
TRIQS

a Toolbox for Research in Interacting

Quantum Systems

Olivier Parcollet

Center for Computational Quantum Physics (CCQ)

Flatiron Institute, Simons Foundation

New York

1

Outline

• Quick introduction to the Quantum Many-Body Problem

• The TRIQS project.

• A few technical topics

• Hdf5

• Python/C++ interface

• Modern C++ and zero cost abstraction.

2

Twisted graphene (2018)

Many quantum particles in interaction

• Where ?

• Electrons in a material.

• Ultra-cold atoms in quantum optics.

• Why ?

• Collective effects, low temperature.

• New states of matter, e.g. high temperature superconductivity.

3

Sr2RuO4YBa2Cu3O7-x Ultra-cold atoms

Quantum mechanics

• 1 electron in a crystal

• Wavefunction

4

H = � ~2
2m

r2
x

+ Vcrystal(x)

H =
nX

i=1

� ~2
2m

r2
xi

+ Vcrystal(xi

) +
X

i<j

e2

|x
i

� x
j

|

• N electrons in a crystal (N = 1023)

• Many-body wavefunction : N variables x1, …, xN

H| i = E| i

 (x)

 (x1, . . . , xN)

Schrödinger equation

Coulomb interaction

• Electrons hopping on a lattice with N sites and interacting.

• Schrödinger equation : eigenvalue problem for the matrix H

• One site

• 0 or 1 electron with spin up/down  
(Pauli principle, spin 1/2)

• Hilbert space of dimension 4.

• The full lattice

• Tensor product of each site Hilbert space

• Dimension = 4N

• H is a matrix with dimension exponential in N.

Exponential complexity 5

H| i = E| i

6

The quantum many body problem
is exponentially hard.

Really ?

Fermi gas

• Independent electrons + Pauli principle.

• Solve 1 electron problem.

• Many-body ground state = Fermi sea

• But interaction is not small !?  
kinetic energy = Coulomb interaction = 10eV, 106 K …

7

H =
nX

i=1

� ~2
2m

r2
xi

+ Vcrystal(xi

) +
X

i<j

e2

|x
i

� x
j

|

• Neglect the Coulomb interaction between electrons ?

✏F

Fermi sea (T=0)

“Standard model” of solid state physics

• At low energy/temperature, approximately a Fermi gas.  
Quasi-electrons with e.g. effective mass m*>me.  
Fermi liquid theory Landau 50’

• 1 electron in a effective potential (interactions “in average”)  
Density functional theory Kohn, 60’s

• Well established method. Many DFT codes available.

• Works very well in many cases but …

8

H = � ~2
2m

r2
x

+ Ve↵ective(x)

Strongly correlated systems

• … when this “standard model” breaks down !

9

High Tc cuprate superconductors Sr2RuO4

• Studied at CCQ

A lot of phases
at low temperature !

3/1=ν3/1=ν

Fractional Quantum Hall effect.

Mathematical framework ?

• Classical fluids  
Macroscopic physics described by some PDE, e.g. Navier-Stokes.

• Quantum case 
No Partial Differential (or Integral) Equations.  
Low energy, long distance physics collective effects described by a
quantum field theory.

10

• Given a crystal structure or a simple model (electrons on a lattice)  
can we compute the physical properties ?

• Algorithmic complexity ?

Study the many-body wave function

• Physical ground states are not generic, they have structure.

• Compact representation of ψ ?

• iTensor (Cf Miles’ talk) Tensor representation.

• NetKet (Cf Giuseppe’s talk): Use a neural network

11

Path integral

• Another view of quantum mechanics (Feynman)

• Sum over trajectories/paths.

• E.g. one particle in quantum mechanics

12

Action

Sum over all trajectories

Z
Dx(⌧)e�

R
d⌧S(x(⌧))

Space x

Time 
 τ x(τ)

Quantum many body path integral

• Multiple particles trajectories.

