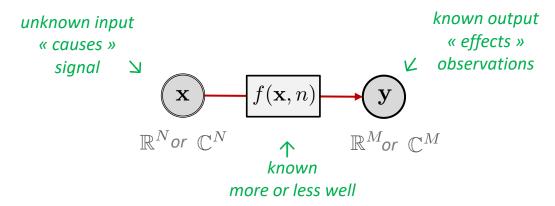
October 20th 2020

FWAM

Marylou Gabrié (FI CCM & Center for Data Science NYU)

General setting: Inverse problems

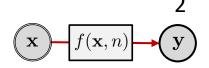
"An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them." (Wikipedia)



- Forward problem : get y from x
- Inverse problem : get x from y
 - ▶ Perfect "recovery", invertible function

Today: Incorporate prior knowledge on the signal to help reconstruction

- 1. Sparsity
- 2. Neural networks

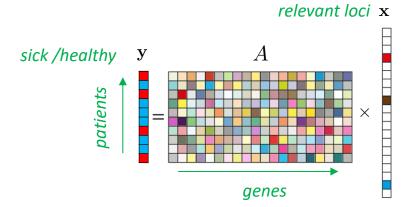


Mathematical formulation:

$$\mathbf{y} = A\mathbf{x} + n$$

Challenges:

- poor signal-to-noise ratio (SNR)
- overdetermined / underdetermined
- non-invertible / badly conditioned A



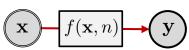
Genomics:

- i-th row of A gene sequence of an individual
- y_i indicator of healthy / sick patient
- x indicator of relevant loci in the genome to the disease

Image processing: deblurring

- A convolution with a translation inv. Gaussian kernel
- y blurred image
- x original image

Examples: Non-Linear Inverse problems



Mathematical formulation:

$$\mathbf{y} = f(\mathbf{x}, n)$$

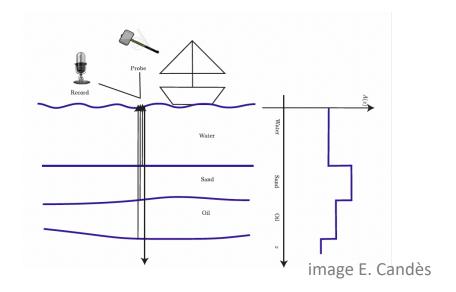
PDE solution, quadratic system etc...

Challenges:

- "well-posedness"
- non-convexity
- ...

Seismology

- x density profile
- perturbation + wave propagation
- y waves reflected at the surface



▶ Phase retrieval for instance in imaging (coherence diffraction, astronomy)

- A Fourier operator (oversampled)
- y noisy CCD measurements
- x specimen of interest

$$\mathbf{y} = |A\mathbf{x}| + n$$

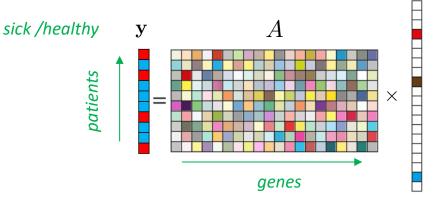
SPARSITY

relevant loci

Sparse representation

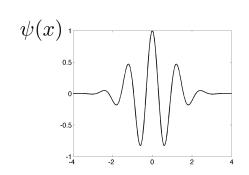
... with respect to a basis

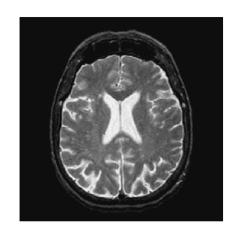
- > Directly in natural basis of the problem:

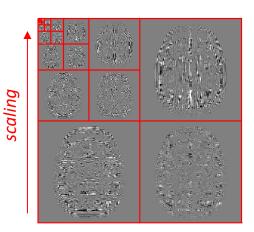


In a specifically chosen basis:

- ▶ Fourier analysis
- Orthonormal wavelet
 - ightharpoonup mother wavelet $\psi(x)$
 - translations m, scaling factor $\ell \psi(x)_m^{\ell} = 2^{-\ell/2} \psi(2^{-\ell}x m)$, rotations







