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Outline

• Quick introduction to the Quantum Many-Body Problem

• The TRIQS project.

• A few technical topics 

• Hdf5

• Python/C++ interface

• Modern C++ and zero cost abstraction.
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Twisted graphene (2018)

Many quantum particles in interaction

• Where ? 

• Electrons in a material.

• Ultra-cold atoms in quantum optics.

• Why ? 

• Collective effects, low temperature. 

• New states of matter, e.g. high temperature superconductivity.
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Sr2RuO4YBa2Cu3O7-x Ultra-cold atoms



Quantum mechanics

• 1 electron in a crystal

• Wavefunction
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• N electrons in a crystal (N = 1023)

• Many-body wavefunction : N variables x1, …, xN

H| i = E| i

 (x)

 (x1, . . . , xN )

Schrödinger equation 

Coulomb interaction



• Electrons hopping on a lattice with N sites and interacting.

• Schrödinger equation : eigenvalue problem for the matrix H

• One site

• 0 or 1 electron with spin up/down  
(Pauli principle, spin 1/2)

• Hilbert space of dimension 4.

• The full lattice

• Tensor product of each site Hilbert space

• Dimension =  4N

• H is a matrix with dimension exponential in N.

Exponential complexity 5

H| i = E| i
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The quantum many body problem
is exponentially hard.

Really ?



Fermi gas

• Independent electrons + Pauli principle.

• Solve 1 electron problem.

• Many-body ground state = Fermi sea

• But interaction is not small !?  
kinetic energy = Coulomb interaction  = 10eV,   106 K …
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• Neglect the Coulomb interaction between electrons ?

✏F

Fermi sea (T=0)



“Standard model” of solid state physics

• At low energy/temperature, approximately a Fermi gas.  
Quasi-electrons with e.g. effective mass m*>me.  
Fermi liquid theory Landau 50’

• 1 electron in a effective potential (interactions “in average”)  
Density functional theory Kohn, 60’s

• Well established method.  Many DFT codes available.

• Works very well in many cases but …
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Strongly correlated systems

• … when this “standard model” breaks down !
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High Tc cuprate superconductors Sr2RuO4

• Studied at CCQ

A lot of phases 
at low temperature !

3/1=ν3/1=ν

Fractional Quantum Hall effect. 



Mathematical framework ?

• Classical fluids  
Macroscopic physics described by some PDE, e.g.  Navier-Stokes.

• Quantum case 
No Partial Differential (or Integral) Equations.  
Low energy, long distance physics collective effects described by a 
quantum field theory.
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• Given a crystal structure or a simple model (electrons on a lattice)  
can we compute the physical properties ? 

• Algorithmic complexity ?



Study the many-body wave function

• Physical ground states are not generic, they have structure.

• Compact representation of ψ ?

• iTensor (Cf Miles’ talk) Tensor representation. 

• NetKet (Cf Giuseppe’s talk): Use a neural network
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Path integral

• Another view of quantum mechanics (Feynman)

• Sum over trajectories/paths. 

• E.g. one particle in quantum mechanics
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Quantum many body path integral

• Multiple particles trajectories.
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• Quantum Monte Carlo : Sample the trajectories stochastically  
(Cf Hao Shi’s talk)



Green functions (correlation functions) 14

• Strong coupling:  
infinite hierarchy of equations, no simple truncation
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One body Green function

Two body Green function

• Projected “view” of the quantum many body fluid.

• Determines e.g. resistivity, photoemission, optics, …

    Photoemission  
(Photoelectric effect)
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Quantum Embedding methods

• A class of methods to compute the Green functions

• Principle: a few localised degrees of freedom in a bath of free electrons.
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Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…

Dynamical Mean Field Theory  
A. Georges, G. Kotliar,  1992 

vs

1 electron in a potential

              PDE

1 atom in a non-interacting bath  
          = impurity model 

Building block of the approximation

Weakly correlated systems Strongly correlated systems



The building block is a still quantum many-body 
problem, but simpler.

• At the frontier of solvability.

• Contains a lot of  “many-body” effects.