13

Space x

Time 
 τ x1(τ)

x2(τ)

x3(τ) Action

Sum over all trajectories

Z Y

i

Dx

i

(⌧)e�
R
d⌧S(xi(⌧))

• Quantum Monte Carlo : Sample the trajectories stochastically  
(Cf Hao Shi’s talk)

Green functions (correlation functions) 14

• Strong coupling:  
infinite hierarchy of equations, no simple truncation

G(x� x

0
, ⌧ � ⌧

0) =
⌦
c(x, ⌧)c†(x0

, ⌧

0 = 0)
↵

G

(2) =
⌦
c(y, ⌧4)c(x, ⌧3)c

†(x0
, ⌧2)c

†(y0, ⌧1)
↵

One body Green function

Two body Green function

• Projected “view” of the quantum many body fluid.

• Determines e.g. resistivity, photoemission, optics, …

 Photoemission  
(Photoelectric effect)

x’, τ’

Time 
 τ

x, τ

Quantum Embedding methods

• A class of methods to compute the Green functions

• Principle: a few localised degrees of freedom in a bath of free electrons.

15

H = � ~2
2m

r2
x

+ Ve↵ective(x)

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…

Dynamical Mean Field Theory  
A. Georges, G. Kotliar, 1992

vs

1 electron in a potential

 PDE

1 atom in a non-interacting bath  
 = impurity model

Building block of the approximation

Weakly correlated systems Strongly correlated systems

The building block is a still quantum many-body
problem, but simpler.

• At the frontier of solvability.

• Contains a lot of “many-body” effects.

• Strong coupling physics at low energy  
Screening/Confinement of the spin in the Fermi sea (Kondo effect)

16

!"#$%&'#()*+,$-)*'#(./0$'&',$(1/00232#

!"#$%&'()*("#$%+,-."+&'"$(*/*0%('*.'*1'$
! !"#$%&'()*+,--).*" /&'()*0,1)*2*345567.*! %#,%#89- 345:57

2&,3'(*"4&$%51$,6.(
4*/&'()*0,1)*+,--)*3455;7

78(&93'(*3%:-;&6<"'(*1$"(&$;(
<*/&'()*0,1)*2*3455=.455>.455?.455@7

4-+5/,+3-#+$-/,('6+1$'7(8/,$'(9+03/(
)*+,$-)*'(:'(3+(./,1$-/,(:'(;0'',

=3#"$'&;(*<"%-&6<"'(
! A$"#9BC*$D*/&'(8E(3455@7

;0/*<'(:'(0',/0&+3-#+$-/,
,*&20-)*'(:'(=-3#/,

82$+3(
2$0+,5'

>-)*-:'(
?'0&-!*<0+

@

:/<+5'

9A+&<(&/"',(:",+&-)*'7(8/,$'(9+03/()*+,$-)*'(',($'&<#(1/,$-,*

Fermi gas (no interaction)

Magnetic coupling J

Spin 1/2

Solving quantum impurity models 
Progress in algorithms

17

Success of New Algorithms

0 10 20 30 40 50 60 70
βt

0

50

100

150

M
at

ri
x

 S
iz

e

CT-INT
CT-HYB
Hirsch Fye

0 0.5 1 1.5 2 2.5
ω

n

-1

-0.8

-0.6

-0.4

-0.2

0

Im
[Σ

(i
ω

n
)]

HF, Δτ = 1
HF, Δτ = 0.5
HF, Δτ = 0.25
ED, n

bath
 = 5, 6

CT-AUX

N
um

er
ic

al
 P

ro
bl

em
 S

iz
e

M
ai

n
qu

an
tit

y
of

 in
te

re
stState of the Art (1986-2003)

Current solver of choice (2006)
First modern solver (2005)

• For the same problem: problem size
reduced by ~30.

• Corresponds to time speedup of factor
303 = 27’000 or ~25 years of Moore’s law

• Same problem solved more
accurately

• Elimination of bias and systematic
errors

Solve impurity problems faster Avoid approximations

Rev. Mod. Phys 83, 349 (2011)

1/temperature 1/temperature

Physically
interesting region

Algorithm  
with red-black tree

Old algorithm

• Computing time reduced by ~303  

25 years of Moore’s law

• Beyond existing tools (linear algebra, fftw)

Summary so far

• Strongly correlated systems requires new approaches

• Quantum Embedding methods

• Central object : Green functions

• Building blocks : quantum impurities.

• Solve them with HPC algorithms (e.g. Monte Carlo)

• Assemble them in various possible ways,  
e.g. select the local degrees of freedom.

18

19

The TRIQS project

Python/C++ library

• Python for its flexibility

• A language to assemble the building blocks, visualize.