Leveraging sparsity: Constrained optimization (Linear inverse problems (x) $\xrightarrow{Ax+n}$ (y))

fidelity term non-zero coefficients

"Sparse regression" assumed sparsity $\mathbf{x}^* = \arg\min_{\mathbf{x}} \left\{ \|\mathbf{y} - A\mathbf{x}\|_2 \, ; \, \|\mathbf{x}\|_0 \leq K \right\}$ observation \mathbf{v}_0 -norm counting

Leveraging sparsity: Constrained optimization (Linear inverse problems)

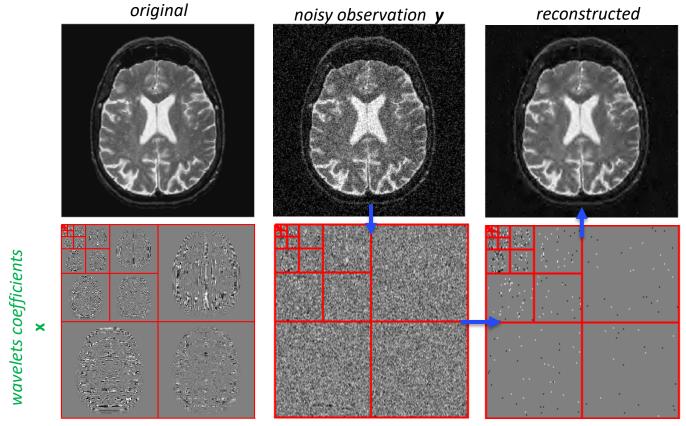
Example: Image denoising with wavelets y = Ax + n

A = wavelet orthonormal basis

 $\mathbf{x} =$ wavelet components coef.

Algorithm:

- Decompose y over the wavelet basis
- Keep the *K* wavelets with largest coefficients



Leveraging sparsity: Constrained optimization (Linear inverse problems (x) $\xrightarrow{Ax+n}$ (y))

"Sparse regression"

assumed sparsity

NP hard problem – No efficient (polynomial time) algorithm in general!

Very active research topic in signal processing in general, many different methods

- Bayesian methods
- Convex relaxation methods ← let's focus here

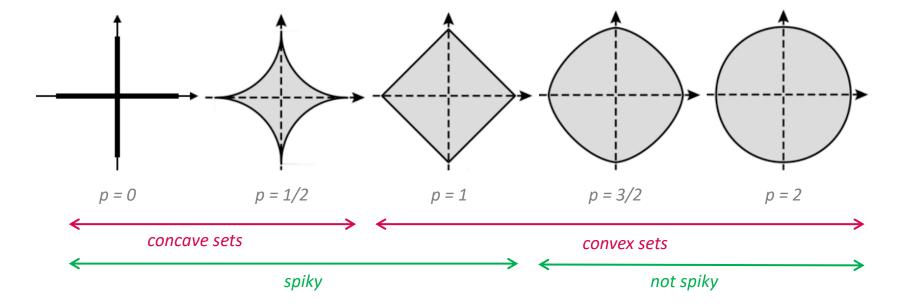
$$p=4$$
 $p=2$ $p=1$ $p=0.5$ $p=0.1$

Definition:

nition: For a vector
$$\mathbf{x} \in \mathbb{R}^N$$
 , $\|\mathbf{x}\|_p = \left(\sum_{i=1}^N x_i^p\right)^{1/p}$

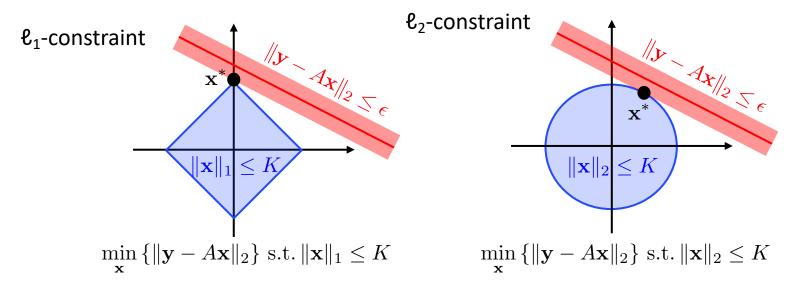
examples:
$$\|\mathbf{x}\|_0=$$
 # of non-zero , $\|\mathbf{x}\|_1=\sum_{i=1}^N |x_i|$, $\|\mathbf{x}\|_2=\sqrt{\sum_{i=1}^N x_i^2}$