• Strong coupling physics at low energy  
Screening/Confinement of the spin in the Fermi sea (Kondo effect)

16

!"#$%&'#()*+,$-)*'#(./0$'&',$(1/00232#

!"#$%&'( )*("#$%+,-."+&'"$(*/*0%('*.'*1'$
! !"#$%&'()*+,--).*" /&'()*0,1)*2*345567.*! %#,%#89- 345:57

2&,3'(*"4&$%51$,6.(
4*/&'()*0,1)*+,--)*3455;7

78(&93'(*3%:-;&6<"'(*1$"(&$;(
<*/&'()*0,1)*2*3455=.455>.455?.455@7

4-+5/,+3-#+$-/,('6+1$'7(8/,$'(9+03/(
)*+,$-)*'(:'(3+(./,1$-/,(:'(;0'',

=3#"$'&;(*<"%-&6<"'(
! A$"#9BC*$D*/&'(8E( 3455@7

;0/*<'(:'(0',/0&+3-#+$-/,
,*&20-)*'(:'(=-3#/,

82$+3(
2$0+,5'

>-)*-:'(
?'0&-!*<0+

@

:/<+5'

9A+&<(&/"',(:",+&-)*'7(8/,$'(9+03/()*+,$-)*'(',($'&<#(1/,$-,*

Fermi gas (no interaction)

Magnetic coupling J 

Spin 1/2 



Solving quantum impurity models 
Progress in algorithms
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Success of New Algorithms

0 10 20 30 40 50 60 70
βt

0

50

100

150

M
at

ri
x

 S
iz

e

CT-INT
CT-HYB
Hirsch Fye

0 0.5 1 1.5 2 2.5
ω

n

-1

-0.8

-0.6

-0.4

-0.2

0

Im
[Σ

(i
ω

n
)]

HF, Δτ = 1
HF, Δτ = 0.5
HF, Δτ = 0.25
ED, n

bath
 = 5, 6

CT-AUX

N
um

er
ic

al
 P

ro
bl

em
 S

iz
e

M
ai

n 
qu

an
tit

y 
of

 in
te

re
stState of the Art (1986-2003)

Current solver of choice (2006)
First modern solver (2005)

• For the same problem: problem size 
reduced by ~30.

• Corresponds to time speedup of factor 
303 = 27’000 or ~25 years of Moore’s law

• Same problem solved more 
accurately

• Elimination of bias and systematic 
errors 

Solve impurity problems faster Avoid approximations

Rev. Mod. Phys 83, 349 (2011)

1/temperature 1/temperature

Physically 
interesting region

Algorithm  
with red-black tree

Old algorithm

• Computing time reduced by ~303        

25 years of Moore’s law

• Beyond existing tools (linear algebra, fftw)



Summary so far

• Strongly correlated systems requires new approaches

• Quantum Embedding methods

• Central object : Green functions

• Building blocks : quantum impurities.

• Solve them with HPC algorithms (e.g. Monte Carlo)

• Assemble them in various possible ways,  
e.g. select the local degrees of freedom.
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The TRIQS project



Python/C++ library

• Python for its flexibility

• A language to assemble the building blocks, visualize.

• Glue language with DFT electronic structure codes.

• Team with very different skills/practices in computing

• C++ for performance and type system

• E.g quantum impurity solver (e.g. Monte Carlo)

• Interface is well defined.  Wrapped in Python.
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The TRIQS project : structure
21

• A main library and applications as Python modules

Impurity solver 1

TRIQS library
Green functions, general objets (arrays)  

 various solid state physics objects

Interface to electronic 
structure codes

Impurity solver 2

TRIQS based applications



Software engineering goals

• No reward in our field for young people to write/publish code.

• Reduce development/maintenance time

• High quality code:

• Clarity, simplicity : written to be read/understood.

• Reusable components

• High performance (human and machine).

• How ? 

• Libraries (std, triqs, …) make code smaller, easier to understand.