• Glue language with DFT electronic structure codes.

• Team with very different skills/practices in computing

• C++ for performance and type system

• E.g quantum impurity solver (e.g. Monte Carlo)

• Interface is well defined. Wrapped in Python.

20

The TRIQS project : structure
21

• A main library and applications as Python modules

Impurity solver 1

TRIQS library
Green functions, general objets (arrays)  

 various solid state physics objects

Interface to electronic
structure codes

Impurity solver 2

TRIQS based applications

Software engineering goals

• No reward in our field for young people to write/publish code.

• Reduce development/maintenance time

• High quality code:

• Clarity, simplicity : written to be read/understood.

• Reusable components

• High performance (human and machine).

• How ?

• Libraries (std, triqs, …) make code smaller, easier to understand.

• Code review, good practices. Coherence.

22

History and people

• First public version in 2012

• Contributors at CCQ, Polytechnique, Collège de France,
Hamburg, Graz, ETH Zurich, Michigan University, ….

23

Nils Wentzell (CCQ) Michel Ferrero  
 (Paris)

Hugo Strand (CCQ) Manuel Zingl (CCQ)

Markus Aichhorn  
 (Graz)

Alice Moutenet (CCQ)

Projet management

• Open source GPL3 license.

• Version control git (Moved from svn in 2011).

• Github : distribution. Issue.

• Code Review on github.

• Continuous integration (Jenkins at Flatiron)  
Integrated with Github.

• Installation : cmake, Ubuntu packages, docker (Cf Nils’ talk).

24

Test

• Test suite GoogleTest.

• Test coverage  
 systematic for new code, improving for older parts.

• “Scientific” tests

• Run a full calculation for a given problem

• Quantum Monte Carlo can be delicate to test.

25

Documentation/Tutorials

• Documentation

• RST (Python)

• Build by Jenkins systems and pushed to github.io

• Contents:

• Tutorial suite in iPython Notebooks.  
Used in Summer Schools

• Work largely in progress. Scientists have little time

• Writing good code or good documentation are different skills

26

http://github.io

27

One central object of the library

Green function container

Green functions

• Functions : G(ω), Gab(x, τ), Gab(k,ω), Γabcd(ω,ν,ν’), …

• Domains of definition (time, frequency, space)

• Mesh on the domain / representation (grid, Legendre, Chebychev)

• Target space: scalar, matrix, tensor valued.

28

Imaginary timeReal time

Green functions

• Multivariable Green functions

• Cartesian product of domains/meshes, e.g.

• Gab(x, τ) is a function Dx x Dτ → Mn(R)

• Generic implementation (any product)

29

gf<cartesian_product<brillouin_zone, imfreq>, matrix_valued> g {...};

for (auto [k,w] : g.mesh())
 g[k,w] = 1/(w - 2*t *(cos(k[0]) + cos(k[1])));

G(k,!) =
1

! � 2t(cos(k0) + cos(k1))

• Example

Green functions

• Many operations, e.g.

• Algebra

• Hdf5 I/O, MPI

• Slice, partial evaluation

• Transformation e.g. Fourier

• Difficulty

• Make small objects that compose well.

• Same problem as language designers, at smaller scale.

• Learn library writing technique, e.g. notion of regular type in C++

30

Partial evaluation

• Take a function (x,ω) → Gab(x,ω)

• Fix x = x0, one gets a new function ω → Gab(x0,ω)

• Usage :

• We have a function d taking a function  
ω → gab(ω), e.g. to compute the density of fermions.

• density vs x : x→ d (ω → Gab(x,ω))

31

auto g_xw = gf<cartesian_product<lattice, imfreq>, matrix_valued> {....};

density(g_xw[x0, _]);

Data oriented

• Green function is stored  
as a multidimensional array

• Partial view for fixed x = x0

• Regular type gf

• View type gf_view

• Similar behaviour (generic code !),  
except copy

• Design questions :  
properties of views ? Do they own data e.g. ?

32

x

ω

x

ab

x0

Some other components of the library

• Generic Monte Carlo

• Simple multidimensional arrays (C++)

• Many-body operators to write Hamiltonians (Python/C++)

 H = U * c_dag(1,0) * c(1,0) * c_dag(2,0) * c(2,0)

• Solid state physics notions (Python/C++)  
Bravais Lattices, Brillouin zone, density of states.