1-balls for the different norms: $\|\mathbf{x}\|_p \leq 1$



ℓ_1 -constraint or ℓ_1 -regularization

Convex sets intersections



LASSO (Tibshirani '96), Basis pursuit (Chen et al. '98)

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{arg\,min}} \{ \|\mathbf{y} - A\mathbf{x}\|_2 \, ; \, \|\mathbf{x}\|_1 \le K \} \quad \text{or} \quad \mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{arg\,min}} \{ \|\mathbf{y} - A\mathbf{x}\|_2 \, + \lambda \, \|\mathbf{x}\|_1 \}$$

- \triangleright under structural assumptions on A returns the same as ℓ_0 norm
- \triangleright still harder than ℓ_2 because ℓ_1 non-differentiable
- \triangleright but a lot easier than ℓ_0
- finding efficient algorithms very active direction of research

sklearn.linear model.Lasso

class sklearn.linear_model.lasso(alpha=1.0, *, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic') [source

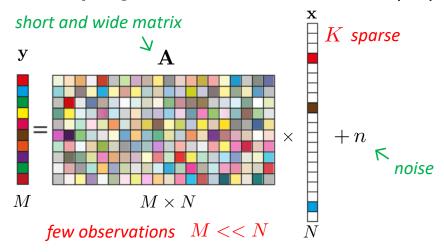
Compressive sensing

Idea: [Donoho, Candès, Romberg, and Tao in early 2000s]

- ▶ Signals which admit sparse representations are compressible
- Design an acquisition of the signal already compressed

Implementation:

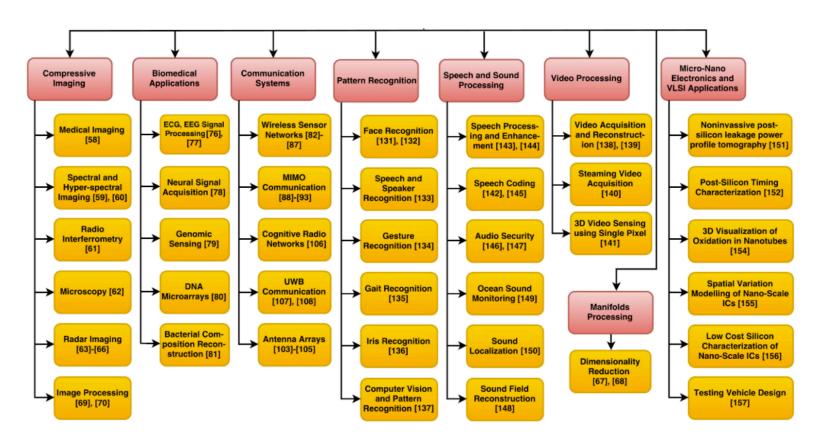
Sub Nyquist sampling: Number of measurements proportional to sparsity



- Reconstruction from the observations: sparse regression (discussed above)
- Measurement matrix design:
 - a lot of theoretical work on guarantees for M vs K depending on properties of A
 - randomness particularly efficient:
 - e.g. Gaussian random i.i.di, randomly subsampled Fourier

Applications of compressed sensing

Expensive and/or time-consuming measurements



Sparsity and Beyond

What we have seen:

- Exploiting sparsity really had a tremendous impact
- Focused on linear inverse problems: but intuition similar for non-linear inverse problems

Nice reference to start these topics/algorithms:

Now:

[websites by G. Peyré]

- Neural networks as more sophisticated models of signals
- How to use them in inverse problems

NEURAL NETWORK PRIORS

Learning Data representation with Generative models

Idea:

