
Containerization in Modern Scientific Applications

Nils Wentzell
Associate Data Scientist, CCQ

October 24th, 2018
Dylan Simon

Triqs

CMake

LLVM

HDF5

C++17 Python

NumPy

SciPy

Mpi4Py

H5Py

• Open-Source Tools for Kernel-level Containerization

• Native Performance of Host System

• Embed Applications in a flexible Linux Environment

• Package and Share Applications easily as Images

• Public Image Repositories

Docker Singularity

• Targeted at Scientific Computing

• Linux Only

• Singularity runs as User

• Native Support for OpenMPI

• Seamless Integration with Host

• Commercial & Non-Profit Userbase

• Available for Linux, Mac & Windows

• Docker-Daemon runs as Root

• Shared-Memory Parallelism

• Mostly Encapsulated Environment

Docker Singularity

Image-Recipe
Pick a base Distribution

Install Dependencies

Setup your Application

Setup Environment

Workflow

 docker build -t my_image -f my_recipe

 singularity build my_image my_recipe

Binary Image

Build

Image-Recipe

Share

Workflow

hub.docker.com/r/flatironinstitute/triqs

Binder

• Create and Host Jupyter Notebook Environments

• Great Integration with Docker Images

• Use the TRIQS Jupyter Notebook without installation!

triqs.github.io/notebook

Conclusions

• Powerful Tools for Kernel-level Containerization

• Package & Share your Application with all Dependencies

• Package Recent Compilers and use Modern Language Features

• Take Reproducible Science one step further

...

Triqs

from pytriqs.gf import *
from pytriqs.archive import *
from pytriqs.plot.mpl_interface import *

beta = 1.0 # Inverse Temperature
niw = 100 # Number of Matsubara Frequencies

Initialize the Matsubara Green Function
iw_mesh = MeshImFreq(beta, 'Fermion', niw)
g = Gf(mesh=iw_mesh, target_shape=(1,1))
for iw in g.mesh:
 g[iw] = 1/(iw - 3)

Store in HDF5 File
with HDFArchive('g.h5', 'w') as F:
 F['g'] = g

Plot the Result
oplot(g, name='g')
plt.savefig('plot.png')
plt.show()

TRIQS Example

Usage:
 singularity [global options...]

Description:
 Singularity containers provide an application virtualization layer enabling
 mobility of compute via both application and environment portability. With
 Singularity one is capable of building a root file system that runs on any
 other Linux system where Singularity is installed.

Options:
 -d, --debug print debugging information (highest verbosity)
 -h, --help help for singularity
 -q, --quiet suppress normal output
 -s, --silent only print errors
 -t, --tokenfile string path to the file holding your sylabs
 authentication token (default
 "/home/docker/.singularity/sylabs-token")
 -v, --verbose print additional information
 --version version for singularity

Available Commands:
 build Build a new Singularity container
 capability Manage Linux capabilities on containers
 exec Execute a command within container
 help Help about any command
 inspect Display metadata for container if available
 instance Manage containers running in the background
 keys Manage OpenPGP key stores
 pull Pull a container from a URI
 push Push a container to a Library URI
 run Launch a runscript within container
 run-help Display help for container if available
 search Search the library
 shell Run a Bourne shell within container
 sign Attach cryptographic signatures to container
 test Run defined tests for this particular container
 verify Verify cryptographic signatures on container
 version Show application version