• Code review, good practices. Coherence.
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History and people 

• First public version in 2012

• Contributors at CCQ, Polytechnique, Collège de France, 
Hamburg, Graz, ETH Zurich, Michigan University, ….
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Nils Wentzell (CCQ) Michel Ferrero  
   (Paris)

Hugo Strand (CCQ) Manuel Zingl (CCQ)

Markus Aichhorn  
    (Graz)

Alice Moutenet (CCQ)



Projet management

• Open source GPL3 license.

• Version control git (Moved from svn in 2011).

• Github : distribution. Issue.

• Code Review on github.

• Continuous integration (Jenkins at Flatiron)  
Integrated with Github.

• Installation : cmake, Ubuntu packages, docker (Cf Nils’ talk).
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Test

• Test suite GoogleTest. 

• Test coverage  
 systematic for new code, improving for older parts.

• “Scientific” tests 

• Run a full calculation for a given problem

• Quantum Monte Carlo can be delicate to test.
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Documentation/Tutorials

• Documentation

• RST (Python) 

• Build by Jenkins systems and pushed to github.io

• Contents: 

• Tutorial suite in iPython Notebooks.  
Used in Summer Schools

• Work largely in progress. Scientists have little time 

• Writing good code or good documentation are different skills

26

http://github.io
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One central object of the library

Green function container



Green functions

• Functions : G(ω), Gab(x, τ), Gab(k,ω), Γabcd(ω,ν,ν’), …

• Domains of definition (time, frequency, space)

• Mesh on the domain / representation (grid, Legendre, Chebychev)

• Target space: scalar, matrix, tensor valued.
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Imaginary timeReal time



Green functions

• Multivariable Green functions

• Cartesian product of domains/meshes, e.g.

• Gab(x, τ)  is a function Dx x Dτ → Mn(R)

• Generic implementation (any product)

29

gf<cartesian_product<brillouin_zone, imfreq>, matrix_valued> g {...};
      

for (auto [k,w] : g.mesh()) 
   g[k,w] = 1/(w - 2*t *(cos(k[0]) + cos(k[1]))); 

G(k,!) =
1

! � 2t(cos(k0) + cos(k1))

• Example



Green functions

• Many operations, e.g.

• Algebra

• Hdf5 I/O, MPI

• Slice, partial evaluation

• Transformation e.g. Fourier

• Difficulty

• Make small objects that compose well.

• Same problem as language designers, at smaller scale.

• Learn library writing technique, e.g. notion of regular type in C++
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Partial evaluation

• Take a function (x,ω) → Gab(x,ω)

• Fix x = x0,  one gets a new function  ω → Gab(x0,ω)

• Usage : 

• We have a function d taking a function  
ω → gab(ω), e.g. to compute the density of fermions.

• density vs x :   x→ d (ω → Gab(x,ω)) 

31

auto g_xw = gf<cartesian_product<lattice, imfreq>, matrix_valued> {....};

density(g_xw[x0, _]);



Data oriented

• Green function is stored  
as a multidimensional array

• Partial view for fixed x = x0

• Regular type gf

• View type gf_view

• Similar behaviour (generic code !),  
except copy

• Design questions :  
properties of views ? Do they own data e.g. ?

32
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Some other components of the library

• Generic Monte Carlo

• Simple multidimensional arrays (C++)

• Many-body operators to write Hamiltonians (Python/C++)

            H = U * c_dag(1,0) * c(1,0) * c_dag(2,0) * c(2,0) 

• Solid state physics notions (Python/C++)  
Bravais Lattices, Brillouin zone, density of states.