Use expressivity of neural networks to model non-trivial high dimensional data distributions

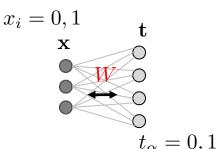
- > Sampling Architectures

 - Deep generative model
- - Maximum likelihood
 - ▷ Adversarial training

Restricted Boltzmann Machine (RBM)

pairwise interactions input-hidden units

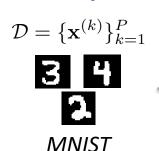
Definition: RBM are energy based models



$$p(\mathbf{x}, \mathbf{t}) = \frac{1}{\mathcal{Z}} e^{\sum_{i=1}^{N} b_{x,i} x_i + \sum_{\alpha=1}^{M} b_{t,\alpha} t_{\alpha} + \sum_{\alpha,i} W_{i\alpha} x_i t_{\alpha}}$$

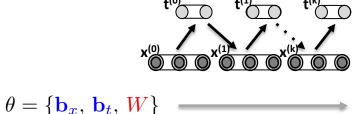
$$p(\mathbf{x}) = \int \mathrm{d}\mathbf{t} \; p(\mathbf{x}, \mathbf{t}) \qquad o \quad \textit{effective interactions all orders}$$

Unsupervised learning:



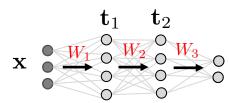
$$\max_{\boldsymbol{W}, \mathbf{b}_x, \mathbf{b}_t} \prod_{k=1}^{P} p(\mathbf{x}^{(k)})$$

maximum likelihood learning



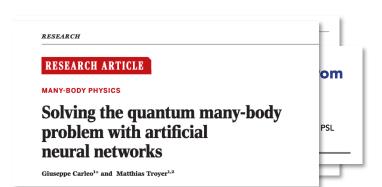
Applications:

Pretraining of deep networks



Biophysics models

Quantum physics



real-

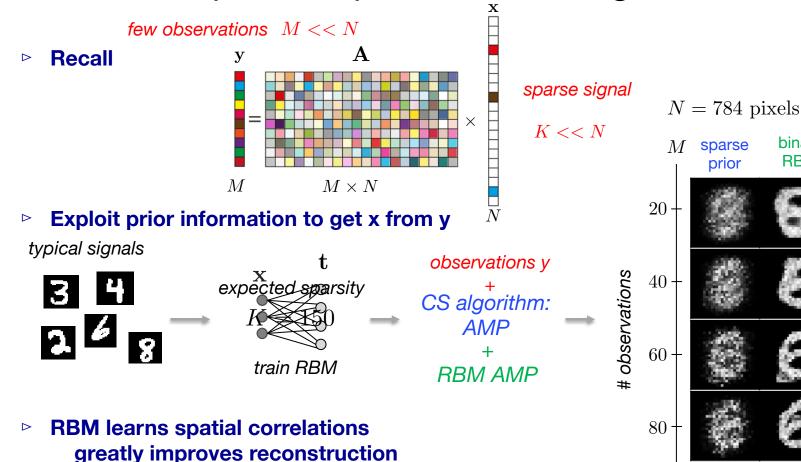
valued

RBM

binary

RBM

Generative priors for inverse problems: First example Compressed Sensing



« Neural networks are the new sparsity? »

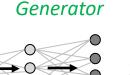
100-

Deep Generative Models

Definition:

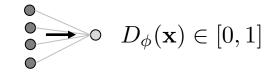
latent distribution

$$\mathbf{z} \sim p_z(\mathbf{z})$$



$$\mathbf{x} = G_{\theta}(\mathbf{z})$$

Discriminator



Unsupervised learning: $\mathcal{D} = \{\mathbf{x}^{(k)}\}_{k=1}^{P}$

- Minimum KL /maximum log-likelihood Variational auto-encoders (VAEs)
- $\min_{\theta} \mathrm{KL}(p_d(\mathbf{x})||p_{\theta}(\mathbf{x}))$ or $\max_{\theta} \sum_{i=1}^{n} \ln p_{\theta}(\mathbf{x}^{(k)})$