• Interfaces for HDF5 (Python/C++)  

33

34

HDF5

HDF5 : hierarchical tree structure, like directory 35

G_iw

solver

 H

3d array Mesh

G_iw[up]

 …

 …

Block Green Function

Green Function

Hamiltonian

Impurity Solver

Retrieve complex object and use it 36

A = HDFArchive("dmft_bethe.h5",'r') # Open file in read mode
for it in range(21):
 if it%2: # Plot every second result
 oplot(A[‘G%i'%it].imag, '-o', name='G%i'%it)

convergence

Retrieve Gi from the file,
and use it at once

oplot can plot
many TRIQS
objects via
matplotlib

37

A little code sample

A taste of TRIQS in Python 38

from pytriqs.gf import *
from ctint_tutorial import CtintSolver
from pytriqs.archive import HDFArchive

U = 2.5 # Hubbard interaction
mu = U/2.0 # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0 # Inverse temperature
n_iw = 128 # Number of Matsubara frequencies
n_cycles = 10000 # Number of MC cycles
delta = 0.1 # delta parameter
n_iterations = 21 # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for it in range(n_iterations): # DMFT loop
 for sigma, G0 in S.G0_iw:
 G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma]) # Set G0

 S.solve(U, delta, n_cycles) # Solve the impurity problem

 G_sym = (S.G_iw['up']+S.G_iw['down'])/2 # Impose paramagnetic solution
 S.G_iw << G_sym

 with HDFArchive("dmft_bethe.h5",'a') as A:
 A['G%i'%it] = G_sym # Save G from every iteration to file

G�1
0� (i!n) = i!n + µ� t2Gc�(i!n), for � =", #

39

Python/C++ interface

Python/C++

• C++ and Python are two quite different languages, e.g.:

• Python : everything is a counted reference

• C++: pointers, regular types (int, double, std::vector)

• Need some “glue” code between the C++ and Python

40

Python interpreter

Glue code

C++ code

Python module

Glue code

C++ code

Python module 1
written in C++

Python module 2
written in C++

Python/C++

• Conversion

• From an existing Python type to a C++ type and back

• Wrapping

• Take a C++ class, function and make a new class, function in
Python, e.g. a Green function class.

• Wrapped type can be converted.

41

Python

Requirements

• Must be automatic, specially for TRIQS applications.  
Parse the C++ code. No new code to write.

• Wrap C++ types

• Convertions

• Library classes (e.g Green function, many-body operators)

• array_view from/to numpy

• Extensible : if T,U are convertible, vector<T>, tuple<U,T> too.

42

Tools

• Existing tools : only partial solutions to our problem  
Used swig, boost::python, cython over the years

• A little TRIQS tool : c++2py

• Use LLVM/clang (libclang) to parse the C++ and build a
representation of the C++ code.

• Generates conversion/wrapping code accordingly.

• Separated from TRIQS

• Evolution : maybe reuse some newer projects for some parts
(Google/CLIF, pybind11)

43

IPython cell magic

• Write C++ in a cell.

• Analyse the code, wrap it, compile the module and load it.

44

45

Modern C++

“Modern” C++

• C++ is evolving a lot.

• A new ISO standard every 3 years : C++11/14/17/20.

• C++ is becoming simpler for users, for library writers

• High-level constructs like e.g. Python

• Richer standard library

• Backward compatibility very rigorously enforced (not Python3 !)

• We use C++17 in current version.

46

Compilers

• TRIQS policy : use the current standard.

• Toolchains : GNU gcc, LLVM/Clang

• Implement new standards quickly (currently C++17, partly C++20).

• Quick installation of toolchains 
Docker, Singularity (Cf. Nils Wentzell’s talk yesterday)

47

Subset of C++

• C++ is a multipurpose language, it support different “styles” 
imperative, generic, object oriented, functional …

• We use a subset of the language

• Do not use some old features (too verbose, unsafe).

• Modern C++ recommendations  
e.g use much less pointers, no new/delete.

• No inheritance, no object orientation (virtual, co…)

• Use generic programming. C++17 makes it much easier.

48

Tools associated with compilers

• llvm/clang toolchain.

• Clang-format : code formatting with team wide conventions.