• Interfaces for HDF5 (Python/C++)  

33
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HDF5



HDF5 :  hierarchical tree structure, like directory 35

G_iw

solver

  H

3d array Mesh

G_iw[up]

  …

  …

Block Green Function

Green Function

Hamiltonian

Impurity Solver



Retrieve complex object and use it 36

A = HDFArchive("dmft_bethe.h5",'r') # Open file in read mode
for it in range(21):
    if it%2: # Plot every second result
        oplot(A[‘G%i'%it].imag, '-o', name='G%i'%it)

convergence

Retrieve Gi from the file, 
and use it at once

oplot can plot 
many TRIQS 
objects via 
matplotlib



37

A little code sample



A taste of  TRIQS in Python 38

from pytriqs.gf import *
from ctint_tutorial import CtintSolver
from pytriqs.archive import HDFArchive

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for it in range(n_iterations): # DMFT loop
  for sigma, G0 in S.G0_iw:
    G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0
  
  S.solve(U, delta, n_cycles) # Solve the impurity problem

  G_sym = (S.G_iw['up']+S.G_iw['down'])/2 # Impose paramagnetic solution
  S.G_iw << G_sym

  with HDFArchive("dmft_bethe.h5",'a') as A:
     A['G%i'%it] = G_sym # Save G from every iteration to file

G�1
0� (i!n) = i!n + µ� t2Gc�(i!n), for � =", #
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Python/C++ interface



Python/C++

• C++ and Python are two quite different languages, e.g.:

• Python : everything is a counted reference

• C++: pointers, regular types (int, double, std::vector)

• Need some “glue” code between the C++ and Python

40

Python interpreter

Glue code

C++ code

Python module

Glue code

C++ code

Python module 1 
written in C++ 

Python module 2 
written in C++ 



Python/C++

• Conversion

• From an existing Python type to a C++ type and back

• Wrapping

• Take a C++ class, function and make a new class, function in 
Python, e.g. a Green function class.

• Wrapped type can be converted.

41

Python 



Requirements

• Must be automatic, specially for TRIQS applications.  
Parse the C++ code. No new code to write.

• Wrap C++ types

• Convertions

• Library classes (e.g Green function, many-body operators)

• array_view from/to numpy

• Extensible : if T,U are convertible, vector<T>, tuple<U,T> too.

42



Tools

• Existing tools : only partial solutions to our problem  
Used swig, boost::python, cython over the years

• A little TRIQS tool : c++2py

• Use LLVM/clang (libclang) to parse the C++ and build a 
representation of the C++ code.

• Generates conversion/wrapping code accordingly.

• Separated from TRIQS

• Evolution : maybe reuse some newer projects for some parts 
(Google/CLIF, pybind11)
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IPython cell magic

• Write C++ in a cell.

• Analyse the code, wrap it, compile the module and load it.

44
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Modern C++



“Modern” C++

• C++ is evolving a lot.

• A new ISO standard every 3 years : C++11/14/17/20.

• C++ is becoming simpler for users, for library writers

• High-level constructs like e.g. Python 

• Richer standard library

• Backward compatibility very rigorously enforced (not Python3 !)

• We use C++17 in current version.
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Compilers

• TRIQS policy : use the current standard.

• Toolchains : GNU gcc, LLVM/Clang

• Implement new standards quickly (currently C++17, partly C++20).

• Quick installation of toolchains 
Docker, Singularity (Cf. Nils Wentzell’s talk yesterday)
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Subset of C++

• C++ is a multipurpose language, it support different “styles” 
imperative, generic, object oriented, functional …

• We use a subset of the language 

• Do not use some old features (too verbose, unsafe).

• Modern C++ recommendations  
e.g use much less pointers, no new/delete.

• No inheritance, no object orientation (virtual, co…)

• Use generic programming. C++17 makes it much easier.
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Tools associated with compilers

• llvm/clang toolchain.

• Clang-format :  code formatting with team wide conventions.

• Bug prevention : 

• Clang-tidy, static analyser

• Sanitizers : address, memory, thread (compiler options)  
Valgrind, e.g.

                ➜ clang++ -fsanitize=address -g code.cpp 

• C++ subset, automatic code rewrite : clang-tidy

• Reflection tools (libclang).