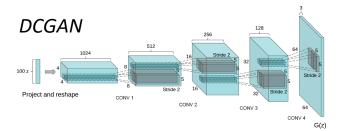
$$\max_{\theta} \sum_{k=1}^{P} \ln p_{\theta}(\mathbf{x}^{(k)})$$

 $\min_{\theta} \max_{\phi} \left[\mathbb{E}_{p_d} \left[\ln D_{\phi}(\mathbf{x}) \right] + \mathbb{E}_{p_z} \left[\ln (1 - D_{\phi}(G_{\theta}(\mathbf{z}))) \right] \right]$ Adversarial training Generative Adversarial networks (GĂNs)

prob of being genuine

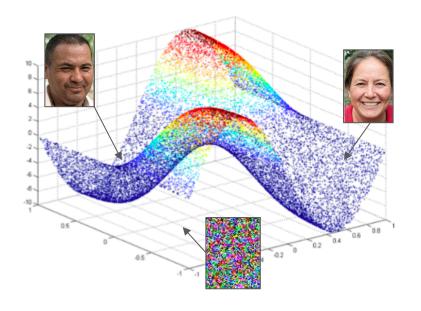
Applications:

- Can include some convolutions
- First generative models able to generate sharp images of great complexity

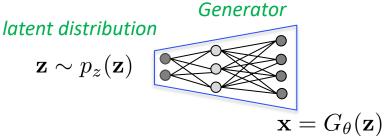


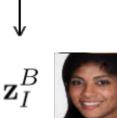
Intuition of the smaller dimensional manifold

Low dimensional manifold



→ learning low dimensional embedding

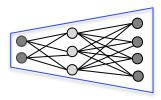




20

- Find image in the range of the generator
- In accordance with the observations

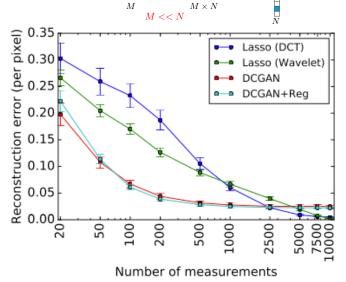
Generator

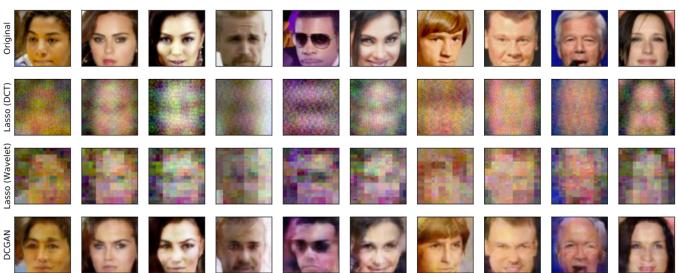


$$\mathbf{x} = G_{\theta}(\mathbf{z}^*)$$

$$\mathbf{z}^* = \underset{\mathbf{z}}{\operatorname{arg\,min}} \|\mathbf{y} - AG_{\theta}(\mathbf{z})\|_2$$

Gradient descent
(Pytorch or Tensorflow)





N = 12288 pixels, M = 2500 measures

General Strategy: Inverse problem solving with Deep Generative models

▷ Original problem:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{arg\,min}} \|\mathbf{y} - f(\mathbf{x}, n)\|_2$$

- New strategy
 - ightharpoonup Train a generative model on typical signals $G_{ heta}(\mathbf{z})$
 - Solve inverse problem in the range of generative model

$$\mathbf{z}^* = \underset{\mathbf{x}}{\operatorname{arg\,min}} \|\mathbf{y} - f(G_{\theta}(\mathbf{z}), n)\|_2$$

- What can go wrong?