• Bug prevention :

• Clang-tidy, static analyser

• Sanitizers : address, memory, thread (compiler options)  
Valgrind, e.g.

 ➜ clang++ -fsanitize=address -g code.cpp

• C++ subset, automatic code rewrite : clang-tidy

• Reflection tools (libclang).

49

50

A taste of modern C++

with a Pythonic angle  

A simple loop

• A simple loop in Python …

51

v = [1,3,5,9]
s = 0
for x in v:
 s+=x

• … C++ equivalent. Main difference is types.

auto v = std::vector<int> {1,3,7,9};
int s = 0;

for (auto x : v) {
 // do something …
 s+= x;
}

Intuitive

Simpler than what ? 52

for (int i = 0; i < v.size(); ++i)
{
 // do something !
 s+= v[i];
}

• Old C++

for (auto const & x : v) {
 // do something !
 s+= v;
}

• Modern C++

• Intent is clearer :  
 . Iterate on every elements in order  
 . v unchanged

• As or more efficient.

for (std::vector<int>::const_iterator it=
v.begin(); it != v.end(); ++it) {
 // do something !
 s+= *it;
}

Python style

• Easy to use, less error prone.

• Implemented in TRIQS, not (yet) in standard library.

• Today, you still need a bit of expertise to write enumerate …

53

• Python-like features can be implemented

for (auto [n, x] : enumerate(vec1))

 // (0, x[0]), (1, x[1]), (2, x[2]), …

for (auto [x, y] : zip(vec1, vec2))

 // (x[0], y[0]), (x[1], y[1]), (x[2], y[2]), …

std::vector<int> vec2, vec1;

Structured bindings  
 in C++17

Soon 54

def enumerate(X) :
 n=0
 for x in X:
 yield n, x
 n +=1

template<typename T>
std::generator<std::pair<n, typename T::value_type>>

enumerate(T const & x) {
 int n=0;
 for (auto const & y : x) {
 co_yield std::pair{n,y};
 n++;
 }
}Python

Future C++ e.g. in clang -fcoroutines

• … implementing enumerate will become very simple.

• Coroutines : an old idea, in progress for C++20.

• Generators like in Python. Same code, but with types.

55

Zero cost abstraction

A simple example

What is zero cost abstraction ?

• What is simple should be coded simply

• High level and yet fast.

• Very important for readability, long term maintenance, code review.

• Common wrong idea : compact, simple, readable code is slow.

• We want simplicity (abstraction), without any performance penalty
(at zero cost).

• Generic programming is essential to achieve this.  
C++17, C++20 make it a lot easier.  

56

Motivation 57

• Naive object oriented way :

• Each addition makes a new array

• Slow : a lot of temporaries and loops !

Z = A+B + C/2|{z}
| {z }

| {z }

Z = A + B + C / 2;

• A, B, C, Z: arrays of rank 5 e.g. We want to say

Motivation 58

Z = A + B + C / 2;

• Error prone, hard to read and code review.

• The compiler should do this for us !

• A, B, C, Z: arrays of rank 5 e.g. We want to say

for (int i = 0; i < b1; ++i)
 for (int j = 0; j < b2; ++j)
 for (int k = 0; k < b4; ++k)
 for (int l = 0; l < b3; ++l)
 for (int m = 0; m < b5; ++m) {
 Z(i, j, k, l, m) =  
 A(i, j, k, l, m) + B(i, j, k, l, m) + C(i, j, k, l, m) / 2;
 }

• A basic answer is : write all the loops !

Other example

• With our multidimensional array class

59

auto a = array<double, 3>(5, 2, 2); // Declare a 5x2x2 array of double

sum(a * a); // Sum all the square elements

max_element(abs(a)); // maximum of the absolute value of the array

• Rewriting it manually requires the code of sum

60

Let us consider a toy model.

• A and B : two matrices n x n, real valued.  
A function trace

• We want to write

• Instead of

• A priori, zero cost abstraction seems impossible:

• A + B computed first, before calling trace.