49
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A taste of modern C++

with a Pythonic angle  



A simple loop

• A simple loop in Python …

51

v = [1,3,5,9]
s = 0
for x in v: 
  s+=x

• … C++ equivalent. Main difference is types.

auto v = std::vector<int> {1,3,7,9};
int s = 0;

for (auto x : v) { 
  // do something …
  s+= x;
}

Intuitive



Simpler than what ? 52

for (int i = 0; i < v.size(); ++i) 
{ 
  // do something !
  s+= v[i];
}

• Old C++

for (auto const & x : v) { 
  // do something !
  s+= v;
}

• Modern C++

• Intent is clearer :  
  . Iterate on every elements in order  
  . v unchanged

• As or more efficient.

for (std::vector<int>::const_iterator it= 
v.begin(); it != v.end(); ++it) {
  // do something !
  s+= *it;
}



Python style

• Easy to use, less error prone.

• Implemented in TRIQS, not (yet) in standard library.

• Today, you still need a bit of expertise to write enumerate …
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• Python-like features can be implemented

for (auto [n, x] : enumerate(vec1)) 
  
   // (0, x[0]), (1, x[1]), (2, x[2]), …

for (auto [x, y] : zip(vec1, vec2)) 
   
   // (x[0], y[0]), (x[1], y[1]), (x[2], y[2]), …

std::vector<int> vec2, vec1; 

Structured bindings  
 in C++17



Soon 54

def enumerate(X) : 
    n=0
    for x in X: 
        yield n, x
        n +=1

template<typename T> 
std::generator<std::pair<n, typename T::value_type>> 

enumerate(T const & x) { 
  int n=0;
  for (auto const & y : x) { 
    co_yield std::pair{n,y};
    n++;
  }
}Python

Future C++ e.g. in clang -fcoroutines

• … implementing enumerate will become very simple.

• Coroutines : an old idea, in progress for C++20.

• Generators like in Python. Same code, but with types.
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Zero cost abstraction 

A simple example



What is zero cost abstraction ?

• What is simple should be coded simply

• High level and yet fast.

• Very important for readability, long term maintenance, code review.

• Common wrong idea : compact, simple, readable code is slow.

• We want simplicity (abstraction), without any performance penalty 
(at zero cost).

• Generic programming is essential to achieve this.  
C++17, C++20 make it a lot easier.  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Motivation 57

• Naive object oriented way : 

• Each addition makes a new array 

• Slow : a lot of temporaries and loops !

Z = A+B + C/2|{z}
| {z }

| {z }

Z = A + B + C / 2;

• A, B, C, Z:  arrays of rank 5 e.g.  We want to say 



Motivation 58

Z = A + B + C / 2;

• Error prone, hard to read and code review.

• The compiler should do this for us !   

• A, B, C, Z:  arrays of rank 5 e.g.  We want to say 

for (int i = 0; i < b1; ++i)
 for (int j = 0; j < b2; ++j)
  for (int k = 0; k < b4; ++k)
   for (int l = 0; l < b3; ++l)
    for (int m = 0; m < b5; ++m) {
     Z(i, j, k, l, m) =  
         A(i, j, k, l, m) + B(i, j, k, l, m) + C(i, j, k, l, m) / 2;
    }

• A basic answer is : write all the loops !



Other example

• With our multidimensional array class 

59

auto a = array<double, 3>(5, 2, 2);   // Declare a 5x2x2 array of double

sum(a * a);          // Sum all the square elements 

max_element(abs(a)); // maximum of the absolute value of the array

• Rewriting it manually requires the code of sum
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Let us consider a toy model.



• A and B :  two matrices n x n, real valued.  
A function trace 

• We want to write 

• Instead of 

• A priori, zero cost abstraction seems impossible:

• A + B computed first, before calling trace.

• Scales as N2 while hand-written code is N

The puzzle 61

double r = trace (A + B);

double r = 0;  
for (int i = 0; i < n; ++i)  
      r += A(i, i) + B(i, i);



The trace function

• Assume we have a square_matrix class

• Let us implement the trace

62

double trace (square_matrix const & m) {  
 double r = 0;
 int d = dim(m); // size of the matrix d x d
 for (int i=0; i<d; ++i) r += m(i,i);
 return r;
}

• Only things I used here : 

• m(i,j) returns the value of the matrix mij

• dim(m) returns the dimension



Generic programming

• A generic version of the function

63

template<typename M>
double trace (M const & m) {   
 double r = 0;
 int d = dim(m); // size of the matrix d x d
 for (int i=0; i<d; ++i) r += m(i,i);
 return r;
}

• What can M be ? 