 - □ Generalization out of the training set

Limitations of the strategy

Representation error:
$$\mathbf{z}^* = \arg\min_{\mathbf{z}} \|\mathbf{x}_d - G_{\theta}(\mathbf{z})\|_2$$
 $\mathbf{x} = G_{\theta}(\mathbf{z}^*)$

$$\mathbf{x}_d$$
 \mathbf{v}_d \mathbf

Generalization out of sample:

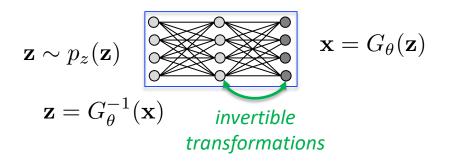
N = 12288 pixels, *M* = 2500 measures

[Asim et al, ICML 2019]

[Bora et al, ICML 2017]

Another kind of generative models: Normalizing flows

Bijective networks:

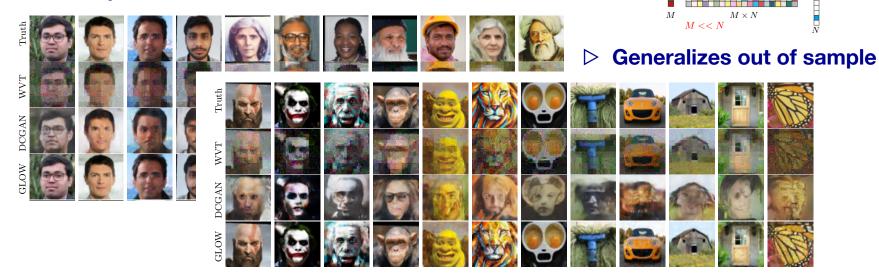


Maximum likelihood training

$$\begin{aligned} \max_{\theta} \sum_{k=1}^{K} \ln p_{\theta}(\mathbf{x}^{k}) \\ \textit{tractable expression} \\ p_{\theta}(\mathbf{x}) &= \frac{p_{z}(G_{\theta}^{-1}(\mathbf{x}))}{|\nabla_{z} G_{\theta}(G_{\theta}^{-1}(\mathbf{x}))|} \end{aligned}$$

Compressing example:

> Zero representation error



General Strategy: Inverse problem solving with Deep Generative models

Original problem:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{arg\,min}} \|\mathbf{y} - f(\mathbf{x}, n)\|_2$$

- New strategy
 - Train a generative model on typical signals
 - Solve inverse problem in the range of generative model

$$\mathbf{z}^* = \underset{\mathbf{x}}{\operatorname{arg\,min}} \|\mathbf{y} - f(G_{\theta}(\mathbf{z}), n)\|_2$$

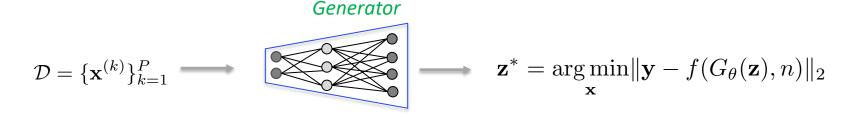
- - ▶ Representation error

Normalizing flows

part of the answer

Untrained image priors

> Trained model



- - 1. draw (random) z

2. adjust parameters of the generator to fit one observation **y**

3. apply adjusted G to get x

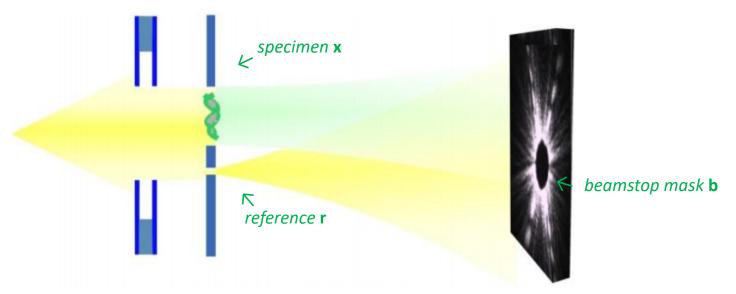
to natural images!

$$\mathbf{z} \sim p_z(\mathbf{z})$$
 $\theta^* = \underset{\theta}{\operatorname{arg\,min}} \|\mathbf{y} - f(G_{\theta}(\mathbf{z}), n)\|_2$ $\mathbf{x}^* = G_{\theta^*}(\mathbf{z})$ fixed! ϵ neural network architecture (convolutions) biases reconstruction