• Scales as N2 while hand-written code is N

The puzzle 61

double r = trace (A + B);

double r = 0;  
for (int i = 0; i < n; ++i)  
 r += A(i, i) + B(i, i);

The trace function

• Assume we have a square_matrix class

• Let us implement the trace

62

double trace (square_matrix const & m) {
 double r = 0;
 int d = dim(m); // size of the matrix d x d
 for (int i=0; i<d; ++i) r += m(i,i);
 return r;
}

• Only things I used here :

• m(i,j) returns the value of the matrix mij

• dim(m) returns the dimension

Generic programming

• A generic version of the function

63

template<typename M>
double trace (M const & m) {
 double r = 0;
 int d = dim(m); // size of the matrix d x d
 for (int i=0; i<d; ++i) r += m(i,i);
 return r;
}

• What can M be ?

• m(i,j) returns the value of the matrix mij

• dim(m) returns the dimension

• trace makes sense (i.e. compiles) only when these constraints on M
are true

A few matrix classes 64

class square_matrix {
 int n;
 std::vector<double> data;

 public:
 square_matrix(int n);

 double operator()(int i, int j) const { return data[i + n * j]; }
 friend int dim(square_matrix const& m) { return m.n; }
 // …
};

struct hilbert_matrix {
 int n;
 double operator()(int i, int j) const { return 1.0 / (i + j + 1); }
 friend int dim(hilbert_matrix const& m) { return m.n; }
};

• A matrix whose form is known analytically.

• A simple square matrix

Back to our question 65

template <typename A, typename B> struct lazy_addition {
 A const & a;
 B const & b;
 double operator()(int i, int j) const { return a(i, j) + b(i, j); }
 friend int dim(lazy_add const& x) { return dim(x.a); }
};

• The sum of 2 matrices is a lazy object that :  
 just keeps a reference to A, B  
 evaluates the actual sum only on demand.

template <typename A, typename B>
lazy_addition<A, B> operator+(A const& a, B const& b){
 return {a, b};
}

double r = trace (A + B);

• The addition is too general, it takes any type ! Cf later…

What does the compiler do ? 66

double trace(lazy_addition const& m) {
 auto r = 0;
 int d = dim(m.a);
 for (int i = 0; i < d; ++i) r += m.a(i, i) + m.b(i,i);
 return r;
}

template <Matrix A, Matrix B>
struct lazy_addition {
 A const& a;
 B const& b;

 double operator()(int i, int j)
const { return a(i, j) + b(i, j); }

double trace(lazy_addition const& m) {
 auto r = m(0, 0);
 int d = dim(m);
 for (int i = 1; i < d; ++i) r += m(i, i);
 return r;
}

• Replace and inline calls

• The compiler rewrites the code for us

• Exactly the hand written code

• Scales like N, not N2

Let us check

• Compare 3 code snippets (with Google Benchmarks)

• With Trace (TRIQS library)  
 auto r = trace(A + B);

• Explicit code (hand written)  
  
 for (int i = 0; i < N; ++i) r += A(i, i) + B(i, i);

• Force temporary 
 auto r = trace(square_matrix{A + B});

67

Temporary Temporary

The notion of concept

• A concept is a set of requirements on a type

• Example: Matrix  
 The category of types that behave like a square matrix (of double)

• m(i,j) returns the value of the matrix mij

• dim(m) returns the dimension

• Optionally : in C++20, tell the compiler (already in gcc)

68

template <typename T> concept bool Matrix = requires(T m) {
 { m(0, 0)} -> double;
 { dim(m) } -> int;
 };

Finally 69

• The addition was too general, it took any type. Let’s fix it.

template <Matrix A, Matrix B>
lazy_addition<A, B> operator+(A const& a, B const& b){
 return {a, b};
}

• Same thing for the trace

template<Matrix M>
double trace (M const & m) {
//…
}

• Compiler will issue clear error messages in other cases.

• No more long error message of template C++ code, including STL.

Analogy with mathematics

• Math

• Notion of group.

• General theorem that apply for every group

• Programming

• Notion of concepts.

• General algorithms that apply for every type which model the
concept.

• Library design :

• Find the most fruitful concepts for our field (e.g. solid state
physics, quantum many-body problem)

• A hierarchy of concepts, real type as leaf.  
Similar to Julia type system

70

Continue analogy

• The category of Matrix types is closed under addition.

 Matrix + Matrix → Matrix

• square_matrix is not :  
square_matrix + square_matrix != square_matrix

71

Conclusion

• TRIQS as a library for quantum many-body problem

• Current developments

• Scale up

• Documentation.

• More applications, more components in the library

72

73

Thank you for your attention