• m(i,j) returns the value of the matrix mij

• dim(m) returns the dimension

• trace makes sense (i.e. compiles) only when these constraints on M 
are true



A few matrix classes 64

class square_matrix {
 int n;                      
 std::vector<double> data;   

 public:
 square_matrix(int n);

 double operator()(int i, int j) const { return data[i + n * j]; } 
 friend int dim(square_matrix const& m) { return m.n; }
 // … 
}; 

struct hilbert_matrix {
 int n;
 double operator()(int i, int j) const { return 1.0 / (i + j + 1); }
 friend int dim(hilbert_matrix const& m) { return m.n; }
};

• A matrix whose form is known analytically.

• A simple square matrix



Back to our question 65

template <typename A, typename B> struct lazy_addition {
 A const & a;
 B const & b;
 double operator()(int i, int j) const { return a(i, j) + b(i, j); }
 friend int dim(lazy_add const& x) { return dim(x.a); }
};

• The sum of 2 matrices is a lazy object that :  
  just keeps a reference to A, B  
  evaluates the actual sum only on demand.

template <typename A, typename B> 
lazy_addition<A, B> operator+(A const& a, B const& b){
 return {a, b};
}

double r = trace (A + B);

• The addition is too general, it takes any type !  Cf later…



What does the compiler do ? 66

double trace(lazy_addition const& m) {
 auto r = 0;
 int d = dim(m.a);
 for (int i = 0; i < d; ++i) r += m.a(i, i) + m.b(i,i);
 return r;
}

template <Matrix A, Matrix B> 
struct lazy_addition {
 A const& a;
 B const& b;
 
 double operator()(int i, int j) 
const { return a(i, j) + b(i, j); }

double trace(lazy_addition const& m) {
 auto r = m(0, 0);
 int d = dim(m);
 for (int i = 1; i < d; ++i) r += m(i, i);
 return r;
}

• Replace and inline calls 

• The compiler rewrites the code for us

• Exactly the hand written code

• Scales like N, not N2



Let us check

• Compare 3 code snippets (with Google Benchmarks)

• With Trace (TRIQS library)  
     auto r = trace(A + B);

• Explicit code (hand written)   
      
  for (int i = 0; i < N; ++i) r += A(i, i) + B(i, i);

• Force temporary 
      auto  r = trace(square_matrix{A + B});

67

Temporary Temporary



The notion of concept

• A concept is a set of requirements on a type

• Example:  Matrix   
      The category of types that behave like a square matrix (of double)

• m(i,j) returns the value of the matrix mij

• dim(m) returns the dimension

• Optionally : in C++20, tell the compiler (already in gcc)
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template <typename T> concept bool Matrix = requires(T m) {
  { m(0, 0)} -> double;
  { dim(m) } -> int;
 };



Finally 69

• The addition was too general, it took any type. Let’s fix it.

template <Matrix A, Matrix B> 
lazy_addition<A, B> operator+(A const& a, B const& b){
 return {a, b};
}

• Same thing for the trace

template<Matrix M>
double trace (M const & m) { 
//…
}

• Compiler will issue clear error messages in other cases.

• No more long error message of template C++ code, including STL.



Analogy with mathematics

• Math

• Notion of group. 

• General theorem that apply for every group

• Programming

• Notion of concepts. 

• General algorithms that apply for every type which model the 
concept.

• Library design : 

• Find the most fruitful concepts for our field (e.g. solid state 
physics, quantum many-body problem)

• A hierarchy of concepts, real type as leaf.  
Similar to Julia type system
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Continue analogy

• The category of Matrix types is closed under addition.

               Matrix + Matrix →  Matrix

• square_matrix  is not :  
square_matrix  +  square_matrix  !=  square_matrix  
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Conclusion

• TRIQS as a library for quantum many-body problem

• Current developments

• Scale up

• Documentation. 

• More applications, more components in the library
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Thank you for your attention