▶ Promising for experimental applications! → Let's see 2 examples: CDI and MRI

Applications example I: Coherent Diffraction Imaging (CDI)

- CDI: Imaging technique for nanoscale X-ray imaging
- ▶ Holography: Add a known reference in the beam to help the reconstruction



- hd oxdot Noiseless forward model $\mathbf{I}(\mathbf{x}) = |\mathcal{F}(\mathbf{x} + \mathbf{r}) \odot \mathbf{b}|^2$
- ho Low-photon regime $y_{ij} \sim \mathrm{Poisson}\left(N_p \frac{I_{ij}(\mathbf{x})}{\|\mathbf{I}(\mathbf{x})\|_1}\right)$ N_p = photons/pixel

Holographic phase retrieval: Proposed strategy

Note: Note

forward model:

$$y_{ij} \sim \text{Poisson}\left(N_p \frac{I_{ij}(\mathbf{x})}{\|\mathbf{I}(\mathbf{x})\|_1}\right)$$

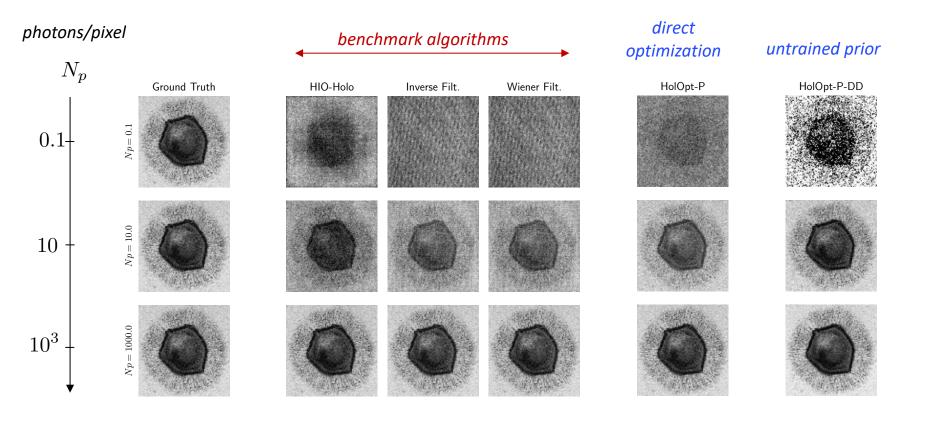
$$\mathbf{I}(\mathbf{x}) = |\mathcal{F}(\mathbf{x} + \mathbf{r}) \odot \mathbf{b}|^2$$

Reconstruction with an untrained prior (Deep Decoder)

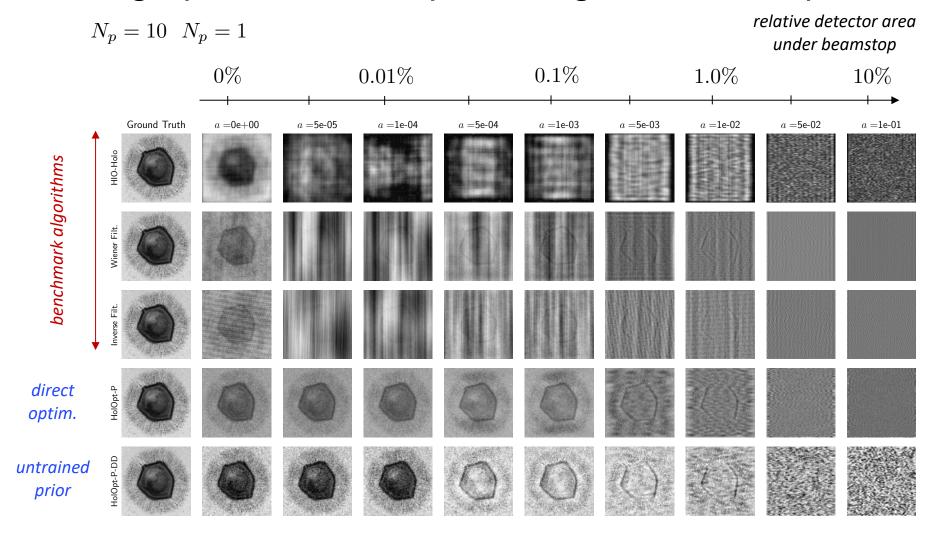
$$\theta^* = \arg\max_{\theta} \sum_{ij|\mathbf{b}_{ij}=1} y_{ij} \log I_{ij}(G_{\theta}(\mathbf{z})) - I_{ij}(G_{\theta}(\mathbf{z}))$$
$$\mathbf{x}^* = G_{\theta^*}(\mathbf{z})$$

- ▶ Optimization using deep learning packages such as PyTorch
 - → package for Fourier Phase Retrieval on 2D images to be released

Holographic CDI: Robustness to noise



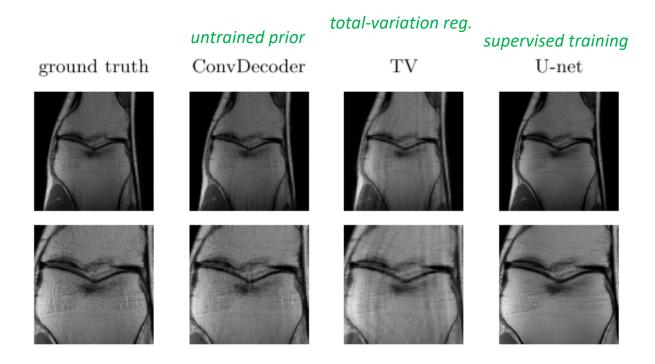
Holographic CDI: Compensating for beamstop



▶ Practical tool under challenging experimental conditions

Application example II: Accelerated Magnetic Resonance Imaging (MRI)

- FastMRI dataset (https://fastmri.org/)
 - Experimental data
 - Entire dataset with "ground truth"



□ Untrained prior here as good as trained ML methods

Summary: A set of tools for inverse problems

- **⊳** Sparsity
 - A wide literature on using sparse representation in inverse problems
- **Compressive sensing**
 - Designing measurements to acquire compressed signal
- Generative neural nets
 - A more sophisticated way to characterize typical signals
- ▶ For images: Dataset free Untrained image priors
 - A dataset free strategy exploiting neural networks architectures

More ways to incorporate machine learning in inverse problems

- Learn directly the inverse map y to x

▶ Many other variants:

training data available

Supervised with Train from un-Train from x's Train from y's only (Measurematched (x, y)paired x's and (Ground only truth only) pairs (Unpaired ments only) ground truths Measurements) fully known §4.1.1: Denoising §4.1.2: **SURE** amounts to training amounts to training during training auto-encoders [16], from (x, y) pairs from (x, y) pairs LDAMP [85, 86], and testing ($\S4.1$) U-Net [78], Deep Deep Basis Purconvolutional suit [87] framelets [79] Unrolled optimization [80 - 83],Neumann works [84] \mathcal{A} known only at §4.2.2 §4.2.2 §4.2.1: CSGM [25], §4.2.2 test time ($\S4.2$) LDAMP [88], OneNet [22], Plugand-play [89]. RED [90] \mathcal{A} partially known §4.3.1 §4.3.2: CycleGAN §4.3.3: Blind de-§4.3.4: Ambi-(§4.3)[91] convolution with entGAN [76], GAN's [92–94] Noise2Noise [95], UAIR [96] \mathcal{A} unknown (§4.4) §4.4.1: AUTOMAP §4.4.2 §4.4.2 §4.4.2 [97]

information about forward model

Summary: A set of tools for inverse problems

- **⊳** Sparsity
 - A wide literature on using sparse representation in inverse problems
- **Compressive sensing**
 - Designing measurements to acquire compressed signal
- Generative neural nets
 - A more sophisticated way to characterize typical signals
- > For images: Dataset free Untrained image priors
 - A dataset free strategy exploiting neural networks architectures